1
|
Schlapp G, Meikle MN, Pórfido JL, Menchaca A, Crispo M. Zygote cryobanking applied to CRISPR/Cas9 microinjection in mice. PLoS One 2024; 19:e0306617. [PMID: 38980864 PMCID: PMC11232997 DOI: 10.1371/journal.pone.0306617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 06/20/2024] [Indexed: 07/11/2024] Open
Abstract
Microinjection of CRISPR/Cas9 requires the availability of zygotes that implies animal breeding, superovulation schemes, and embryo collection. Vitrification of zygotes may allow having ready-to-use embryos and to temporally dissociate the workload of embryo production from microinjection. In this study, fresh (F group) or vitrified (V group) zygotes were microinjected with CRISPR/Cas9 system to test the hypothesis that vitrified zygotes could be a suitable source of embryos for microinjection. In Experiment 1 (in vitro evaluation), B6D2F1/J zygotes were microinjected and cultured until blastocyst stage. Embryo survival and cleavage rates after microinjection were similar between groups (~50% and ~80% respectively; P = NS). Development rate was significantly higher for F than V group (55.0% vs. 32.6%, respectively; P<0.05). Mutation rate did not show statistical differences among groups (P = NS). In Experiment 2 (in vivo evaluation), C57BL/6J zygotes were microinjected and transferred to recipient females. Embryo survival was significantly lower in fresh than in vitrified zygotes (49.2% vs. 62.7%, respectively; P<0.05). Cleavage rate did not show statistical differences (~70%; P = NS). Pregnancy rate (70.0% vs. 58.3%) and birth rate (11.9% vs. 11.2%) were not different between groups (F vs. V group; P = NS). Offspring mutation rate was higher for F than V group, in both heterodimer analysis (73.7% vs. 33.3%, respectively; P = 0.015) and Sanger sequencing (89.5% vs. 41.7%, respectively; P = 0.006). In conclusion, vitrified-warmed zygotes present a viable alternative source for CRISPR/Cas9 microinjection when the production of fresh embryos is impeded by limited technical support. The possibility of zygote cryobanking to perform microinjection sessions on demand seems to be a suitable alternative to avoid the breeding and maintenance of animals all over the year, enhancing the implementation of CRISPR technology.
Collapse
Affiliation(s)
- Geraldine Schlapp
- Laboratory Animal Biotechnology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - María Noel Meikle
- Laboratory Animal Biotechnology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Jorge Luis Pórfido
- Laboratory Animal Biotechnology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Alejo Menchaca
- Plataforma de Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA), Montevideo, Uruguay
- Fundacion IRAUy, Instituto de Reproducción Animal de Uruguay, Montevideo, Uruguay
| | - Martina Crispo
- Laboratory Animal Biotechnology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
2
|
Sciorio R, Manna C, Fauque P, Rinaudo P. Can Cryopreservation in Assisted Reproductive Technology (ART) Induce Epigenetic Changes to Gametes and Embryos? J Clin Med 2023; 12:4444. [PMID: 37445479 DOI: 10.3390/jcm12134444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/05/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Since the birth of Louise Brown in 1978, more than nine million children have been conceived using assisted reproductive technologies (ARTs). While the great majority of children are healthy, there are concerns about the potential epigenetic consequences of gametes and embryo manipulation. In fact, during the preimplantation period, major waves of epigenetic reprogramming occur. Epigenetic reprogramming is susceptible to environmental changes induced by ovarian stimulation, in-vitro fertilization, and embryo culture, as well as cryopreservation procedures. This review summarizes the evidence relating to oocytes and embryo cryopreservation and potential epigenetic regulation. Overall, it appears that the stress induced by vitrification, including osmotic shock, temperature and pH changes, and toxicity of cryoprotectants, might induce epigenetic and transcriptomic changes in oocytes and embryos. It is currently unclear if these changes will have potential consequences for the health of future offspring.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Edinburgh Assisted Conception Programme, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Claudio Manna
- Biofertility IVF and Infertility Center, 00198 Rome, Italy
| | - Patricia Fauque
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Development (GAD) INSERM UMR1231, F-21000 Dijon, France
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction-CECOS, F-21000 Dijon, France
| | - Paolo Rinaudo
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 92037, USA
| |
Collapse
|
3
|
Oocyte vitrification induces loss of DNA methylation and histone acetylation in the resulting embryos derived using ICSI in dromedary camel. ZYGOTE 2021; 29:383-392. [PMID: 33731239 DOI: 10.1017/s0967199421000150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Oocyte cryopreservation has become an important component of assisted reproductive technology with increasing implication in female fertility preservation and animal reproduction. However, the possible adverse effects of oocyte cryopreservation on epigenetic status of the resulting embryos is still an open question. This study evaluated the effects of MII-oocyte vitrification on gene transcripts linked to epigenetic reprogramming in association with the developmental competence and epigenetic status of the resulting embryos at 2-cell and blastocyst stages in dromedary camel. The cleavage rate of vitrified oocytes following intracytoplasmic sperm injection was significantly increased compared with the control (98.2 ± 2 vs. 72.7 ± 4.1%, respectively), possibly due to the higher susceptibility of vitrified oocytes to spontaneous activation. Nonetheless, the competence of cleaved embryos derived from vitrified oocytes for development to the blastocyst and hatched blastocyst was significantly reduced compared with the control (7.7 ± 1.2 and 11.1 ± 11.1 compared with 28.1 ± 2.6 and 52.4 ± 9.9%, respectively). The relative transcript abundances of epigenetic reprogramming genes DNMT1, DNMT3B, HDAC1, and SUV39H1 were all significantly reduced in vitrified oocytes relative to the control. Evaluation of the epigenetic marks showed significant reductions in the levels of DNA methylation (6.1 ± 0.3 vs. 9.9 ± 0.5, respectively) and H3K9 acetylation (7.8 ± 0.2 vs. 10.7 ± 0.3, respectively) in 2-cell embryos in the vitrification group relative to the control. Development to the blastocyst stage partially adjusted the effects that oocyte vitrification had on the epigenetic status of embryos (DNA methylation: 4.9 ± 0.4 vs. 6.2 ± 0.6; H3K9 acetylation: 5.8 ± 0.3 vs. 8 ± 0.9, respectively). To conclude, oocyte vitrification may interfere with the critical stages of epigenetic reprogramming during preimplantation embryo development.
Collapse
|
4
|
Peinado I, Moya I, Sáez-Espinosa P, Barrera M, García-Valverde L, Francés R, Torres P, Gómez-Torres MJ. Impact of Maturation and Vitrification Time of Human GV Oocytes on the Metaphase Plate Configuration. Int J Mol Sci 2021; 22:ijms22031125. [PMID: 33498768 PMCID: PMC7865957 DOI: 10.3390/ijms22031125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/28/2022] Open
Abstract
The combination of in vitro maturation (IVM) techniques and oocyte vitrification (OV) could increase the number of useful oocytes in different types of patients. IVM and subsequent OV is the most widely used clinical strategy. Would the results improve if we reverse the order of the techniques? Here, we evaluated survival, in vitro maturation, time to extrude the first polar body (PB), and the metaphase plate configuration of human prophase I (GV) oocytes before or after their vitrification. Specific, 195 GV oocytes from 104 patients subjected to controlled ovarian stimulation cycles were included. We stablished three experimental groups: GV oocytes vitrified and IVM (Group GV-Vit), GV oocytes IVM and vitrified at MII stage (Group MII-Vit), and GV oocytes IVM (Group not-Vit). All of them were in vitro matured for a maximum of 48 h and fixed to study the metaphase plate by confocal microscopy. According to our results, the vitrification of immature oocytes and their subsequent maturation presented similar survival, maturation, and metaphase plate conformation rates, but a significantly higher percentage of normal spindle than the standard strategy. Additionally, the extension of IVM time to 48 h did not seem to negatively affect the oocyte metaphase plate configuration.
Collapse
Affiliation(s)
- Irene Peinado
- Assisted Human Reproduction Unit, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (I.P.); (I.M.); (M.B.); (L.G.-V.); (R.F.); (P.T.)
| | - Isabel Moya
- Assisted Human Reproduction Unit, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (I.P.); (I.M.); (M.B.); (L.G.-V.); (R.F.); (P.T.)
| | | | - Macarena Barrera
- Assisted Human Reproduction Unit, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (I.P.); (I.M.); (M.B.); (L.G.-V.); (R.F.); (P.T.)
- Biotechnology Department, Alicante University, 03690 Alicante, Spain;
| | - Laura García-Valverde
- Assisted Human Reproduction Unit, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (I.P.); (I.M.); (M.B.); (L.G.-V.); (R.F.); (P.T.)
- Biotechnology Department, Alicante University, 03690 Alicante, Spain;
| | - Raquel Francés
- Assisted Human Reproduction Unit, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (I.P.); (I.M.); (M.B.); (L.G.-V.); (R.F.); (P.T.)
- Energy and Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Patricia Torres
- Assisted Human Reproduction Unit, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (I.P.); (I.M.); (M.B.); (L.G.-V.); (R.F.); (P.T.)
| | - María José Gómez-Torres
- Biotechnology Department, Alicante University, 03690 Alicante, Spain;
- Cátedra Human Fertility, Universidad de Alicante, 03690 Alicante, Spain
- Correspondence:
| |
Collapse
|
5
|
Arcarons N, Vendrell-Flotats M, Yeste M, Mercade E, López-Béjar M, Mogas T. Cryoprotectant role of exopolysaccharide of Pseudomonas sp. ID1 in the vitrification of IVM cow oocytes. Reprod Fertil Dev 2020; 31:1507-1519. [PMID: 31092307 DOI: 10.1071/rd18447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 04/02/2019] [Indexed: 12/12/2022] Open
Abstract
Biological molecules isolated from organisms that live under subzero conditions could be used to protect oocytes from cryoinjuries suffered during cryopreservation. This study examined the cryoprotectant role of exopolysaccharides of Pseudomonas sp. ID1 (EPS ID1) in the vitrification of prepubertal and adult cow oocytes. IVM oocytes were vitrified and warmed in media supplemented with 0, 1, 10, 100 or 1000µgmL-1 EPS ID1. After warming, oocytes were fertilised and embryo development, spindle morphology and the expression of several genes in Day 8 blastocysts were assessed. Vitrification led to significantly lower proportion of prepubertal oocytes exhibiting a normal spindle configuration. In fresh control oocytes and most groups of vitrified adult oocytes, similar percentages of oocytes with a normal spindle configuration were observed. Percentages of Day 8 blastocysts were similar for prepubertal oocytes vitrified in the absence or presence of 1 or 10µgmL-1 EPS ID1 and for adult oocytes vitrified in the presence of 10µgmL-1 EPS ID1 compared with non-vitrified oocytes. EPS ID1 supplementation had no effect on solute carrier family 2 member 3 (SLC2A3), ubiquitin-conjugating enzyme E2A (UBE2A) and histone deacetylase 1 (HDAC1) expression in Day 8 blastocysts form adult oocytes. However, supplementation with 10 and 100µgmL-1 EPS ID1 led to increased expression of genes involved in epigenetic modifications (DNA methyltransferase 3 alpha (DNMT3A) and K (lysine) acetyltransferase 2A (KAT2A)) and apoptosis (BCL2 associated X apoptosis regulator (BAX) and BCL2-like 1 (BCL2L1)). The lowest BAX:BCL2L1 ratio was found in the 10µgmL-1 EPS ID1-supplemented group. The results suggest that 10µgmL-1 EPS ID1 added to vitrification and warming media may help protect bovine oocytes against cryodamage.
Collapse
Affiliation(s)
- Núria Arcarons
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, Travessera dels Turons s/n, E-08193, Cerdanyola del Vallès (Barcelona), Spain
| | - Meritxell Vendrell-Flotats
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, Travessera dels Turons s/n, E-08193, Cerdanyola del Vallès (Barcelona), Spain; and Department of Animal Health and Anatomy, Autonomous University of Barcelona, Travessera dels Turons s/n, E-08193, Cerdanyola del Vallès (Barcelona), Spain
| | - Marc Yeste
- Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Girona, C/ Maria Aurèlia Campany 69, Campus Montilivi, E-17003 Girona, Spain
| | - Elena Mercade
- Department de Biology, Health and Environment, Microbiology Section, University of Barcelona, E-08028, Barcelona, Spain
| | - Manel López-Béjar
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, Travessera dels Turons s/n, E-08193, Cerdanyola del Vallès (Barcelona), Spain
| | - Teresa Mogas
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, Travessera dels Turons s/n, E-08193, Cerdanyola del Vallès (Barcelona), Spain; and Corresponding author.
| |
Collapse
|
6
|
Oocyte Vitrification Temporarily Turns on Oxidation-Reduction Process Genes in Mouse Preimplantation Embryos. Reprod Sci 2020; 28:1307-1315. [PMID: 33067752 DOI: 10.1007/s43032-020-00337-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
We aim to understand how oocyte vitrification impacts subsequent mouse preimplantation embryo development at molecular level. We profiled transcriptomics of fertilized preimplantation embryos derived from mouse vitrified-warmed oocytes. Concomitantly, we evaluated epigenetic markers in fertilized preimplantation embryos. We found that oocyte vitrification did not affect the fertilization and cleavage process but delayed embryo development until blastocyst stage. RNA sequencing revealed that 1575 genes were profoundly altered in the 2-cell stage embryos developed from vitrified oocytes. The most significantly altered biological pathway was "oxidation-reduction process." Such profound transcriptomics change was associated with decreased level of oocyte-specific histone H1FOO in zygote and 2-cell stage. Transcriptome alteration due to oocyte vitrification was less pronounced as embryos develop into the morula stage. Oocyte vitrification temporarily changes transcriptomics in early preimplantation embryos. Targeting oxidation-reduction pathway might be a potential therapeutic strategy to improve embryo quality and long-term embryo survival.
Collapse
|
7
|
Vendrell-Flotats M, García-Martínez T, Martínez-Rodero I, Lopez-Bejar M, LaMarre J, Yeste M, Mogas T. In Vitro Maturation with Leukemia Inhibitory Factor Prior to the Vitrification of Bovine Oocytes Improves Their Embryo Developmental Potential and Gene Expression in Oocytes and Embryos. Int J Mol Sci 2020; 21:ijms21197067. [PMID: 32992968 PMCID: PMC7582665 DOI: 10.3390/ijms21197067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
Oocyte cryopreservation has a significant impact on subsequent embryonic development. Herein, we investigated whether supplementing in vitro maturation medium with Leukemia Inhibitory Factor (LIF) prior to vitrification affects embryo development and gene expression at different embryo developmental stages. A panel of genes including maternal effect, epigenetics, apoptosis and heat stress was relatively quantified. The results show reduced cleavage rates after vitrification, regardless of the LIF treatment. Although not statistically different from control-vitrified oocytes, oocyte apoptosis and the blastocyst yield of LIF-vitrified oocytes were similar to their non-vitrified counterparts. Vitrification increased oocyte ZAR1, NPM2 and DPPA3 gene expression while its expression decreased in LIF-vitrified oocytes to similar or close levels to those of non-vitrified oocytes. With a few gene-specific exceptions, vitrification significantly increased the expression of DNMT3A, HDAC1, KAT2A, BAX and BCL2L1 in oocytes and most stages of embryo development, while comparable expression patterns for these genes were observed between LIF-vitrified and non-vitrified groups. Vitrification increased HSPA1A expression in oocytes and HSP90AA1 in 2-cell embryos. Our data suggest that vitrification triggers stage-specific changes in gene expression throughout embryonic development. However, the inclusion of LIF in the IVM medium prior to vitrification stimulates blastocyst development and several other developmental parameters and induces oocytes and embryos to demonstrate gene expression patterns similar to those derived from non-vitrified oocytes.
Collapse
Affiliation(s)
- Meritxell Vendrell-Flotats
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (M.V.-F.); (T.G.-M.); (I.M.-R.)
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain;
| | - Tania García-Martínez
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (M.V.-F.); (T.G.-M.); (I.M.-R.)
| | - Iris Martínez-Rodero
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (M.V.-F.); (T.G.-M.); (I.M.-R.)
| | - Manel Lopez-Bejar
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain;
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Jonathan LaMarre
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Marc Yeste
- Department of Biology, Institute of Food and Agricultural Technology, University of Girona, ES-17004 Girona, Spain;
| | - Teresa Mogas
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (M.V.-F.); (T.G.-M.); (I.M.-R.)
- Correspondence: ; Tel.: +34-93-581-10-44
| |
Collapse
|
8
|
Barberet J, Barry F, Choux C, Guilleman M, Karoui S, Simonot R, Bruno C, Fauque P. What impact does oocyte vitrification have on epigenetics and gene expression? Clin Epigenetics 2020; 12:121. [PMID: 32778156 PMCID: PMC7418205 DOI: 10.1186/s13148-020-00911-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Children conceived by assisted reproductive technologies (ART) have a moderate risk for a number of adverse events and conditions. The question whether this additional risk is associated with specific procedures used in ART or whether it is related to the intrinsic biological factors associated with infertility remains unresolved. One of the main hypotheses is that laboratory procedures could have an effect on the epigenome of gametes and embryos. This suspicion is linked to the fact that ART procedures occur precisely during the period when there are major changes in the organization of the epigenome. Oocyte freezing protocols are generally considered safe; however, some evidence suggests that vitrification may be associated with modifications of the epigenetic marks. In this manuscript, after describing the main changes that occur during epigenetic reprogramming, we will provide current information regarding the impact of oocyte vitrification on epigenetic regulation and the consequences on gene expression, both in animals and humans. Overall, the literature suggests that epigenetic and transcriptomic profiles are sensitive to the stress induced by oocyte vitrification, and it also underlines the need to improve our knowledge in this field.
Collapse
Affiliation(s)
- Julie Barberet
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Fatima Barry
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Cécile Choux
- Gynécologie-Obstétrique, CHU Dijon Bourgogne, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Magali Guilleman
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Sara Karoui
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Raymond Simonot
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Céline Bruno
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Patricia Fauque
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| |
Collapse
|
9
|
Cong Y, Wu H, Bian X, Xie Q, Lyu Q, Cui J, Suo L, Kuang Y. Ptk2b deletion improves mice folliculogenesis and fecundity via inhibiting follicle loss mediated by Erk pathway. J Cell Physiol 2020; 236:1043-1053. [PMID: 32608523 DOI: 10.1002/jcp.29914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/20/2020] [Indexed: 11/09/2022]
Abstract
Ptk2b has been found playing critical roles in oocyte maturation and subsequent fertilization in vitro. But what is the exact in vivo function in reproduction still elusive. Here, by constructing Ptk2b mutant mice, we found Ptk2b was not essential for mice fertility, unexpectedly, contrary to previously reported in vitro findings, we found Ptk2b ablation significantly improved female fecundity. Follicle counting indicated that the number of primordial follicles and growing follicles in matured mice was significantly increased in the absence of Ptk2b, whereas the primordial follicle formation showed no defects. We also found this regulation was in an autophosphorylation independent pathway, as autophosphorylation site mutant mice (PTK2BY402F ) show no phenotype in female fertility. Further biochemistry studies revealed that Ptk2b ablation promotes folliculogenesis via Erk pathway mediate follicle survival. Together, we found a novel biological function of Ptk2b in folliculogenesis, which could be potentially used as a therapeutic target for corresponding infertility.
Collapse
Affiliation(s)
- Yanyan Cong
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuejiao Bian
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Xie
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qifeng Lyu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junqi Cui
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lun Suo
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Salehi M, Mahdavi AH, Sharafi M, Shahverdi A. Cryopreservation of rooster semen: Evidence for the epigenetic modifications of thawed sperm. Theriogenology 2020; 142:15-25. [DOI: 10.1016/j.theriogenology.2019.09.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/02/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022]
|
11
|
Chen H, Zhang L, Wang Z, Chang H, Xie X, Fu L, Zhang Y, Quan F. Resveratrol improved the developmental potential of oocytes after vitrification by modifying the epigenetics. Mol Reprod Dev 2019; 86:862-870. [PMID: 31066155 DOI: 10.1002/mrd.23161] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/26/2019] [Accepted: 04/12/2019] [Indexed: 01/13/2023]
Abstract
Resveratrol (Res) has been reported to be able to improve oocyte vitrification because of its antioxidative properties. The objective of this study was to further assess the positive effect of Res addition on the developmental potential of vitrified mouse oocytes from the perspective of epigenetic alterations. First, 2 μM Res was chosen as the optimal concentration on the basis of its effects on survival and its antioxidative properties. We found that Res addition significantly promoted fertilization (63.8% vs. 42.9%) and blastocyst formation (68.3% vs. 50.2%) after oocyte vitrification. The quality of the derived blastocysts was also higher after Res treatment. Regarding epigenetic aspects, the expression of the important deacetylase SIRT1 was found to decrease significantly upon vitrification, but it was rescued by Res. The abnormal levels of H3K9 acetylation and DNA methylation in vitrified oocytes were restored by Res addition. Moreover, the expression of several imprinted genes was affected by oocyte vitrification. Among them, abnormal Gtl2 and Peg3 expression levels were restored by Res addition. Therefore, the methylation of their imprinted control regions (ICRs) was examined. Surprisingly, the abnormal patterns of Gtl2 and Peg3 methylation in blastocysts developed from vitrified oocytes were both restored by Res addition. Finally, the full-term embryonic development showed that the birth rate was improved significantly by Res addition (56.2% vs. 38.1%). Collectively, Res was beneficial for the pre- and postimplantation embryonic development. Except for the antioxidative activity, Res also played a role in the correction of some abnormal epigenetic modifications caused by oocyte vitrification.
Collapse
Affiliation(s)
- Huanhuan Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Lei Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Zhenqiang Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Haoya Chang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xiaogang Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Liangzheng Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Fusheng Quan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
12
|
Ghazifard A, Salehi M, Ghaffari Novin M, Bandehpour M, Keshavarzi S, Fallah Omrani V, Dehghani-Mohammadabadi M, Masteri Farahani R, Hosseini A. Anacardic Acid Reduces Acetylation of H4K12 in Mouse Oocytes during Vitrification. CELL JOURNAL 2018; 20:552-558. [PMID: 30124002 PMCID: PMC6099150 DOI: 10.22074/cellj.2019.5601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/06/2018] [Indexed: 11/10/2022]
Abstract
Objective Over the last years, vitrification has been widely used for oocyte cryopreservation, in animals and humans; however,
it frequently causes minor and major epigenetic modifications. The effect of oocyte vitrification on levels of acetylation of
histone H4 at lysine 12 (AcH4K12), and histone acetyltransferase (Hat) expression, was previously assessed; however, little is
known about the inhibition of Hat expression during oocyte vitrification. This study evaluated the effect of anacardic acid (AA)
as a Hat inhibitor on vitrified mouse oocytes.
Materials and Methods In this experimental study, 248 mouse oocytes at metaphase II (MII) stage were divided in three
experimental groups namely, fresh control oocytes (which were not affected by vitrification), frozen/thawed oocytes (vitrified)
and frozen/thawed oocytes pre-treated with AA (treatment). Out of 248 oocytes, 173 oocytes were selected and from them,
84 oocytes were vitrified without AA (vitrified group) and 89 oocytes were pretreated with AA, and then vitrified (treatment
group). Fresh MII mouse oocytes were used as control group. Hat expression and AcH4K12 levels were assessed by using
real-time quantitative polymerase chain reaction (PCR) and immunofluoresce staining, respectively. In addition, survival rate
was determined in vitrified and treatment oocytes.
Results Hat expression and AcH4K12 modification significantly increased [4.17 ± 1.27 (P≤0.001) and 97.57 ± 6.30
(P<0.001), respectively] in oocytes that were vitrified, compared to the fresh oocytes. After treatment with AA, the Hat
mRNA expression and subsequently H4K12 acetylation levels were significantly reduced [0.12 ± 0.03 (P≤0.001) and
89.79 ± 3.20 (P≤0.05), respectively] in comparison to the vitrified group. However, the survival rate was not significantly
different between the vitrified (90.47%) and treatment (91.01%) groups (P>0.05).
Conclusion The present study suggests that AA reduces vitrification risks caused by epigenetic modifications, but does not
affect the quality of vitrification. In fact, AA as a Hat inhibitor was effective in reducing the acetylation levels of H4K12.
Collapse
Affiliation(s)
- Alaleh Ghazifard
- Department of Reproductive Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Salehi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.Electronic Address:
| | - Marefat Ghaffari Novin
- Department of Reproductive Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.Electronic Address:
| | - Somayeh Keshavarzi
- Department of Reproductive Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Fallah Omrani
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Masteri Farahani
- Department of Reproductive Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Hosseini
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic Address:
| |
Collapse
|
13
|
Fonseca Balvís N, Garcia-Martinez S, Pérez-Cerezales S, Ivanova E, Gomez-Redondo I, Hamdi M, Rizos D, Coy P, Kelsey G, Gutierrez-Adan A. Cultured bovine embryo biopsy conserves methylation marks from original embryo. Biol Reprod 2018; 97:189-196. [PMID: 29044423 DOI: 10.1093/biolre/iox077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/15/2017] [Indexed: 11/14/2022] Open
Abstract
A major limitation of embryo epigenotyping by chromatin immunoprecipitation analysis is the reduced amount of sample available from an embryo biopsy. We developed an in vitro system to expand trophectoderm cells from an embryo biopsy to overcome this limitation. This work analyzes whether expanded trophectoderm (EX) is representative of the trophectoderm (TE) methylation or adaptation to culture has altered its epigenome. We took a small biopsy from the trophectoderm (30-40 cells) of in vitro produced bovine-hatched blastocysts and cultured it on fibronectin-treated plates until we obtained ∼4 × 104 cells. The rest of the embryo was allowed to recover its spherical shape and, subsequently, TE and inner cell mass were separated. We examined whether there were DNA methylation differences between TE and EX of three bovine embryos using whole-genome bisulfite sequencing. As a consequence of adaptation to culture, global methylation, including transposable elements, was higher in EX, with 5.3% of quantified regions showing significant methylation differences between TE and EX. Analysis of individual embryos indicated that TE methylation is more similar to its EX counterpart than to TE from other embryos. Interestingly, these similarly methylated regions are enriched in CpG islands, promoters and transcription units near genes involved in biological processes important for embryo development. Our results indicate that EX is representative of the embryo in terms of DNA methylation, thus providing an informative proxy for embryo epigenotyping.
Collapse
Affiliation(s)
- Noelia Fonseca Balvís
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Soledad Garcia-Martinez
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Serafín Pérez-Cerezales
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Elena Ivanova
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Isabel Gomez-Redondo
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Meriem Hamdi
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Dimitrios Rizos
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Pilar Coy
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Alfonso Gutierrez-Adan
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
14
|
Anav M, Ferrières-Hoa A, Gala A, Fournier A, Zaragoza S, Vintejoux E, Vincens C, Hamamah S. [Birth weight and frozen embryo transfer: State of the art]. ACTA ACUST UNITED AC 2018; 46:489-496. [PMID: 29680508 DOI: 10.1016/j.gofs.2018.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Indexed: 11/26/2022]
Abstract
The aim of this study was to update our acknowledgment if there is a link between assisted embryo cryopreservation and epigenetics in human? Animal studies have demonstrated epigenetics consequence and especially imprinting disorders due to in vitro culture. In human, it is important to note that after frozen embryo transfer birth weight is significantly increased by 81 to 250g. But these studies cannot identify the reasons of such difference. This review strongly suggests that embryo cryopreservation is responsible for birth weight variations but mechanisms not yet elucidated. Epigenetics is probably one of these but to date, none study is able to prove it. We have to be attentive on a possible link between assisted reproductive technology (ART) and epigenetics reprogrammation.
Collapse
Affiliation(s)
- M Anav
- Département biologie de la reproduction/DPI, hôpital Arnaud-de-Villeneuve, 371, avenue du Doyen-Gaston-Giraud, 34295, Montpellier, France
| | - A Ferrières-Hoa
- Département biologie de la reproduction/DPI, hôpital Arnaud-de-Villeneuve, 371, avenue du Doyen-Gaston-Giraud, 34295, Montpellier, France
| | - A Gala
- Département biologie de la reproduction/DPI, hôpital Arnaud-de-Villeneuve, 371, avenue du Doyen-Gaston-Giraud, 34295, Montpellier, France
| | - A Fournier
- Département biologie de la reproduction/DPI, hôpital Arnaud-de-Villeneuve, 371, avenue du Doyen-Gaston-Giraud, 34295, Montpellier, France
| | - S Zaragoza
- Département biologie de la reproduction/DPI, hôpital Arnaud-de-Villeneuve, 371, avenue du Doyen-Gaston-Giraud, 34295, Montpellier, France
| | - E Vintejoux
- Service de gynécologie obstétrique, CHU Arnaud-de-Villeneuve, 371, avenue du Doyen-Gaston-Giraud, 34295, Montpellier, France
| | - C Vincens
- Service de gynécologie obstétrique, CHU Arnaud-de-Villeneuve, 371, avenue du Doyen-Gaston-Giraud, 34295, Montpellier, France
| | - S Hamamah
- Département biologie de la reproduction/DPI, hôpital Arnaud-de-Villeneuve, 371, avenue du Doyen-Gaston-Giraud, 34295, Montpellier, France.
| |
Collapse
|
15
|
Elliott GD, Wang S, Fuller BJ. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 2017; 76:74-91. [DOI: 10.1016/j.cryobiol.2017.04.004] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 04/07/2017] [Accepted: 04/16/2017] [Indexed: 02/08/2023]
|
16
|
Chatterjee A, Saha D, Niemann H, Gryshkov O, Glasmacher B, Hofmann N. Effects of cryopreservation on the epigenetic profile of cells. Cryobiology 2017; 74:1-7. [DOI: 10.1016/j.cryobiol.2016.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 11/08/2016] [Accepted: 12/08/2016] [Indexed: 12/11/2022]
|
17
|
Ross PJ, Canovas S. Mechanisms of epigenetic remodelling during preimplantation development. Reprod Fertil Dev 2017; 28:25-40. [PMID: 27062872 DOI: 10.1071/rd15365] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epigenetics involves mechanisms independent of modifications in the DNA sequence that result in changes in gene expression and are maintained through cell divisions. Because all cells in the organism contain the same genetic blueprint, epigenetics allows for cells to assume different phenotypes and maintain them upon cell replication. As such, during the life cycle, there are moments in which the epigenetic information needs to be reset for the initiation of a new organism. In mammals, the resetting of epigenetic marks occurs at two different moments, which both happen to be during gestation, and include primordial germ cells (PGCs) and early preimplantation embryos. Because epigenetic information is reversible and sensitive to environmental changes, it is probably no coincidence that both these extensive periods of epigenetic remodelling happen in the female reproductive tract, under a finely controlled maternal environment. It is becoming evident that perturbations during the extensive epigenetic remodelling in PGCs and embryos can lead to permanent and inheritable changes to the epigenome that can result in long-term changes to the offspring derived from them, as indicated by the Developmental Origins of Health and Disease (DOHaD) hypothesis and recent demonstration of inter- and trans-generational epigenetic alterations. In this context, an understanding of the mechanisms of epigenetic remodelling during early embryo development is important to assess the potential for gametic epigenetic mutations to contribute to the offspring and for new epimutations to be established during embryo manipulations that could affect a large number of cells in the offspring. It is of particular interest to understand whether and how epigenetic information can be passed on from the gametes to the embryo or offspring, and whether abnormalities in this process could lead to transgenerationally inheritable phenotypes. The aim of this review is to highlight recent progress made in understanding the nature and mechanisms of epigenetic remodelling that ensue after fertilisation.
Collapse
Affiliation(s)
- Pablo Juan Ross
- Department of Animal Science, University of California, Davis, CA 95616 USA
| | - Sebastian Canovas
- LARCEL (Laboratorio Andaluz de Reprogramación Celular), BIONAND, Centro Andaluz de Nanomedicina y Biotecnología Campanillas, Malaga 29590, Spain
| |
Collapse
|
18
|
Chen H, Zhang L, Deng T, Zou P, Wang Y, Quan F, Zhang Y. Effects of oocyte vitrification on epigenetic status in early bovine embryos. Theriogenology 2016; 86:868-78. [PMID: 27068359 DOI: 10.1016/j.theriogenology.2016.03.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 03/03/2016] [Accepted: 03/05/2016] [Indexed: 10/22/2022]
Abstract
Oocyte cryopreservation has a great impact on subsequent embryonic development. Currently, several studies have primarily focused on the consequences of vitrification and the development potential of cellular structures. This study determined whether oocyte vitrification caused epigenetic instabilities of bovine embryos. The effects of oocyte vitrification on DNA methylation, histone modifications, and putative imprinted genes' expression in early embryos derived by intracytoplasmic sperm injection were examined. Results showed that oocyte vitrification did not affect zygote cleavage rates (67.0% vs. 73.8% control, P > 0.05) but reduced the blastocyst rate (9.6% vs. 23.0%, P < 0.05). The levels of DNA methylation and H3K9me3 in oocytes and early cleavage embryos were lower (P < 0.05) than those in control group, but the level of acH3K9 increased (P < 0.05) in the vitrification group during the early cleavage phases. No differences were observed for DNA methylation, H3K9me3, and acH3K9 in the inner cell mass of blastocysts, whereas decreased levels of DNA methylation and acH3K9 (P < 0.05) existed in TE cells after vitrification. The expression of putative-imprinted genes PEG10, XIST, and KCNQ1O1T was upregulated in blastocysts. These epigenetic abnormalities may be partially explained by altered expression of genes associated with epigenetic regulations. DNA methylation and H3K9 modification suggest that oocyte vitrification may excessively relax the chromosomes of oocytes and early cleavage embryos. In conclusion, these epigenetic indexes could be used as damage markers of oocyte vitrification during early embryonic development, which offers a new insight to assess oocyte vitrification.
Collapse
Affiliation(s)
- Huanhuan Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Tengfei Deng
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengda Zou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongsheng Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
19
|
Rajabi H, Mohseni-Kouchesfehani H, Mohammadi-Sangcheshmeh A, Farifteh-Nobijari F, Salehi M. Pronuclear epigenetic modification of protamine deficient human sperm following injection into mouse oocytes. Syst Biol Reprod Med 2016; 62:125-32. [DOI: 10.3109/19396368.2016.1140848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Hoda Rajabi
- Stem Cell Technology Research Center, Tehran, Iran
- Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | | | | | - Fattaneh Farifteh-Nobijari
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Salehi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Marcho C, Cui W, Mager J. Epigenetic dynamics during preimplantation development. Reproduction 2015; 150:R109-20. [PMID: 26031750 DOI: 10.1530/rep-15-0180] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/01/2015] [Indexed: 12/31/2022]
Abstract
Successful mammalian development requires descendants of single-cell zygotes to differentiate into diverse cell types even though they contain the same genetic material. Preimplantation dynamics are first driven by the necessity of reprogramming haploid parental epigenomes to reach a totipotent state. This process requires extensive erasure of epigenetic marks shortly after fertilization. During the few short days after formation of the zygote, epigenetic programs are established and are essential for the first lineage decisions and differentiation. Here we review the current understanding of DNA methylation and histone modification dynamics responsible for these early changes during mammalian preimplantation development. In particular, we highlight insights that have been gained through next-generation sequencing technologies comparing human embryos to other models as well as the recent discoveries of active DNA demethylation mechanisms at play during preimplantation.
Collapse
Affiliation(s)
- Chelsea Marcho
- Department of Veterinary and Animal ScienceUniversity of Massachusetts Amherst, 661 North Pleasant Street, Amherst, Massachusetts 01003, USA
| | - Wei Cui
- Department of Veterinary and Animal ScienceUniversity of Massachusetts Amherst, 661 North Pleasant Street, Amherst, Massachusetts 01003, USA
| | - Jesse Mager
- Department of Veterinary and Animal ScienceUniversity of Massachusetts Amherst, 661 North Pleasant Street, Amherst, Massachusetts 01003, USA
| |
Collapse
|
21
|
Beaujean N. Epigenetics, embryo quality and developmental potential. Reprod Fertil Dev 2015; 27:53-62. [DOI: 10.1071/rd14309] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is very important for embryologists to understand how parental inherited genomes are reprogrammed after fertilisation in order to obtain good-quality embryos that will sustain further development. In mammals, it is now well established that important epigenetic modifications occur after fertilisation. Although gametes carry special epigenetic signatures, they should attain embryo-specific signatures, some of which are crucial for the production of healthy embryos. Indeed, it appears that proper establishment of different epigenetic modifications and subsequent scaffolding of the chromatin are crucial steps during the first cleavages. This ‘reprogramming’ is promoted by the intimate contact between the parental inherited genomes and the oocyte cytoplasm after fusion of the gametes. This review introduces two main epigenetic players, namely histone post-translational modifications and DNA methylation, and highlights their importance during early embryonic development.
Collapse
|
22
|
Cryopreservation of mammalian oocytes and embryos: current problems and future perspectives. SCIENCE CHINA-LIFE SCIENCES 2014; 57:903-14. [DOI: 10.1007/s11427-014-4689-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/03/2014] [Indexed: 01/19/2023]
|
23
|
Beaujean N. Histone post-translational modifications in preimplantation mouse embryos and their role in nuclear architecture. Mol Reprod Dev 2013; 81:100-12. [PMID: 24150914 DOI: 10.1002/mrd.22268] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/08/2013] [Indexed: 02/03/2023]
Abstract
In mammals, epigenetic modifications are globally rearranged after fertilization, when gametes fuse to form the embryo. While gametes carry special epigenetic signatures and a unique nuclear organization, they attain embryo-specific patterns after fertilization. This "reprogramming" is promoted by intimate contact between the parental inherited genomes and the oocyte cytoplasm over the first cell cycles of development. Although the mechanisms of this reprogramming remain poorly understood, it appears that the particular epigenetic landscape established after fertilization is essential for further development. This review looks at histone post-translational modifications, focusing on their functions in chromatin organization and their role in nuclear architecture during mouse embryonic development. Epigenetic changes linked to the use of assisted reproductive technologies are also considered.
Collapse
Affiliation(s)
- Nathalie Beaujean
- UMR1198 Biologie du Développement et Reproduction, INRA Domaine de Vilvert, Jouy-en-Josas, France; ENVA, Maisons Alfort, France
| |
Collapse
|
24
|
Trapphoff T, Heiligentag M, El Hajj N, Haaf T, Eichenlaub-Ritter U. Chronic exposure to a low concentration of bisphenol A during follicle culture affects the epigenetic status of germinal vesicles and metaphase II oocytes. Fertil Steril 2013; 100:1758-67.e1. [DOI: 10.1016/j.fertnstert.2013.08.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/24/2013] [Accepted: 08/09/2013] [Indexed: 12/14/2022]
|
25
|
Zhao XM, Ren JJ, Du WH, Hao HS, Wang D, Qin T, Liu Y, Zhu HB. Effect of vitrification on promoter CpG island methylation patterns and expression levels of DNA methyltransferase 1o, histone acetyltransferase 1, and deacetylase 1 in metaphase II mouse oocytes. Fertil Steril 2013; 100:256-61. [DOI: 10.1016/j.fertnstert.2013.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 12/13/2022]
|
26
|
Li J, Fu X, Mo X, Yue M, Jia B, Zhu S. Vitrification alters acH4K12 and acH4K16 levels in sheep oocytes at various developmental stages. Small Rumin Res 2013. [DOI: 10.1016/j.smallrumres.2012.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Spinaci M, Vallorani C, Bucci D, Tamanini C, Porcu E, Galeati G. Vitrification of pig oocytes induces changes in histone H4 acetylation and histone H3 lysine 9 methylation (H3K9). Vet Res Commun 2012; 36:165-71. [DOI: 10.1007/s11259-012-9527-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2012] [Indexed: 11/30/2022]
|