1
|
Nishimura T, Takebe T. Synthetic human gonadal tissues for toxicology. Reprod Toxicol 2024; 126:108598. [PMID: 38657700 DOI: 10.1016/j.reprotox.2024.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
The process of mammalian reproduction involves the development of fertile germ cells in the testis and ovary, supported by the surrounders. Fertilization leads to embryo development and ultimately the birth of offspring inheriting parental genome information. Any disruption in this process can result in disorders such as infertility and cancer. Chemical toxicity affecting the reproductive system and embryogenesis can impact birth rates, overall health, and fertility, highlighting the need for animal toxicity studies during drug development. However, the translation of animal data to human health remains challenging due to interspecies differences. In vitro culture systems offer a promising solution to bridge this gap, allowing the study of mammalian cells in an environment that mimics the physiology of the human body. Current advances on in vitro culture systems, such as organoids, enable the development of biomaterials that recapitulate the physiological state of reproductive organs. Application of these technologies to human gonadal cells would provide effective tools for drug screening and toxicity testing, and these models would be a powerful tool to study reproductive biology and pathology. This review focuses on the 2D/3D culture systems of human primary testicular and ovarian cells, highlighting the novel approaches for in vitro study of human reproductive toxicology, specifically in the context of testis and ovary.
Collapse
Affiliation(s)
- Toshiya Nishimura
- WPI Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan.
| | - Takanori Takebe
- WPI Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan; Division of Stem Cell and Organoid Medicine, Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
2
|
Vitale F, Dolmans MM. Comprehensive Review of In Vitro Human Follicle Development for Fertility Restoration: Recent Achievements, Current Challenges, and Future Optimization Strategies. J Clin Med 2024; 13:1791. [PMID: 38542015 PMCID: PMC10970962 DOI: 10.3390/jcm13061791] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 11/11/2024] Open
Abstract
Ovarian tissue cryopreservation (OTC) and subsequent transplantation (OTT) is a fertility preservation technique widely offered to prepubertal girls and young fertile women who need to undergo oncological treatment but are at a high risk of infertility. However, OTT is not considered safe in patients with certain diseases like leukemia, Burkitt's lymphoma, and ovarian cancer because of the associated risk of malignant cell reintroduction. In vitro follicle development has therefore emerged as a promising means of obtaining mature metaphase II (MII) oocytes from the primordial follicle (PMF) pool contained within cryopreserved ovarian tissue, without the need for transplantation. Despite its significant potential, this novel approach remains highly challenging, as it requires replication of the intricate process of intraovarian folliculogenesis. Recent advances in multi-step in vitro culture (IVC) systems, tailored to the specific needs of each follicle stage, have demonstrated the feasibility of generating mature oocytes (MII) from early-stage human follicles. While significant progress has been made, there is still room for improvement in terms of efficiency and productivity, and a long way to go before this IVC approach can be implemented in a clinical setting. This comprehensive review outlines the most significant improvements in recent years, current limitations, and future optimization strategies.
Collapse
Affiliation(s)
- Francisco Vitale
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, 1200 Brussels, Belgium;
| | - Marie-Madeleine Dolmans
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, 1200 Brussels, Belgium;
- Gynecology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
3
|
Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev 2023; 103:2623-2677. [PMID: 37171807 PMCID: PMC10625843 DOI: 10.1152/physrev.00032.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Mammalian eggs (oocytes) are formed during fetal life and establish associations with somatic cells to form primordial follicles that create a store of germ cells (the primordial pool). The size of this pool is influenced by key events during the formation of germ cells and by factors that influence the subsequent activation of follicle growth. These regulatory pathways must ensure that the reserve of oocytes within primordial follicles in humans lasts for up to 50 years, yet only approximately 0.1% will ever be ovulated with the rest undergoing degeneration. This review outlines the mechanisms and regulatory pathways that govern the processes of oocyte and follicle formation and later growth, within the ovarian stroma, through to ovulation with particular reference to human oocytes/follicles. In addition, the effects of aging on female reproductive capacity through changes in oocyte number and quality are emphasized, with both the cellular mechanisms and clinical implications discussed. Finally, the details of current developments in culture systems that support all stages of follicle growth to generate mature oocytes in vitro and emerging prospects for making new oocytes from stem cells are outlined.
Collapse
Affiliation(s)
- Evelyn E Telfer
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanne Grosbois
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yvonne L Odey
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Roseanne Rosario
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Almeida GHDR, Iglesia RP, Rinaldi JDC, Murai MK, Calomeno CVAQ, da Silva Junior LN, Horvath-Pereira BDO, Pinho LBM, Miglino MA, Carreira ACO. Current Trends on Bioengineering Approaches for Ovarian Microenvironment Reconstruction. TISSUE ENGINEERING. PART B, REVIEWS 2023. [PMID: 36355603 DOI: 10.1089/ten.teb.2022.0171] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ovarian tissue has a unique microarchitecture and a complex cellular and molecular dynamics that are essential for follicular survival and development. Due to this great complexity, several factors may lead to ovarian insufficiency, and therefore to systemic metabolic disorders and female infertility. Techniques currently used in the reproductive clinic such as oocyte cryopreservation or even ovarian tissue transplant, although effective, have several limitations, which impair their wide application. In this scenario, mimetic ovarian tissue reconstruction comes as an innovative alternative to develop new methodologies for germ cells preservation and ovarian functions restoration. The ovarian extracellular matrix (ECM) is crucial for oocyte viability maintenance, once it acts actively in folliculogenesis. One of the key components of ovarian bioengineering is biomaterials application that mimics ECM and provides conditions for cell anchorage, proliferation, and differentiation. Therefore, this review aims at describing ovarian tissue engineering approaches and listing the main limitations of current methods for preservation and reestablishment of ovarian fertility. In addition, we describe the main elements that structure this study field, highlighting the main advances and the challenges to overcome to develop innovative methodologies to be applied in reproductive medicine. Impact Statement This review presents the main advances in the application of tissue bioengineering in the ovarian tissue reconstruction to develop innovative solutions for ovarian fertility reestablishment.
Collapse
Affiliation(s)
| | - Rebeca Piatniczka Iglesia
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Mikaelly Kiemy Murai
- Department of Morphological Sciences, State University of Maringa, Maringá, Brazil
| | | | | | | | - Letícia Beatriz Mazo Pinho
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,Center of Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
| |
Collapse
|
5
|
Bai X, Wang S. Signaling pathway intervention in premature ovarian failure. Front Med (Lausanne) 2022; 9:999440. [PMID: 36507521 PMCID: PMC9733706 DOI: 10.3389/fmed.2022.999440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Premature ovarian failure (POF) is a multifactorial disease that refers to the occurrence of secondary amenorrhea, estrogen decrease, and gonadotropin increase in women under the age of 40. The prevalence of POF is increasing year by year, and the existing instances can be categorized as primary or secondary cases. This disease has adverse effects on both the physiology and psychology of women. Hormone replacement therapy is the recommended treatment for POF, and a multidisciplinary strategy is required to enhance the quality of life of patients. According to recent studies, the primary mechanism of POF is the depletion of ovarian reserve function as a result of increased primordial follicular activation or primordial follicular insufficiency. Therefore, understanding the processes of primordial follicle activation and associated pathways and exploring effective interventions are important for the treatment of POF.
Collapse
|
6
|
Ghorbani S, Eyni H, Norahan MH, Zarrintaj P, Urban N, Mohammadzadeh A, Mostafavi E, Sutherland DS. Advanced bioengineering of female germ cells to preserve fertility. Biol Reprod 2022; 107:1177-1204. [PMID: 35947985 PMCID: PMC10144627 DOI: 10.1093/biolre/ioac160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/14/2022] Open
Abstract
Oogenesis and folliculogenesis are considered as complex and species-specific cellular differentiation processes, which depend on the in vivo ovarian follicular environment and endocrine cues. Considerable efforts have been devoted to driving the differentiation of female primordial germ cells toward mature oocytes outside of the body. The recent experimental attempts have laid stress on offering a suitable microenvironment to assist the in vitro folliculogenesis and oogenesis. Despite developing a variety of bioengineering techniques and generating functional mature gametes through in vitro oogenesis in earlier studies, we still lack knowledge of appropriate microenvironment conditions for building biomimetic culture systems for female fertility preservation. Therefore, this review paper can provide a source for a large body of scientists developing cutting-edge in vitro culture systems for female germ cells or setting up the next generation of reproductive medicine as feasible options for female infertility treatment. The focal point of this review outlines advanced bioengineering technologies such as 3D biofabricated hydrogels/scaffolds and microfluidic systems utilized with female germlines for fertility preservation through in vitro folliculogenesis and oogenesis.
Collapse
Affiliation(s)
- Sadegh Ghorbani
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Hossein Eyni
- Cellular and Molecular Research Center, School of Medicine, Iran University of Medical Science, Tehran, Iran
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Hadi Norahan
- School of Engineering and Sciences, Tecnologico de Monterrey Unviersity, Monterrey, NL, Mexico
| | - Payam Zarrintaj
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
| | - Nadine Urban
- Freiburg Centre for Interactive Materials and Bioinspired Technology, University of Freiburg, Freiburg, Germany
| | | | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Duncan S Sutherland
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Development and Survival of Human Ovarian Cells in Chitosan Hydrogel Micro-Bioreactor. Medicina (B Aires) 2022; 58:medicina58111565. [DOI: 10.3390/medicina58111565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
Background and Objectives: To test the long-term ability of human ovarian cortex cells to develop in unconventional culture conditions. Materials and Methods. Ovarian cortex cells from fetuses aged 23 to 39 weeks gestation were cultured for 90 days in hollow chitosan hydrogel micro-bioreactors and concurrently in traditional wells. Various cell-type counts were considered. Results: With intact follicles as a denominator, the percentage of growing intact follicles at Day 0 varied widely between ovaries (0 to 31.7%). This percentage tended to increase or stay relatively constant in bioreactor as in control cultures; it tended more toward an increase over time in bioreactor vs. control cultures. Modeled percentages showed differences (though not significant) in favor of bioreactor cultures (16.12% difference at D50 but only 0.12% difference at D90). With all follicles present as a denominator, the percentage of growing primary and secondary follicles at D0 varied widely between ovaries (0 to 29.3%). This percentage tended to increase over time in bioreactor cultures but to decrease in control cultures. Modeled percentages showed significant differences in favor of bioreactor cultures (8.9% difference at D50 and 11.1% difference at D90). At D50 and D90, there were only few and sparse apoptotic cells in bioreactor cultures vs. no apoptotic cells in control cultures. Conclusions: Over three months, bioreactor folliculogenesis outperformed slightly traditional culture. This is an interesting perspective for follicle preservation and long-term toxicological studies.
Collapse
|
8
|
An Update on In Vitro Folliculogenesis: A New Technique for Post-Cancer Fertility. Biomedicines 2022; 10:biomedicines10092217. [PMID: 36140316 PMCID: PMC9496077 DOI: 10.3390/biomedicines10092217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction: Obtaining in vitro mature oocytes from ovarian tissue to preserve women’s fertility is still a challenge. At present, there is a therapeutic deadlock for girls and women who need emergency fertility preservation in case of a high risk of ovary invasion by malignant cells. In such a case, ovarian tissue cannot be engrafted; an alternative could be in vitro folliculogenesis. Methods: This review focuses on the progress of in vitro folliculogenesis in humans. PubMed and Embase databases were used to search for original English-language articles. Results: The first phase of in vitro folliculogenesis is carried out in the original ovarian tissue. The addition of one (or more) initiation activator(s) is not essential but allows better yields and the use of a 3D culture system at this stage provides no added value. The second stage requires a mechanical and/or enzymatic isolation of the secondary follicles. The use of an activator and/or a 3D culture system is then necessary. Conclusion: The current results are promising but there is still a long way to go. Obtaining live births in large animals is an essential step in validating this in vitro folliculogenesis technique.
Collapse
|
9
|
Ghezelayagh Z, Abtahi NS, Rezazadeh Valojerdi M, Ebrahimi B. The effect of mTOR activation and PTEN inhibition on human primordial follicle activation in ovarian tissue culture. J Assist Reprod Genet 2022; 39:1739-1747. [PMID: 35819576 PMCID: PMC9428071 DOI: 10.1007/s10815-022-02537-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 06/06/2022] [Indexed: 01/19/2023] Open
Abstract
PURPOSE The effect of PTEN inhibitor (Bpv(HOpic); Bpv) and mTOR activators (phosphatidic acid (PA) and propranolol (PP)), were evaluated on the activation and subsequent development of human primordial follicles in ovarian tissue culture. METHODS Slow frozen-thawed human ovarian cortical strips were incubated for 24 h in different groups: (1) Control (base medium), (2) Bpv (100 µM), (3) PA (200 µM), (4) PA + PP (50 µm), and (5) Bpv + PA + PP. Afterward, the medium was exchanged, and all groups were cultured without stimulators for 6 additional days. The proportion of normal and degenerated follicles, estradiol secretion, and expression of RPS6, FOXO3a, and AKT proteins was evaluated and compared between groups. RESULTS After 24 h of culture, there was no significant difference between the proportion of primordial and growing follicles in either of the experimental groups. This non-significant change was also observed for the phosphorylated protein to total protein ratios of RPS6, FOXO3a, and AKT proteins. After 7 days of culture, the proportion of the transitional follicles was significantly higher in comparison to the primordial follicles for the PA, PA + PP, and Bpv + PA + PP groups. The estradiol level was significantly higher on the last day compared to the first day, in PA, PA + PP, and Bpv + PA + PP groups. Hormonal secretion was significantly higher in the PA and PA + PP groups and lower in the Bpv and Bpv + PA + PP groups compared to the control on day 7 of culture. CONCLUSION Temporary in vitro treatment of human ovarian tissue with mTOR activators enhances the initiation of primordial follicle development and positively influences steroidogenesis after short-term culture.
Collapse
Affiliation(s)
- Zeinab Ghezelayagh
- grid.417689.5Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran ,grid.417689.5Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Naeimeh Sadat Abtahi
- grid.417689.5Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- grid.412266.50000 0001 1781 3962Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Ebrahimi
- grid.417689.5Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
10
|
Bjarkadottir BD, Walker CA, Fatum M, Lane S, Williams SA. Analysing culture methods of frozen human ovarian tissue to improve follicle survival. REPRODUCTION AND FERTILITY 2022; 2:59-68. [PMID: 35128433 PMCID: PMC8812444 DOI: 10.1530/raf-20-0058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/25/2021] [Indexed: 11/18/2022] Open
Abstract
In vitro follicle growth is a potential fertility preservation method for patients for whom current methods are contraindicated. Currently, this method has only been successful using fresh ovarian tissue. Since many patients who may benefit from this treatment currently have cryopreserved ovarian tissue in storage, optimising in vitro follicle growth (IVG) for cryopreserved-thawed tissue is critical. This study sought to improve the first step of IVG by comparing different short-term culture systems for cryopreserved-thawed human ovarian tissue, in order to yield a higher number of healthy multilayer follicles. We compared two commonly used culture media (αMEM and McCoy’s 5A), and three plate conditions (300 µL, 1 mL on a polycarbonate membrane and 1 mL in a gas-permeable plate) on the health and development of follicles after 6 days of culture. A total of 5797 follicles from three post-pubertal patients (aged 21.3 ± 2.3 years) were analysed across six different culture conditions and non-cultured control. All culture systems supported follicle development and there was no difference in developmental progression between the different conditions tested. Differences in follicle morphology were evident with follicles cultured in low volume conditions having significantly greater odds of being graded as morphologically normal compared to other conditions. Furthermore, culture in a low volume of αMEM resulted in the highest proportion of morphologically normal primary and multilayer follicles (23.8% compared to 6.3-19.9% depending on condition). We, therefore, recommend culturing cryopreserved human ovarian tissue in a low volume of αMEM to support follicle health and development.
Collapse
Affiliation(s)
- Briet D Bjarkadottir
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Charlotte A Walker
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Muhammad Fatum
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK.,Department of Paediatric Oncology and Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sheila Lane
- Oxford Fertility, Institute of Reproductive Sciences, Oxford, UK
| | - Suzannah A Williams
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Dri M, Klinger FG, De Felici M. The ovarian reserve as target of insulin/IGF and ROS in metabolic disorder-dependent ovarian dysfunctions. REPRODUCTION AND FERTILITY 2022; 2:R103-R112. [PMID: 35118400 PMCID: PMC8801032 DOI: 10.1530/raf-21-0038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/17/2021] [Indexed: 11/20/2022] Open
Abstract
It is known for a long time that metabolic disorders can cause ovarian dysfunctions and affect a woman’s fertility either by direct targeting follicular cells and/or the oocytes or by indirect interference with the pituitary-hypothalamic axis, resulting in dysfunctional oogenesis. Such disorders may also influence the efficiency of the embryo implantation and the quality of the embryo with permanent effects on the fertility and health of the offspring. Thanks to the expanding knowledge on the molecular mechanisms governing oogenesis and folliculogenesis in mammals, we are beginning to understand how such disorders can negatively affect this process and consequently fertility in women. In the present review, we point out and discuss how the disturbance of insulin/IGF-dependent signalling and increased reactive oxygen species (ROS) level in the ovary typically associated to metabolic disorders such as type II diabetes and obesity can dysregulate the dynamics of the ovarian reserve and/or impair the survival and competence of the oocytes.
Collapse
Affiliation(s)
- Maria Dri
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
12
|
Ghezelayagh Z, Khoshdel-Rad N, Ebrahimi B. Human ovarian tissue in-vitro culture: primordial follicle activation as a new strategy for female fertility preservation. Cytotechnology 2022; 74:1-15. [PMID: 35185282 PMCID: PMC8816997 DOI: 10.1007/s10616-021-00510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/18/2021] [Indexed: 02/03/2023] Open
Abstract
Cryopreservation and transplantation of ovarian tissue is the only fertility preservation option used for prepubertal girls and women who don't have a chance for embryo or oocyte vitrification. For women with aggressive cancer, hormone-responsive malignancies, autoimmune diseases, etc. ovary transplantation cannot be performed so an alternative technology called in-vitro follicle activation is thinkable. In this method, dormant primordial follicles are activated from the resting primordial pool by in-vitro culture and enter their growth phase. Different in-vitro culture media and supplements in addition to various culturing methods have been conducted for activating these dormant follicles. Furthermore, several signaling pathways such as Hippo, phosphatidylinositol-3-kinase, and mTOR influence follicle activation. Therefore, the addition of different activators of these signaling pathways can beneficially regulate this culture system. This review summarizes the findings on different aspects of human ovarian tissue culture strategies for in-vitro follicular activation, their medium, and different factors involved in this activation. Afterward, signaling pathways important for follicle activation and their clinical applications towards improving activation in culture are also reviewed.
Collapse
Affiliation(s)
- Zeinab Ghezelayagh
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Niloofar Khoshdel-Rad
- Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Bita Ebrahimi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
13
|
Francés-Herrero E, Lopez R, Hellström M, de Miguel-Gómez L, Herraiz S, Brännström M, Pellicer A, Cervelló I. OUP accepted manuscript. Hum Reprod Update 2022; 28:798-837. [PMID: 35652272 PMCID: PMC9629485 DOI: 10.1093/humupd/dmac025] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND To provide the optimal milieu for implantation and fetal development, the female reproductive system must orchestrate uterine dynamics with the appropriate hormones produced by the ovaries. Mature oocytes may be fertilized in the fallopian tubes, and the resulting zygote is transported toward the uterus, where it can implant and continue developing. The cervix acts as a physical barrier to protect the fetus throughout pregnancy, and the vagina acts as a birth canal (involving uterine and cervix mechanisms) and facilitates copulation. Fertility can be compromised by pathologies that affect any of these organs or processes, and therefore, being able to accurately model them or restore their function is of paramount importance in applied and translational research. However, innate differences in human and animal model reproductive tracts, and the static nature of 2D cell/tissue culture techniques, necessitate continued research and development of dynamic and more complex in vitro platforms, ex vivo approaches and in vivo therapies to study and support reproductive biology. To meet this need, bioengineering is propelling the research on female reproduction into a new dimension through a wide range of potential applications and preclinical models, and the burgeoning number and variety of studies makes for a rapidly changing state of the field. OBJECTIVE AND RATIONALE This review aims to summarize the mounting evidence on bioengineering strategies, platforms and therapies currently available and under development in the context of female reproductive medicine, in order to further understand female reproductive biology and provide new options for fertility restoration. Specifically, techniques used in, or for, the uterus (endometrium and myometrium), ovary, fallopian tubes, cervix and vagina will be discussed. SEARCH METHODS A systematic search of full-text articles available in PubMed and Embase databases was conducted to identify relevant studies published between January 2000 and September 2021. The search terms included: bioengineering, reproduction, artificial, biomaterial, microfluidic, bioprinting, organoid, hydrogel, scaffold, uterus, endometrium, ovary, fallopian tubes, oviduct, cervix, vagina, endometriosis, adenomyosis, uterine fibroids, chlamydia, Asherman’s syndrome, intrauterine adhesions, uterine polyps, polycystic ovary syndrome and primary ovarian insufficiency. Additional studies were identified by manually searching the references of the selected articles and of complementary reviews. Eligibility criteria included original, rigorous and accessible peer-reviewed work, published in English, on female reproductive bioengineering techniques in preclinical (in vitro/in vivo/ex vivo) and/or clinical testing phases. OUTCOMES Out of the 10 390 records identified, 312 studies were included for systematic review. Owing to inconsistencies in the study measurements and designs, the findings were assessed qualitatively rather than by meta-analysis. Hydrogels and scaffolds were commonly applied in various bioengineering-related studies of the female reproductive tract. Emerging technologies, such as organoids and bioprinting, offered personalized diagnoses and alternative treatment options, respectively. Promising microfluidic systems combining various bioengineering approaches have also shown translational value. WIDER IMPLICATIONS The complexity of the molecular, endocrine and tissue-level interactions regulating female reproduction present challenges for bioengineering approaches to replace female reproductive organs. However, interdisciplinary work is providing valuable insight into the physicochemical properties necessary for reproductive biological processes to occur. Defining the landscape of reproductive bioengineering technologies currently available and under development for women can provide alternative models for toxicology/drug testing, ex vivo fertility options, clinical therapies and a basis for future organ regeneration studies.
Collapse
Affiliation(s)
| | | | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lucía de Miguel-Gómez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- Fundación IVI, IVI-RMA Global, Valencia, Spain
| | - Sonia Herraiz
- Fundación IVI, IVI-RMA Global, Valencia, Spain
- Reproductive Medicine Research Group, IIS La Fe, Valencia, Spain
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- IVI Roma Parioli, IVI-RMA Global, Rome, Italy
| | | |
Collapse
|
14
|
Alaee S, Asadollahpour R, Hosseinzadeh Colagar A, Talaei-Khozani T. The decellularized ovary as a potential scaffold for maturation of preantral ovarian follicles of prepubertal mice. Syst Biol Reprod Med 2021; 67:413-427. [PMID: 34445905 DOI: 10.1080/19396368.2021.1968542] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
ABBREVIATIONS GAG: glycosaminoglycan; ECM: extracellular matrix; 2D: two-dimensional; E2: estradiol; P4: progesterone; BMP15: bone morphogenetic protein 15; GDF9: growth differentiation factor 9; ZP2: zona pellucida 2; Gdf9: growth/differentiation factor-9; Bmp6: bone morphogenetic protein 6; Bmp15: bone morphogenetic protein 15.
Collapse
Affiliation(s)
- Sanaz Alaee
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raheleh Asadollahpour
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | | | - Tahereh Talaei-Khozani
- Tissue Engineering Lab, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Pors SE, Harðardóttir L, Olesen HØ, Riis ML, Jensen LB, Andersen AS, Cadenas J, Grønning AP, Colmorn LB, Dueholm M, Andersen CY, Kristensen SG. Effect of sphingosine-1-phosphate on activation of dormant follicles in murine and human ovarian tissue. Mol Hum Reprod 2021; 26:301-311. [PMID: 32202615 DOI: 10.1093/molehr/gaaa022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/09/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022] Open
Abstract
In vitro activation of resting ovarian follicles, with the use of mechanical stress and/or pharmacological compounds, is an emerging and novel approach for infertility treatment. The aim of this study was to assess the sphingolipid, sphingosine-1-phosphate (S1P), as a potential in vitro activation agent in murine and human ovarian tissues and isolated follicles. Juvenile murine ovaries and donated human ovarian tissues, from 10 women undergoing ovarian tissue cryopreservation for fertility preservation, were incubated with or without 12 μM S1P for 3 h for quantitative PCR analysis, and 12 h for xenotransplantation or culture studies. Gene expression analyses were performed for genes downstream of the Hippo signaling pathway. Murine ovaries and isolated murine and human preantral follicles showed significantly increased mRNA expression levels of Ccn2/CCN2 following S1P treatment compared to controls. This increase was shown to be specific for the Hippo signaling pathway and for the S1P2 receptor, as co-treatment with Hippo-inhibitor, verteporfin and S1PR2 antagonist, JTE-013, reduced the S1P-induced Ccn2 gene expression in murine ovaries. Histological evaluation of human cortical tissues (5 × 5 × 1 mm; n = 30; three pieces per patient) xenografted for 6 weeks and juvenile murine ovaries cultured for 4 days (n = 9) or allografted for 2 weeks (n = 48) showed no differences in the distribution of resting or growing follicles in S1P-treated ovarian tissues compared to controls. Collectively, S1P increased Ccn2/CCN2 gene expression in isolated preantral follicles and ovarian tissue from mice and human, but it did not promote follicle activation or growth in vivo. Thus, S1P does not appear to be a potent in vitro activation agent under these experimental conditions.
Collapse
Affiliation(s)
- Susanne Elisabeth Pors
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Lilja Harðardóttir
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Copenhagen, Denmark.,Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark.,Current workplace: Center for Obstetrics and Pediatrics, Department of Obstetrics and Fetal Medicine, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Ørnes Olesen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Malene Lundgaard Riis
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Lea Bejstrup Jensen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Astrid Sten Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Copenhagen, Denmark.,Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Jesús Cadenas
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Annika Patricia Grønning
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Copenhagen, Denmark.,Department of Technology, Faculty of Health, University College Copenhagen, Copenhagen, Denmark
| | - Lotte Berdiin Colmorn
- The Fertility Clinic, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Margit Dueholm
- Department of Gynecology and Obstetrics, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Copenhagen, Denmark.,Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Stine Gry Kristensen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Vo KCT, Kawamura K. In Vitro Activation Early Follicles: From the Basic Science to the Clinical Perspectives. Int J Mol Sci 2021; 22:ijms22073785. [PMID: 33917468 PMCID: PMC8038686 DOI: 10.3390/ijms22073785] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022] Open
Abstract
Development of early follicles, especially the activation of primordial follicles, is strictly modulated by a network of signaling pathways. Recent advance in ovarian physiology has been allowed the development of several therapies to improve reproductive outcomes by manipulating early folliculogenesis. Among these, in vitro activation (IVA) has been recently developed to extend the possibility of achieving genetically related offspring for patients with premature ovarian insufficiency and ovarian dysfunction. This method was established based on basic science studies of the intraovarian signaling pathways: the phosphoinositide 3-kinase (PI3K)/Akt and the Hippo signaling pathways. These two pathways were found to play crucial roles in folliculogenesis from the primordial follicle to the early antral follicle. Following the results of rodent experiments, IVA was implemented in clinical practice. There have been multiple recorded live births and ongoing pregnancies. Further investigations are essential to confirm the efficacy and safety of IVA before used widely in clinics. This review aimed to summarize the published literature on IVA and provide future perspectives for its improvement.
Collapse
|
17
|
Kim SW, Kim YY, Kim H, Ku SY. Recent Advancements in Engineered Biomaterials for the Regeneration of Female Reproductive Organs. Reprod Sci 2021; 28:1612-1625. [PMID: 33797052 DOI: 10.1007/s43032-021-00553-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
Various gynecologic diseases and chemoradiation or surgery for the management of gynecologic malignancies may damage the uterus and ovaries, leading to clinical problems such as infertility or early menopause. Embryo or oocyte cryopreservation-the standard method for fertility preservation-is not a feasible option for patients who require urgent treatment because the procedure requires ovarian stimulation for at least several days. Hormone replacement therapy (HRT) for patients diagnosed with premature menopause is contraindicated for patients with estrogen-dependent tumors or a history of thrombosis. Furthermore, these methods cannot restore the function of the uterus and ovaries. Although autologous transplantation of cryopreserved ovarian tissue is being attempted, it may re-introduce malignant cells after cancer treatment. With the recent development in regenerative medicine, research on engineered biomaterials for the restoration of female reproductive organs is being actively conducted. The use of engineered biomaterials is a promising option in the field of reproductive medicine because it can overcome the limitations of current therapies. Here, we review the ideal properties of biomaterials for reproductive tissue engineering and the recent advancements in engineered biomaterials for the regeneration of female reproductive organs.
Collapse
Affiliation(s)
- Sung Woo Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, 03080, South Korea.,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, 03080, South Korea. .,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea.
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, 03080, South Korea. .,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea. .,Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, 2024 E. Monument St, Baltimore, MD, 21205, USA.
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, 03080, South Korea.,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
18
|
Vo KCT, Kawamura K. Ovarian Fragmentation and AKT Stimulation for Expansion of Fertile Lifespan. FRONTIERS IN REPRODUCTIVE HEALTH 2021; 3:636771. [PMID: 36304045 PMCID: PMC9580792 DOI: 10.3389/frph.2021.636771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Abstract
Since the first baby was born after in vitro fertilization, the female infertility treatment has been well-developed, yielding successful outcomes. However, successful pregnancies for patients with premature ovarian insufficiency and diminished ovarian reserve are still difficult and diverse therapies have been suggested to improve the chances to have their genetically linked offspring. Recent studies demonstrated that the activation Akt pathway by using a phosphatase and tensin homolog enzyme inhibitor and a phosphatidylinositol-3 kinase stimulator can activate dormant primordial follicles in both mice and human ovaries. Subsequent researches suggested that the disruption of Hippo signaling pathway by ovarian fragmentation increased the expression of downstream growth factors and secondary follicle growth. Based on the combination of ovarian fragmentation and Akt stimulation, the in vitro activation (IVA) approach has resulted in successful follicle growth and live births in premature ovarian insufficiency patients. The approach with disruption of Hippo signaling only was also shown to be effective for treating poor ovarian responders with diminishing ovarian reserve, including advanced age women and cancer patients undergoing sterilizing treatments. This review aims to summarize the effectiveness of ovarian fragmentation and Akt stimulation on follicle growth and the potential of IVA in extending female fertile lifespan.
Collapse
|
19
|
Magen R, Shufaro Y, Daykan Y, Oron G, Tararashkina E, Levenberg S, Anuka E, Ben-Haroush A, Fisch B, Abir R. Use of Simvastatin, Fibrin Clots, and Their Combination to Improve Human Ovarian Tissue Grafting for Fertility Restoration After Anti-Cancer Therapy. Front Oncol 2021; 10:598026. [PMID: 33552971 PMCID: PMC7862713 DOI: 10.3389/fonc.2020.598026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/25/2020] [Indexed: 11/13/2022] Open
Abstract
Anticancer treatments, particularly chemotherapy, induce ovarian damage and loss of ovarian follicles. There are limited options for fertility restoration, one of which is pre-chemotherapy cryopreservation of ovarian tissue. Transplantation of frozen-thawed human ovarian tissue from cancer survivors has resulted in live-births. There is extensive follicular loss immediately after grafting, probably due to too slow graft revascularization. To avoid this problem, it is important to develop methods to improve ovarian tissue neovascularization. The study's purpose was to investigate if treatment of murine hosts with simvastatin or/and embedding human ovarian tissue within fibrin clots can improve human ovarian tissue grafting (simvastatin and fibrin clots promote vascularization). There was a significantly higher number of follicles in group A (ungrafted control) than in group B (untreated tissue). Group C (simvastatin-treated hosts) had the highest levels of follicle atresia. Group C had significantly more proliferating follicles (Ki67-stained) than groups B and E (simvastatin-treated hosts and tissue embedded within fibrin clots), group D (tissue embedded within fibrin clots) had significantly more proliferating follicles (Ki67-stained) than group B. On immunofluorescence study, only groups D and E showed vascular structures that expressed both human and murine markers (mouse-specific platelet endothelial cell adhesion molecule, PECAM, and human-specific von Willebrand factor, vWF). Peripheral human vWF expression was significantly higher in group E than group B. Diffuse human vWF expression was significantly higher in groups A and E than groups B and C. When grafts were not embedded in fibrin, there was a significant loss of human vWF expression compared to groups A and E. This protocol may be tested to improve ovarian implantation in cancer survivors.
Collapse
Affiliation(s)
- Roei Magen
- Infertility and IVF Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikvah, Israel.,Goldman Medical School, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yoel Shufaro
- Infertility and IVF Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikvah, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Yair Daykan
- Infertility and IVF Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikvah, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Oron
- Infertility and IVF Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikvah, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elena Tararashkina
- Infertility and IVF Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikvah, Israel
| | - Shulamit Levenberg
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eli Anuka
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Ben-Haroush
- Infertility and IVF Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikvah, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Benjamin Fisch
- Infertility and IVF Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikvah, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ronit Abir
- Infertility and IVF Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikvah, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
The effect of agar substrate on growth and development of cryopreserved-thawed human ovarian cortical follicles in organ culture. Eur J Obstet Gynecol Reprod Biol 2021; 258:139-145. [PMID: 33422774 DOI: 10.1016/j.ejogrb.2020.12.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/13/2020] [Accepted: 12/23/2020] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To preserve human ovarian tissue structure and improve follicular growth and survival during in-situ culture, various biomaterials are used. In this study we aimed to compare agar as a cultivation substrate with matrigel-coated insert in order to achieve an optimum system for in-situ human follicle culture. STUDY DESIGN Frozen-thawed human ovarian cortical tissues were cultured on either matrigel-coated inserts or agar-soaked substrates. The proportion of morphologically viable and degenerated follicles at different developmental stages, secreted hormonal levels, and apoptotic and proliferation gene expressions were compared between the cultured groups after 7-days of culture. RESULTS The follicular growth was not significantly different between the two cultured groups, although showing higher percentage of growing follicles in agar cultured group. The secreted hormonal levels didn't have any difference between two cultured groups. Although the apoptotic gene expressions didn't show any difference between the cultured groups, the apoptotic index was lower in agar cultured group. In addition, Ki67 gene expression, a proliferative marker, showed a significantly higher expression in agar cultured group. CONCLUSION Based on the results, agar is as suitable as matrigel-coated inserts for the survival and growth of follicles during culture. Therefore, agar can be an inexpensive alternative substrate for culturing frozen-thawed human ovarian cortical strips.
Collapse
|
21
|
Rosario R, Anderson RA. Novel approaches to fertility restoration in women with premature ovarian insufficiency. Climacteric 2021; 24:491-497. [PMID: 33427510 DOI: 10.1080/13697137.2020.1856806] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The diagnosis of premature ovarian insufficiency (POI) brings with it the loss of fertility, an immediate concern for many affected women, and a future one for many others. While there is a low natural conception rate, for most the choice is between oocyte donation and alternative methods of family building such as adoption. There is, however, a lot of research into novel methods for increasing or restoring the fertility of women with POI, which are discussed in this review. Many approaches involve the use of mesenchymal stem cells, from a variety of sources including bone marrow, placenta and umbilical cord, and menstrual blood. These seem to have efficacy in animal models of POI, although through unclear mechanisms. Activation of remaining primordial follicles is also being explored, through physical or chemical manipulation of key regulatory pathways, notably the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) and Hippo pathways. Much of the clinical data are uncontrolled, and mostly in women with a reduced ovarian reserve rather than POI, as are the results thus far for administration of platelet-rich plasma. Clinical studies with appropriate controls are needed to substantiate the preliminary claims of effectiveness of these approaches.
Collapse
Affiliation(s)
- R Rosario
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - R A Anderson
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
22
|
Wang X, Wu D, Li W, Yang L. Emerging biomaterials for reproductive medicine. ENGINEERED REGENERATION 2021; 2:230-245. [DOI: 10.1016/j.engreg.2021.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
23
|
Grosbois J, Devos M, Demeestere I. Implications of Nonphysiological Ovarian Primordial Follicle Activation for Fertility Preservation. Endocr Rev 2020; 41:5882019. [PMID: 32761180 DOI: 10.1210/endrev/bnaa020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
In recent years, ovarian tissue cryopreservation has rapidly developed as a successful method for preserving the fertility of girls and young women with cancer or benign conditions requiring gonadotoxic therapy, and is now becoming widely recognized as an effective alternative to oocyte and embryo freezing when not feasible. Primordial follicles are the most abundant population of follicles in the ovary, and their relatively quiescent metabolism makes them more resistant to cryoinjury. This dormant pool represents a key target for fertility preservation strategies as a resource for generating high-quality oocytes. However, development of mature, competent oocytes derived from primordial follicles is challenging, particularly in larger mammals. One of the main barriers is the substantial knowledge gap regarding the regulation of the balance between dormancy and activation of primordial follicles to initiate their growing phase. In addition, experimental and clinical factors also affect dormant follicle demise, while the mechanisms involved remain largely to be elucidated. Moreover, most of our basic knowledge of these processes comes from rodent studies and should be extrapolated to humans with caution, considering the differences between species in the reproductive field. Overcoming these obstacles is essential to improving both the quantity and the quality of mature oocytes available for further fertilization, and may have valuable biological and clinical applications, especially in fertility preservation procedures. This review provides an update on current knowledge of mammalian primordial follicle activation under both physiological and nonphysiological conditions, and discusses implications for fertility preservation and priorities for future research.
Collapse
Affiliation(s)
- Johanne Grosbois
- Research Laboratory in Human Reproduction, Université Libre de Bruxelles, Brussels, Belgium.,Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Melody Devos
- Research Laboratory in Human Reproduction, Université Libre de Bruxelles, Brussels, Belgium
| | - Isabelle Demeestere
- Research Laboratory in Human Reproduction, Université Libre de Bruxelles, Brussels, Belgium.,Obstetrics and Gynecology Department, Erasme Hospital, Brussels, Belgium
| |
Collapse
|
24
|
Abir R, Stav D, Taieb Y, Gabbay-Benziv R, Kirshner M, Ben-Haroush A, Freud E, Ash S, Yaniv I, Herman-Edelstein M, Fisch B, Shufaro Y. Novel extra cellular-like matrices to improve human ovarian grafting. J Assist Reprod Genet 2020; 37:2105-2117. [PMID: 32710268 DOI: 10.1007/s10815-020-01832-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/14/2020] [Indexed: 01/11/2023] Open
Abstract
PURPOSE To investigate if human ovarian grafting with pure virgin human recombinant collagen type-1 from bioengineered plant lines (CollPlant™) or small intestine submucosa (SIS) yields better implantation results for human ovarian tissue and which method benefits more when combined with the host melatonin treatment and graft incubation with biological glue + vitamin E + vascular endothelial growth factor-A. METHODS Human ovarian tissue wrapped in CollPlant or SIS was transplanted into immunodeficient mice with/without host/graft treatment. The tissue was assessed by follicle counts (including atretic), for apoptosis evaluation by terminal deoxynucleotidyl transferase assay and for immunohistochemical evaluation of neovascularization by platelet endothelial cell adhesion molecule (PECAM) expression, and for identification of proliferating granulosa cells by Ki67 expression. RESULTS Human ovarian tissue transplanted with CollPlant or SIS fused with the surrounding tissue and promoted neovascularization. In general, implantation with CollPlant even without additives promoted better results than with SIS: significantly higher number of recovered follicles, significantly fewer atretic follicles, and significantly more granulosa cell proliferation. Moreover, results with CollPlant alone seemed to be at least as good as those after host and graft treatments. CONCLUSIONS CollPlant is a biomaterial without any potential risks, and grafting ovarian tissue with CollPlant is easy and the procedure may be easily modified, with limited or no foreseeable risks, for auto-transplantation in cancer survivors. Further studies are needed using other novel methods capable of enhancing neovascularization and reducing apoptosis and follicle atresia.
Collapse
Affiliation(s)
- Ronit Abir
- IVF and Infertility Unit, Beilinson Women Hospital, Rabin Medical Center, 49100, Petach Tikva, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv, Israel. .,The Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikvah, Israel.
| | - Dana Stav
- IVF and Infertility Unit, Beilinson Women Hospital, Rabin Medical Center, 49100, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv, Israel
| | - Yossi Taieb
- IVF and Infertility Unit, Beilinson Women Hospital, Rabin Medical Center, 49100, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv, Israel.,Department of Dermatology, Rabin Medical Center, Petach Tikvah, Israel
| | - Rinat Gabbay-Benziv
- IVF and Infertility Unit, Beilinson Women Hospital, Rabin Medical Center, 49100, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv, Israel.,Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Moria Kirshner
- IVF and Infertility Unit, Beilinson Women Hospital, Rabin Medical Center, 49100, Petach Tikva, Israel
| | - Avi Ben-Haroush
- IVF and Infertility Unit, Beilinson Women Hospital, Rabin Medical Center, 49100, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv, Israel
| | - Enrique Freud
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv, Israel.,Department of Pediatric Surgery, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
| | - Shifra Ash
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv, Israel.,Department of Pediatric Hematology Oncology, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
| | - Isaac Yaniv
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv, Israel.,Department of Pediatric Hematology Oncology, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
| | - Michal Herman-Edelstein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv, Israel.,The Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikvah, Israel.,Department of Nephrology, Rabin Medical Center, Petach Tikvah, Israel
| | - Benjamin Fisch
- IVF and Infertility Unit, Beilinson Women Hospital, Rabin Medical Center, 49100, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv, Israel.,The Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikvah, Israel
| | - Yoel Shufaro
- IVF and Infertility Unit, Beilinson Women Hospital, Rabin Medical Center, 49100, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv, Israel.,The Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikvah, Israel
| |
Collapse
|
25
|
Association of genetic variations in phosphatase and tensin homolog (PTEN) gene with polycystic ovary syndrome in South Indian women: a case control study. Arch Gynecol Obstet 2020; 302:1033-1040. [PMID: 32583210 DOI: 10.1007/s00404-020-05658-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/18/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE The purpose of the study was to investigate the association between gene phosphate and tensin homolog (PTEN) single nucleotide polymorphisms (SNPs) and risk of developing polycystic ovary syndrome (PCOS) in South Indian women. PTEN is one of the most important tumor suppressor genes that regulate cell proliferation, migration, and death. It is also involved in the maintenance of genome stability. PCOS is one of the most common endocrine disorders among women of reproductive age. It is a heterogeneous syndrome characterized by abnormal reproductive cycles, irregular ovulation, hormonal imbalance, hyperandrogenism, acne and hirsutism. RESEARCH QUESTION What is the association status of PTEN SNPs with PCOS? METHODS A total of 240 subjects were recruited in this case-control study comprising 110 patients with PCOS and 130 individuals without PCOS. All the subjects were of South Indian origin. The genotyping of PTEN SNPs (rs1903858 A/G, rs185262832G/A and rs10490920T/C) was carried out on DNA from subjects by polymerase chain reaction (PCR) and sequencing analysis. Haplotype frequencies for multiple loci and the standardized disequilibrium coefficient (D') for pairwise linkage disequilibrium (LD) were surveyed by Haploview Software. RESULTS Our results showed significant increase in the frequencies of rs1903858 A/G (P = 0.0016), rs185262832 G/A (P = 0.0122) and rs10490920 T/C (P = 0.0234) genotypes and alleles in cases compared to controls. CONCLUSION The PTEN (rs1903858A/G, rs185262832G/A and rs10490920T/C) gene polymorphisms may constitute an inheritable risk factor for PCOS in South Indian women.
Collapse
|
26
|
Maidarti M, Clarkson YL, McLaughlin M, Anderson RA, Telfer EE. Inhibition of PTEN activates bovine non-growing follicles in vitro but increases DNA damage and reduces DNA repair response. Hum Reprod 2020; 34:297-307. [PMID: 30521029 PMCID: PMC6343469 DOI: 10.1093/humrep/dey354] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Does ovarian follicle activation by phosphatase homologue of chromosome-10 (PTEN) inhibition affect DNA damage and repair in bovine oocytes and granulosa cells? SUMMARY ANSWER PTEN inhibition promotes bovine non-growing follicle activation but results in increased DNA damage and impaired DNA repair capacity in ovarian follicles in vitro. WHAT IS KNOWN ALREADY Inhibition of PTEN is known to activate primordial follicles but may compromise further developmental potential. In breast cancer cells, PTEN inhibition represses nuclear translocation of breast cancer susceptibility 1 (BRCA1) and Rad51; this impairs DNA repair resulting in an accumulation of damaged DNA, which contributes to cell senescence. STUDY DESIGN, SIZE, DURATION Bovine ovarian tissue fragments were exposed to control medium alone or containing either 1 or 10 μM bpv(HOpic), a pharmacological inhibitor of PTEN, in vitro for 24 h. A sub-group of tissue fragments were collected for Western blot analysis after bpv(HOpic) exposure. The remainder were incubated in control medium for a further 5 days and then analysed histologically and by immunohistochemistry to detect DNA damage and repair pathways. PARTICIPANTS/MATERIALS, SETTING, METHODS Bovine ovaries were obtained from abattoir-slaughtered heifers. Tissue fragments were exposed to either control medium alone or medium containing either 1 μM or 10 μM bpv(HOpic) for 24 h. Tissue fragments collected after 24 h were subjected to Akt quantification by Western blotting (six to nine fragments per group per experiment). Follicle stage and morphology were classified in remaining fragments. Immunohistochemical analysis included nuclear exclusion of FOXO3 as a marker of follicle activation, γH2AX as a marker of DNA damage, meiotic recombination 11 (MRE11), ataxia telangiectasia mutated (ATM), Rad51, breast cancer susceptibility 1 (BRCA1) and breast cancer susceptibility 2 (BRCA2) as DNA repair factors. A total of 29 550 follicles from three independent experiments were analysed. MAIN RESULTS AND THE ROLE OF CHANCE Tissue fragments exposed to bpv(HOpic) had increased Akt phosphorylation at serine 473 (pAkt/Akt ratio, 2.25- and 6.23-fold higher in 1 and 10 μM bpv(HOpic) respectively compared to control, P < 0.05). These tissue fragments contained a significantly higher proportion of growing follicles compared to control (78.6% in 1 μM and 88.7% in 10 μM versus 70.5% in control; P < 0.001). The proportion of morphologically healthy follicles did not differ significantly between 1 μM bpv(HOpic) and control (P < 0.001) but follicle health was lower in 10 μM compared to 1 μM and control in all follicle types (P < 0.05). DNA damage in oocytes, indicated by expression of γH2AX, increased following exposure to 1 μM bpv(HOpic) (non-growing, 83%; primary follicles, 76%) and 10 μM (non-growing, 77%; primary, 84%) compared to control (non-growing, 30% and primary, 59%) (P < 0.05 for all groups). A significant reduction in expression of DNA repair proteins MRE11, ATM and Rad51 was observed in oocytes of non-growing and primary follicles of treatment groups (primary follicles in controls versus 10 μM bpv(HOpic): MRE, 68% versus 47%; ATM, 47% versus 18%; Rad51, 48% versus 24%), P < 0.05 for all groups. Higher dose bpv(HOpic) also resulted in lower expression of BRCA1 compared to control and 1 μM bpv(HOpic) (P < 0.001) in non-growing and primary follicles. BRCA2 expression was increased in oocytes of primary follicles in 1 μM bpv(HOpic) (36%) compared to control (20%, P = 0.010) with a marked decrease in 10 μM (1%, P ≤ 0.001). Granulosa cells of primary and secondary follicles in bpv(HOpic) groups showed more DNA damage compared to control (P < 0.05). However, bpv(HOpic) did not impact granulosa cell DNA repair capacity in secondary follicles, but BRCA1 declined significantly in higher dose bpv(HOpic). LARGE-SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This study focuses on non-growing follicle activation after 6 days culture and may not reflect DNA damage and repair capacity in later stages of oocyte and follicle growth. WIDER IMPLICATIONS OF THE FINDINGS In vitro activation of follicle growth may compromise the bidirectional signalling between oocyte and granulosa cells necessary for optimal oocyte and follicle health. This large animal model may be useful in optimising follicle activation protocols with a view to transfer for clinical application. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by Indonesia endowment fund for education. No competing interest. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Mila Maidarti
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Institute of Cell Biology and Genes and Development Group, CDBS Hugh Robson Building, University of Edinburgh, Edinburgh, UK
| | - Yvonne L Clarkson
- Institute of Cell Biology and Genes and Development Group, CDBS Hugh Robson Building, University of Edinburgh, Edinburgh, UK
| | - Marie McLaughlin
- Institute of Cell Biology and Genes and Development Group, CDBS Hugh Robson Building, University of Edinburgh, Edinburgh, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Evelyn E Telfer
- Institute of Cell Biology and Genes and Development Group, CDBS Hugh Robson Building, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
27
|
Maidarti M, Anderson RA, Telfer EE. Crosstalk between PTEN/PI3K/Akt Signalling and DNA Damage in the Oocyte: Implications for Primordial Follicle Activation, Oocyte Quality and Ageing. Cells 2020; 9:E200. [PMID: 31947601 PMCID: PMC7016612 DOI: 10.3390/cells9010200] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/18/2022] Open
Abstract
The preservation of genome integrity in the mammalian female germline from primordial follicle arrest to activation of growth to oocyte maturation is fundamental to ensure reproductive success. As oocytes are formed before birth and may remain dormant for many years, it is essential that defence mechanisms are monitored and well maintained. The phosphatase and tensin homolog of chromosome 10 (PTEN)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB, Akt) is a major signalling pathway governing primordial follicle recruitment and growth. This pathway also contributes to cell growth, survival and metabolism, and to the maintenance of genomic integrity. Accelerated primordial follicle activation through this pathway may result in a compromised DNA damage response (DDR). Additionally, the distinct DDR mechanisms in oocytes may become less efficient with ageing. This review considers DNA damage surveillance mechanisms and their links to the PTEN/PI3K/Akt signalling pathway, impacting on the DDR during growth activation of primordial follicles, and in ovarian ageing. Targeting DDR mechanisms within oocytes may be of value in developing techniques to protect ovaries against chemotherapy and in advancing clinical approaches to regulate primordial follicle activation.
Collapse
Affiliation(s)
- Mila Maidarti
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (M.M.); (R.A.A.)
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK
- Obstetrics and Gynaecology Department, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Richard A. Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (M.M.); (R.A.A.)
| | - Evelyn E. Telfer
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK
| |
Collapse
|
28
|
Blumenfeld Z. What Is the Best Regimen for Ovarian Stimulation of Poor Responders in ART/IVF? Front Endocrinol (Lausanne) 2020; 11:192. [PMID: 32362870 PMCID: PMC7180183 DOI: 10.3389/fendo.2020.00192] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/18/2020] [Indexed: 12/12/2022] Open
Abstract
The infertile patients with aging ovaries-also sometimes referred to as impending premature ovarian insufficiency (POI), impending premature ovarian failure (POF), or poor ovarian responders (POR), constitute a significant and increasing bulk of the patients appealing to IVF/ART. Different causes have been cited in the literature, among the identified etiologies, including chromosomal and genetic etiology, metabolic, enzymatic, iatrogenic, toxic, autoimmune, and infectious causes. Although the most successful and ultimate treatment of POI/POF/POR patients is egg donation (ED), many, if not most, of these infertile women are reluctant to consent to ED upon the initial diagnostic interview, requesting alternative solutions despite the low odds for success. Despite anecdotal case reports, no unequivocal treatment proved to be successful for these patients in prospective randomized controlled trials. Nevertheless, the addition of growth hormone (GH) to ovarian stimulation in POR with GH deficiency may improve the results of controlled ovarian hyperstimulation (COH) and the IVF success. In patients with autoimmune etiology for POR/POI, the combination of glucocorticosteroids, pituitary-ovarian suppression, and COH may be successful in achieving the desired conception.
Collapse
|
29
|
Grosbois J, Vermeersch M, Devos M, Clarke HJ, Demeestere I. Ultrastructure and intercellular contact-mediated communication in cultured human early stage follicles exposed to mTORC1 inhibitor. Mol Hum Reprod 2019; 25:706-716. [DOI: 10.1093/molehr/gaz053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/21/2019] [Indexed: 12/20/2022] Open
Abstract
Abstract
The reproductive lifespan of a woman is determined by the gradual recruitment of quiescent follicles into the growing pool. In humans, ovarian tissue removal from its in vivo environment induces spontaneous activation of resting follicles. Similarly, pharmacological activation of the PI3K/Akt pathway leads to accelerated follicle recruitment, but has been associated with follicular damage. Recent findings demonstrate that everolimus (EVE), an mTORC1 inhibitor, limits primordial follicle activation. However, its potential benefit regarding growing follicle integrity remains unexplored. Ovarian cortical fragments were exposed to ± EVE for 24 h and cultured for an additional 5 days. After 0, 1 and 6 days of culture, fragments were either processed for ultrastructural analysis or subjected to follicular isolation for gene expression and immunofluorescence assessments. Data from transmission electron microscopy showed that growing follicles displayed similar ultrastructural features irrespective of the conditions and maintained close contacts between germinal and stromal compartments. Establishment of intra-follicular communication was confirmed by detection of a gap junction component, Cx43, in both groups throughout culture, whereas transzonal projections, which physically link granulosa cells to oocyte, formed later in EVE-treated follicles. Importantly, levels of GJA1 mRNA, encoding for the Cx43 protein, significantly increased from Day 0 to Day 1 in the EVE group, but not in the control group. Given that EVE-treated follicles were smaller than controls, these findings suggest that EVE might facilitate the establishment of appropriate intercellular communications without impairing follicle ultrastructure. Therefore, mTORC1 inhibitors might represent an attractive tool to delay the culture-induced primordial follicle activation while maintaining follicles in a functionally integrated state.
Collapse
Affiliation(s)
- J Grosbois
- Research Laboratory in Human Reproduction, Université Libre de Bruxelles, Brussels, Belgium
| | - M Vermeersch
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, Gosselies, Belgium
| | - M Devos
- Research Laboratory in Human Reproduction, Université Libre de Bruxelles, Brussels, Belgium
| | - H J Clarke
- Department of Obstetrics and Gynecology, Biology, and Experimental Medicine, McGill University, McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - I Demeestere
- Research Laboratory in Human Reproduction, Université Libre de Bruxelles, Brussels, Belgium
- Obstetrics and Gynecology Department, Erasme Hospital, Brussels, Belgium
| |
Collapse
|
30
|
Adib S, Valojerdi MR, Alikhani M. Dose optimisation of PTEN inhibitor, bpV (HOpic), and SCF for the in-vitro activation of sheep primordial follicles. Growth Factors 2019; 37:178-189. [PMID: 31646909 DOI: 10.1080/08977194.2019.1680661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The in-vitro development of primordial follicles is critical for improving mammalian fertility and wildlife conservation. This study aimed to optimise the effective doses of bpV (HOpic) and stem cell factor (SCF) for the in-vitro activation of sheep primordial follicles. To do this, sheep ovarian cortex was treated with bpV (1.5, 15, and 150 μM) and SCF (50 and 100 ng/ml). Follicular count indicated that 15 μM bpV and 100 ng/ml SCF significantly increased normal primary follicles compared to other groups (p < 0.05). Also, a significant downregulation of P53 and PTEN, as well as the increased expression of PI3K was observed. The in-vitro maturation was more pronounced when the fragmented tissues were co-treated with selected doses of bpV and SCF. In conclusion, the combination of 15 μM bpV and 100 ng/ml SCF was the most effective treatment strategy for the activation and survival of primordial follicles in sheep ovarian fragments.
Collapse
Affiliation(s)
- Samane Adib
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Embryology at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Embryology at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mehdi Alikhani
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
31
|
Reconstruction of the ovary microenvironment utilizing macroporous scaffold with affinity-bound growth factors. Biomaterials 2019; 205:11-22. [DOI: 10.1016/j.biomaterials.2019.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 12/24/2022]
|
32
|
Shufaro Y, Saada A, Simeonov M, Tsuberi BZ, Alban C, Kogot-Levin A, Shochat T, Fisch B, Abir R. The influence of in vivo exposure to nonylphenol ethoxylate 10 (NP-10) on the ovarian reserve in a mouse model. Reprod Toxicol 2018; 81:246-252. [PMID: 30176375 DOI: 10.1016/j.reprotox.2018.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/18/2022]
Abstract
AIM To determine the effect of nonylphenol-ethoxylate-10 (NP-10) on the ovarian reserve in a mouse model. DESIGN Female mice were maintained on purified water or exposed to NP-10 from 3-7-weeks of age. At 7-weeks they were stimulated, mated and the zygotes were cultured in-vitro. Three and 7-weeks old mice were untreated controls. Identical groups were sacrificed without stimulation. Ovaries were analysed for follicular composition. Respiratory-chain (RC) activity and reactive-oxygen-species (ROS) production were measured in brains and livers. RESULTS Seven-weeks-old mice produced fewer oocytes/embryos than 3-week-old mice. At 7-weeks, mice exposed to NP-10 produced more oocytes/embryos the controls. Their ovaries contained more primordial/primary follicles, with a lower rate of proliferation and fewer antral follicles. There were no differences in follicular apoptosis, RC-activity or ROS production. CONCLUSIONS In this model, exposure to NP-10 inhibited the spontaneous follicular recruitment, the first report of successful inhibition of physiologic ovarian aging, to the best of our knowledge.
Collapse
Affiliation(s)
- Yoel Shufaro
- Infertility and IVF Unit, Helen Schneider Hospital for Women, Rabin Medical Center - Beilinson Hospital, and Felsenstein Medical Research Center, Petach Tikva 4941492; the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Ann Saada
- Monique and Jaques Roboh Department of Genetic Research, Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Monica Simeonov
- Infertility and IVF Unit, Helen Schneider Hospital for Women, Rabin Medical Center - Beilinson Hospital, and Felsenstein Medical Research Center, Petach Tikva 4941492; the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ben-Zion Tsuberi
- Transgenic Mice Unit, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Corinne Alban
- Monique and Jaques Roboh Department of Genetic Research, Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Aviram Kogot-Levin
- Monique and Jaques Roboh Department of Genetic Research, Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Tzippy Shochat
- Infertility and IVF Unit, Helen Schneider Hospital for Women, Rabin Medical Center - Beilinson Hospital, and Felsenstein Medical Research Center, Petach Tikva 4941492; the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Benjamin Fisch
- Infertility and IVF Unit, Helen Schneider Hospital for Women, Rabin Medical Center - Beilinson Hospital, and Felsenstein Medical Research Center, Petach Tikva 4941492; the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ronit Abir
- Infertility and IVF Unit, Helen Schneider Hospital for Women, Rabin Medical Center - Beilinson Hospital, and Felsenstein Medical Research Center, Petach Tikva 4941492; the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
33
|
Fisch B, Abir R. Female fertility preservation: past, present and future. Reproduction 2018; 156:F11-F27. [DOI: 10.1530/rep-17-0483] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/23/2018] [Indexed: 12/19/2022]
Abstract
Anti-cancer therapy, particularly chemotherapy, damages ovarian follicles and promotes ovarian failure. The only pharmacological means for protecting the ovaries from chemotherapy-induced injury is gonadotrophin-releasing hormone agonist, but its efficiency remains controversial; ovarian transposition is used to shield the ovary from radiation when indicated. Until the late 1990s, the only option for fertility preservation and restoration in women with cancer was embryo cryopreservation. The development of other assisted reproductive technologies such as mature oocyte cryopreservation andin vitromaturation of oocytes has contributed to fertility preservation. Treatment regimens to obtain mature oocytes/embryos have been modified to overcome various limitations of conventional ovarian stimulation protocols. In the last decades, several centres have begun cryopreserving ovarian samples containing primordial follicles from young patients before anti-cancer therapy. The first live birth following implantation of cryopreserved-thawed ovarian tissue was reported in 2004; since then, the number has risen to more than 130. Nowadays, ovarian tissue cryopreservation can be combined within vitromaturation and vitrification of oocytes. The use of cryopreserved oocytes eliminates the risk posed by ovarian implantation of reseeding the cancer. Novel methods for enhancing follicular survival after implantation are presently being studied. In addition, researchers are currently investigating agents for ovarian protection. It is expected that the risk of reimplantation of malignant cells with ovarian grafts will be overcome with the putative development of an artificial ovary and an efficient follicle class- and species-dependentin vitrosystem for culturing primordial follicles.
Collapse
|
34
|
Pulido R. PTEN Inhibition in Human Disease Therapy. Molecules 2018; 23:molecules23020285. [PMID: 29385737 PMCID: PMC6017825 DOI: 10.3390/molecules23020285] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/19/2022] Open
Abstract
The tumor suppressor PTEN is a major homeostatic regulator, by virtue of its lipid phosphatase activity against phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3], which downregulates the PI3K/AKT/mTOR prosurvival signaling, as well as by its protein phosphatase activity towards specific protein targets. PTEN catalytic activity is crucial to control cell growth under physiologic and pathologic situations, and it impacts not only in preventing tumor cell survival and proliferation, but also in restraining several cellular regeneration processes, such as those associated with nerve injury recovery, cardiac ischemia, or wound healing. In these conditions, inhibition of PTEN catalysis is being explored as a potentially beneficial therapeutic intervention. Here, an overview of human diseases and conditions in which PTEN inhibition could be beneficial is presented, together with an update on the current status of specific small molecule inhibitors of PTEN enzymatic activity, their use in experimental models, and their limitations as research or therapeutic drugs.
Collapse
Affiliation(s)
- Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
35
|
Kristensen SG, Pors SE, Andersen CY. Improving oocyte quality by transfer of autologous mitochondria from fully grown oocytes. Hum Reprod 2017; 32:725-732. [PMID: 28333265 DOI: 10.1093/humrep/dex043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/17/2017] [Indexed: 01/12/2023] Open
Abstract
Older women are often the most challenging group of patients in fertility clinics due to a decline in both number and overall quality of oocytes. The quality of oocytes has been linked to mitochondrial dysfunction. In this mini-review, we discuss this hypothesis and suggest alternative treatment options using autologous mitochondria to potentially augment pregnancy potential in ART. Autologous transfer of mitochondria from the patient's own germline cells has attracted much attention as a possible new treatment to revitalize deficient oocytes. IVF births have been reported after transfer of oogonial precursor cell-derived mitochondria; however, the source and quality of the mitochondria are still unclear. In contrast, fully grown oocytes are loaded with mitochondria which have passed the genetic bottleneck and are likely to be of high quality. An increased supply of such oocytes could potentially be obtained by in vitro follicle activation of ovarian cortical biopsies or from surplus immature oocytes collected from women undergoing ART or fertility preservation of ovarian tissue. Taken together, autologous oocytes are not necessarily a limiting resource in ART as fully grown oocytes with high quality mitochondria can be obtained from natural or stimulated ovaries and potentially be used to improve both quality and quantity of oocytes available for fertility treatment.
Collapse
Affiliation(s)
- Stine Gry Kristensen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, University of Copenhagen, Blegdamsvej, DK-2100 Copenhagen, Denmark
| | - Susanne Elisabeth Pors
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, University of Copenhagen, Blegdamsvej, DK-2100 Copenhagen, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, University of Copenhagen, Blegdamsvej, DK-2100 Copenhagen, Denmark
| |
Collapse
|
36
|
Ladanyi C, Mor A, Christianson MS, Dhillon N, Segars JH. Recent advances in the field of ovarian tissue cryopreservation and opportunities for research. J Assist Reprod Genet 2017; 34:709-722. [PMID: 28365839 PMCID: PMC5445043 DOI: 10.1007/s10815-017-0899-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 03/01/2017] [Indexed: 12/11/2022] Open
Abstract
PURPOSE The purpose of this study was to summarize the latest advances and successes in the field of ovarian tissue cryopreservation while identifying gaps in current knowledge that suggest opportunities for future research. METHODS A systematic review was performed according to PRISMA guidelines for all relevant full-text articles in PubMed published in English that reviewed or studied historical or current advancements in ovarian tissue cryopreservation and auto-transplantation techniques. RESULTS Ovarian tissue auto-transplantation in post-pubertal women is capable of restoring fertility with over 80 live births currently reported with a corresponding pregnancy rate of 23 to 37%. The recently reported successes of live births from transplants, both in orthotopic and heterotopic locations, as well as the emerging methods of in vitro maturation (IVM), in vitro culture of primordial follicles, and possibility of in vitro activation (IVA) suggest new fertility options for many women and girls. Vitrification, as an ovarian tissue cryopreservation technique, has also demonstrated successful live births and may be a more cost-effective method to freezing with less tissue injury. Further, transplantation via the artificial ovary with an extracellular tissue matrix (ECTM) scaffolding as well as the effects of sphingosine-1-phosphate (SIP) and fibrin modified with heparin-binding peptide (HBP), heparin, and a vascular endothelial growth factor (VEGF) have demonstrated important advancements in fertility preservation. As a fertility preservation method, ovarian tissue cryopreservation and auto-transplantation are currently considered experimental, but future research may pave the way for these modalities to become a standard of care for women facing the prospect of sterility from ovarian damage.
Collapse
Affiliation(s)
- Camille Ladanyi
- Department of Obstetrics and Gynecology, Maine Medical Center, Portland, ME 04102 USA
| | - Amir Mor
- Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, NY 11219 USA
| | - Mindy S. Christianson
- Department of Gynecology and Obstetrics, Division of Reproductive Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Namisha Dhillon
- University of Toledo College of Medicine, Toledo, OH 43614 USA
| | - James H. Segars
- Howard W. and Georgeanna Seegar Jones Division of Reproductive Sciences and Women’s Health Research, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross Building (Room 624), Baltimore, MD 21205 USA
| |
Collapse
|
37
|
|
38
|
Abir R, Fisch B, Fisher N, Samara N, Lerer-Serfaty G, Magen R, Herman-Edelstein M, Ben-Haroush A, Stein A, Orvieto R. Attempts to improve human ovarian transplantation outcomes of needle-immersed vitrification and slow-freezing by host and graft treatments. J Assist Reprod Genet 2017; 34:633-644. [PMID: 28315146 PMCID: PMC5427655 DOI: 10.1007/s10815-017-0884-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/24/2017] [Indexed: 10/19/2022] Open
Abstract
PURPOSE To investigate if needle-immersed vitrification or slow-freezing yields better implantation results for human ovarian tissue and which method benefits more when combined with the "improvement protocol" of host melatonin treatment and graft incubation with biological glue + vitamin E + vascular endothelial growth factor-A. METHODS Human ovarian tissue was preserved by needle-immersed vitrification or slow-freezing and transplanted into immunodeficient mice, either untreated (groups A and C, respectively) or treated with the improvement protocol (groups B and D, respectively). Grafted and ungrafted slices were evaluated by follicle counts, apoptosis assay and immunohistochemistry for Ki67 and platelet endothelial cell adhesion molecule (PECAM). RESULTS Follicle number in the recovered grafts was limited. The number of atretic follicles was significantly higher after vitrification with/without the improvement protocol and slow-freezing than that after slow-freezing + the improvement protocol. Stroma cell apoptosis was the lowest in the group D. PECAM staining showed a peripheral and diffuse pattern in the group D (mostly normal follicular morphology) and a diffuse pattern in all other groups (few follicles, mostly atretic), with significantly higher diffuse levels in the vitrification groups. Ki67 staining was identified in all normal follicles. Follicles did not survive transplantation in the vitrification groups. CONCLUSIONS Ovarian sample preparation with slow-freezing + the improvement protocol appears to yield better implantation outcomes than needle-immersed vitrification with/without the improvement protocol. The real quality of frozen tissue can be assessed only after grafting and not after thawing/warming.
Collapse
Affiliation(s)
- Ronit Abir
- Infertility and IVF Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikva, 49100, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Benjamin Fisch
- Infertility and IVF Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikva, 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Noa Fisher
- Infertility and IVF Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikva, 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Nivin Samara
- Infertility and IVF Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikva, 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
- In Vitro Fertilization Unit, Lis Maternity and Women's Hospital, Tel Aviv Sourasky Medical Center, 6423906, Tel Aviv, Israel
| | - Galit Lerer-Serfaty
- Infertility and IVF Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikva, 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Roei Magen
- Infertility and IVF Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikva, 49100, Israel
- Faculty of Health Sciences, Goldman Medical School, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Michal Herman-Edelstein
- Department of Nephrology, Rabin Medical Center, Felsenstein Research Center 49100 and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Avi Ben-Haroush
- Infertility and IVF Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikva, 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Anat Stein
- Infertility and IVF Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikva, 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Raoul Orvieto
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
- Infertility and IVF Unit, Department of Obstetrics and Gynecology, The Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| |
Collapse
|
39
|
Younis AJ, Lerer-Serfaty G, Stav D, Sabbah B, Shochat T, Kessler-Icekson G, Zahalka MA, Shachar-Goldenberg M, Ben-Haroush A, Fisch B, Abir R. Extracellular-like matrices and leukaemia inhibitory factor for in vitro culture of human primordial follicles. Reprod Fertil Dev 2017; 29:1982-1994. [DOI: 10.1071/rd16233] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 11/24/2016] [Indexed: 01/15/2023] Open
Abstract
The possibility of maturing human primordial follicles in vitro would assist fertility restoration without the danger of reseeding malignancies. Leukaemia inhibitory factor (LIF) and certain culture matrices may promote human follicular growth. The present study compared human primordial follicular growth on novel culture matrices, namely human recombinant vitronectin (hrVit), small intestine submucosa (SIS), alginate scaffolds and human recombinant virgin collagen bioengineered in tobacco plant lines (CollPlant). The frozen–thawed ovarian samples that were used had been obtained from girls or young women undergoing fertility preservation. In the first part of the study, 20 samples were cultured for 6 days on hrVit or SIS with basic culture medium alone or supplemented with one of two concentrations of LIF (10 ng mL–1 and 100 ng mL–1), with and without LIF-neutralising antibody. In the second part of the study, 15 samples were cultured for 6 days on alginate scaffolds or CollPlant matrices with basic culture medium. Follicular development was assessed by follicular counts and classification, Ki67 immunohistochemistry and 17β-oestradiol and anti-Müllerian hormone measurements in spent media samples. Primordial follicular growth was not enhanced by LIF. Despite some significant differences among the four matrices, none appeared to have a clear advantage, apart from significantly more Ki67-stained follicles on alginate and CollPlant matrices. Further studies of other culture matrices and medium supplements are needed to obtain an optimal system.
Collapse
|
40
|
Lande Y, Fisch B, Tsur A, Farhi J, Prag-Rosenberg R, Ben-Haroush A, Kessler-Icekson G, Zahalka MA, Ludeman SM, Abir R. Short-term exposure of human ovarian follicles to cyclophosphamide metabolites seems to promote follicular activation in vitro. Reprod Biomed Online 2016; 34:104-114. [PMID: 27815062 DOI: 10.1016/j.rbmo.2016.10.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 01/13/2023]
Abstract
How chemotherapy affects dormant ovarian primordial follicles is unclear. The 'burnout' theory, studied only in mice, suggests cyclophosphamide enhances primordial follicle activation. Using 4-hydroperoxycyclophosphamide (4hc) and phosphoramide mustard (PM), this study assessed how the active cyclophosphamide metabolites 4-hydroxycyclophosphamide (4-OHC) and PM, affect human primordial follicles. Frozen-thawed human ovarian samples were sliced and cultured with basic culture medium (cultured controls) or with 4hc/PM (3 µmol/l/10 µmol/l) (treated samples) for 24-48 h. Follicular counts and classification, Ki67 and anti-Müllerian hormone (AMH) immunohistochemistry and an apoptosis assay were used for evaluation, and 17β-oestradiol and AMH were measured in spent media samples. Generally, there was primordial follicle decrease and elevated developing follicle rates in treated samples compared with cultured (P = 0.04 to P < 0.0005) and uncultured controls (P < 0.05 to P < 0.0001). No traces of apoptosis were found. There were almost twicethe levels of AMH and 17β-oestradiol in treated compared with untreated samples (AMH with 4hc 3 µmol/l; P = 0.04). All follicles stained positively for AMHincluded treated samples. Ki67 positive staining was noted in all samples. Cyclophosphamide metabolites seem to enhance human primordial follicle activation to developing follicles, in vitro. Study findings support the 'burnout' theory as the mechanism of chemotherapy-induced ovarian toxicity.
Collapse
Affiliation(s)
- Yechezkel Lande
- Infertility and IVF Unit, Beilinson's Women Hospital, Rabin Medical Center Petach Tikva and Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Benjamin Fisch
- Infertility and IVF Unit, Beilinson's Women Hospital, Rabin Medical Center Petach Tikva and Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Abraham Tsur
- Infertility and IVF Unit, Beilinson's Women Hospital, Rabin Medical Center Petach Tikva and Sackler Faculty of Medicine, Tel Aviv University, Israel; Department of Obstetrics and Gynecology, The Chaim Sheba Medical, Ramat Gan, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Farhi
- Infertility and IVF Unit, Beilinson's Women Hospital, Rabin Medical Center Petach Tikva and Sackler Faculty of Medicine, Tel Aviv University, Israel; IVF Unit, Department of Obstetrics and Gynecology, Edith Wolfson Medical Center, Holon, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roni Prag-Rosenberg
- Infertility and IVF Unit, Beilinson's Women Hospital, Rabin Medical Center Petach Tikva and Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Avi Ben-Haroush
- Infertility and IVF Unit, Beilinson's Women Hospital, Rabin Medical Center Petach Tikva and Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Gania Kessler-Icekson
- The Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Muayad A Zahalka
- The Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Susan M Ludeman
- Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Ronit Abir
- Infertility and IVF Unit, Beilinson's Women Hospital, Rabin Medical Center Petach Tikva and Sackler Faculty of Medicine, Tel Aviv University, Israel.
| |
Collapse
|
41
|
Tamadon A, Park KH, Kim YY, Kang BC, Ku SY. Efficient biomaterials for tissue engineering of female reproductive organs. Tissue Eng Regen Med 2016; 13:447-454. [PMID: 30603426 PMCID: PMC6170846 DOI: 10.1007/s13770-016-9107-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 12/17/2022] Open
Abstract
Current investigations on the bioengineering of female reproductive tissues have created new hopes for the women suffering from reproductive organ failure including congenital anomaly of the female reproductive tract or serious injuries. There are many surgically restore forms that constitute congenital anomaly, however, to date, there is no treatment except surgical treatment of transplantation for patients who are suffering from anomaly or dysfunction organs like vagina and uterus. Restoring and maintaining the normal function of ovary and uterus require the establishment of biological substitutes that can cover the roles of structural support for cells and passage of secreting molecules. As in the case of constructing other functional organs, reproductive organ manufacturing also needs biological matrices which can provide an appropriate condition for attachment, growth, proliferation and signaling of various kinds of grafted cells. Among the organs, uterus needs special features such as plasticity due to their amazing changes in volume when they are in the state of pregnancy. Although numerous natural and synthetic biomaterials are still at the experimental stage, some biomaterials have already been evaluated their efficacy for the reconstruction of female reproductive tissues. In this review, all the biomaterials cited in recent literature that have ever been used and that have a potential for the tissue engineering of female reproductive organs were reviewed, especially focused on bioengineered ovary and uterus.
Collapse
Affiliation(s)
- Amin Tamadon
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Kyu-Hyung Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Yoon Young Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Byeong-Cheol Kang
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| |
Collapse
|
42
|
Abir R, Ben-Aharon I, Garor R, Yaniv I, Ash S, Stemmer SM, Ben-Haroush A, Freud E, Kravarusic D, Sapir O, Fisch B. Cryopreservation of in vitro matured oocytes in addition to ovarian tissue freezing for fertility preservation in paediatric female cancer patients before and after cancer therapy. Hum Reprod 2016; 31:750-62. [PMID: 26848188 DOI: 10.1093/humrep/dew007] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 01/11/2016] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Is a protocol that combines in vitro maturation of germinal vesicle-stage oocytes and their vitrification with freezing of cortical ovarian tissue feasible for use in fertility preservation for both chemotherapy-naive paediatric patients as well as patients after initiation of cancer therapy? SUMMARY ANSWER Follicle-containing ovarian tissue as well as oocytes that can undergo maturation in vitro can be obtained from paediatric patients (including prepubertal girls) both before and after cancer therapy. WHAT IS KNOWN ALREADY Anticancer therapy reduces the number of follicles/oocytes but this effect is less severe in young patients, particularly the paediatric age group. Autotransplantation of ovarian tissue has yielded to date 60 live births, including one from tissue that was cryostored in adolescence. However, it is assumed that autografting cryopreserved-thawed ovarian cortical tissue poses a risk of reseeding the malignancy. Immature oocytes can be collected from very young girls without hormonal stimulation and then matured in vitro and vitrified. We have previously shown that there is no difference in the number of ovarian cortical follicles between paediatric patients before and after chemotherapy. STUDY DESIGN, SIZE, DURATION A prospective study was conducted in a cohort of 42 paediatric females with cancer (before and after therapy initiation) who underwent fertility preservation procedures in 2007-2014 at a single tertiary medical centre. PARTICIPANTS/MATERIALS, SETTING, METHODS The study group included girls and adolescent females with cancer: 22 before and 20 after chemotherapy. Following partial or complete oophorectomy, immature oocytes were either aspirated manually ex vivo from visible small antral follicles or filtered from spent media. Oocytes were incubated in oocyte maturation medium, and those that matured at 24 or 48 h were vitrified. Ovarian cortical tissue was cut and prepared for slow-gradual cryopreservation. Anti-Mullerian hormone (AMH) levels were measured in serum before and after oophorectomy. MAIN RESULTS AND ROLE OF CHANCE Ovarian tissue was successfully collected from 78.7% of the 42 patients. Oocytes were obtained from 20 patients before chemotherapy and 13 after chemotherapy. The youngest patients from whom oocytes were retrieved were aged 2 years (two atretic follicles) and 3 years. Of the 395 oocytes collected, ∼30% were atretic (29.6% in the pre-chemotherapy group, 37% in the post-chemotherapy group). One hundred twenty-one oocytes (31%) were matured in vitro and vitrified: 67.8% from patients before chemotherapy, the rest after chemotherapy. Mature oocytes suitable for vitrification were obtained from 16/20 patients before chemotherapy and from 12/13 patients after chemotherapy (maturation rate, 32 and 26.4%, respectively). There were significant correlations of the number of vitrified oocytes with patient age (more matured oocytes with older age) (P = 0.001) and with pre-oophorectomy AMH levels (P = 0.038 pre-chemotherapy group, P = 0.029 post-chemotherapy group). Oocytes suitable for vitrification were obtained both by manual aspiration of antral follicles (45%) and from rinse solutions after dissection. There were significantly more matured oocytes in the pre-chemotherapy group from aspiration than in the post-chemotherapy group after both aspiration (P < 0.033) and retrieval from rinsing fluids (P < 0.044). The number of pre-antral follicles per histological section did not differ in the pre- versus post-chemotherapy. AMH levels dropped by approximately 50% after ovarian removal in both groups, with a significant correlation between pre- and post-oophorectomy levels (P = 0.002 pre-chemotherapy group, P = 0.001 post-chemotherapy group). LIMITATIONS, REASONS FOR CAUTION There were no patients between 5 years and 10 years old in the post-chemotherapy group, which might have affected some results and correlations. Oocytes from patients soon after chemotherapy might be damaged, and caution is advised when using them for fertility-restoration purposes. The viability, development capability and fertilization potential of oocytes from paediatric patients, especially prepubertal and after chemotherapy, are unknown, in particular oocytes recovered from the media after the tissue dissection step. WIDER IMPLICATIONS OF THE FINDINGS Although more oocytes were collected and matured from chemotherapy-naïve paediatric patients, ovarian tissue and immature oocytes were also retrieved from young girls in whom cancer therapy has already been initiated. Our centre has established a protocol for potential maximal fertility preservation in paediatric female patients with cancer. Vitrified-in vitro-matured oocytes may serve as an important gamete source in paediatric female patients with cancer because the risk of reseeding the disease is avoided. Further studies are needed on the fertility-restoring potential of oocytes from paediatric and prepubertal patients, especially after exposure to chemotherapy. STUDY FUNDING/COMPETING INTERESTS The study was conducted as part of the routine procedures for fertility preservation at our IVF unit. No funding outside of the IVF laboratory was received. Funding for the AMH measurements was obtained by a research grant from the Israel Science Foundation (to B.-A.I., ISF 13-1873). None of the authors have competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- R Abir
- IVF and Infertility Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikvah, Israel and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv, Israel
| | - I Ben-Aharon
- Institute of Oncology, Davidoff Center, Rabin Medical Center, Petach Tikvah, Israel and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv, Israel
| | - R Garor
- IVF and Infertility Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikvah, Israel and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv, Israel
| | - I Yaniv
- Department of Paediatric Hematology Oncology, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - S Ash
- Department of Paediatric Hematology Oncology, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - S M Stemmer
- Institute of Oncology, Davidoff Center, Rabin Medical Center, Petach Tikvah, Israel and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv, Israel
| | - A Ben-Haroush
- IVF and Infertility Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikvah, Israel and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv, Israel
| | - E Freud
- Department of Paediatric Surgery, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - D Kravarusic
- Department of Paediatric Surgery, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - O Sapir
- IVF and Infertility Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikvah, Israel and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv, Israel
| | - B Fisch
- IVF and Infertility Unit, Beilinson Women Hospital, Rabin Medical Center, Petach Tikvah, Israel and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv, Israel
| |
Collapse
|
43
|
Cordeiro CN, Christianson MS, Selter JH, Segars JH. In Vitro Activation: A Possible New Frontier for Treatment of Primary Ovarian Insufficiency. Reprod Sci 2016; 23:429-38. [PMID: 26787101 DOI: 10.1177/1933719115625842] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In vitro activation (IVA) represents a new frontier in the treatment of women with primary ovarian insufficiency as well as patients with cancer desiring fertility preservation. Here, we review the biological basis of IVA and the recent translation of IVA to humans by targeting Hippo and Akt-signaling pathways. We then provide a new integrated viewpoint on IVA, highlighting basic science research on the aspects of follicular development and ovarian tissue transplantation which may potentially optimize future translational research on IVA. Specific topics discussed include cryopreservation techniques, additional IVA pathway targets, the roles of actin polymerization, paracrine and endocrine factors, and the role of mechanical signaling and associated tissue rigidity in controlling ovarian follicular activation. Further research and improved understanding is needed to optimize success of IVA.
Collapse
Affiliation(s)
- Christina N Cordeiro
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mindy S Christianson
- Department of Gynecology & Obstetrics-Reproductive Endocrinology and Infertility, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - James H Segars
- Division of Reproductive Sciences and Women's Health Research, Department of Gynecology & Obstetrics-Reproductive Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
44
|
Expression of angiotensin II receptors in the caprine ovary and improvement of follicular viability in vitro. ZYGOTE 2015; 24:568-77. [PMID: 26464313 DOI: 10.1017/s0967199415000544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study aimed to evaluate mRNA levels of angiotensin II (ANG II) receptors (AGTR1 and AGTR2) in caprine follicles and to investigate the influence of ANG II on the viability and in vitro growth of preantral follicles. Real-time polymerase chain reaction (PCR) was used to quantify AGTR1 and AGTR2 mRNA levels in the different follicular stages. For culture, caprine ovaries were collected, cut into 13 fragments and then either directly fixed for histological and ultrastructural analysis (fresh control) or placed in culture for 1 or 7 days in α-minumum essential medium plus (α-MEM+) with 0, 1, 5, 10, 50 or 100 ng/ml ANG II. Then, the fragments were destined to morphological, viability and ultrastructural analysis. The results showed that primordial follicles had higher levels of AGTR1 and AGTR2 mRNA than secondary follicles. Granulosa/theca cells from antral follicles had higher levels of AGTR1 mRNA than their respective cumulus-oocyte complex (COCs). After 7 days of culture, ANG II (10 or 50 ng/ml) maintained the percentages of normal follicles compared with α-MEM+. Fluorescence and ultrastructural microscopy confirmed follicular integrity in ANG II (10 ng/ml). In conclusion, a high expression of AGTR1 and AGTR2 is observed in primordial follicles. Granulosa/theca cells from antral follicles had higher levels of AGTR1 mRNA. Finally, 10 ng/ml ANG II maintained the viability of caprine preantral follicles after in vitro culture.
Collapse
|
45
|
Novella-Maestre E, Herraiz S, Rodríguez-Iglesias B, Díaz-García C, Pellicer A. Short-Term PTEN Inhibition Improves In Vitro Activation of Primordial Follicles, Preserves Follicular Viability, and Restores AMH Levels in Cryopreserved Ovarian Tissue From Cancer Patients. PLoS One 2015; 10:e0127786. [PMID: 26024525 PMCID: PMC4449215 DOI: 10.1371/journal.pone.0127786] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/19/2015] [Indexed: 12/25/2022] Open
Abstract
Introduction In vitro activation and growth of primordial dormant follicles to produce fertilizable oocytes would provide a useful instrument for fertility preservation. The employment of Phosphatase and TENsin homolog (PTEN) inhibitors, in combination with Protein kinase B (Akt) stimulating molecules, has been previously employed to increase follicular activation through the stimulation of the PTEN-Akt pathway. Methods We aim to establish improved in vitro activation also for cancer patients whose ovarian tissue has already been cryopreserved. Fresh and previously cryopreserved human ovarian cortex were exposed to short-term, low-concentration and ovary-specific treatment with only a PTEN inhibitor. Results Our in vitro activation protocol enhances the activation mechanisms of primordial follicles in both fresh and cryopreserved samples, and enlarges growing populations without inducing apoptosis in either follicles or the surrounding stroma. Treatment augments estradiol secretion and restores the expression levels of the previously diminished Anti-Müllerian hormone by means of cryopreservation procedures. Genomic modulation of the relative expression of PTEN pathway genes was found in treated samples. Conclusion The in vitro activation protocol offers new alternatives for patients with cryopreserved tissue as it increases the pool of viable activated follicles available for in vitro growth procedures. The combination of ovarian tissue cryopreservation and in vitro activation of primordial follicles, the main ovarian reserve component, will be a major advancement in fertility preservation.
Collapse
Affiliation(s)
- Edurne Novella-Maestre
- Unidad de Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Grupo de investigación de Medicina Reproductiva. Instituto de Investigación Sanitario La Fe. Valencia, Spain
- Unidad de Preservación de la Fertilidad, Área de Salud de la Mujer. Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Sonia Herraiz
- Grupo de investigación de Medicina Reproductiva. Instituto de Investigación Sanitario La Fe. Valencia, Spain
- Unidad de Preservación de la Fertilidad, Área de Salud de la Mujer. Hospital Universitario y Politécnico La Fe, Valencia, Spain
- * E-mail:
| | - Beatriz Rodríguez-Iglesias
- Grupo de investigación de Medicina Reproductiva. Instituto de Investigación Sanitario La Fe. Valencia, Spain
- Unidad de Preservación de la Fertilidad, Área de Salud de la Mujer. Hospital Universitario y Politécnico La Fe, Valencia, Spain
- IGENOMIX, Parc Cientific Valencia University, Paterna, Valencia, Spain
| | - César Díaz-García
- Grupo de investigación de Medicina Reproductiva. Instituto de Investigación Sanitario La Fe. Valencia, Spain
- Unidad de Preservación de la Fertilidad, Área de Salud de la Mujer. Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Antonio Pellicer
- Grupo de investigación de Medicina Reproductiva. Instituto de Investigación Sanitario La Fe. Valencia, Spain
- Unidad de Preservación de la Fertilidad, Área de Salud de la Mujer. Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
46
|
Laronda MM, Duncan FE, Hornick JE, Xu M, Pahnke JE, Whelan KA, Shea LD, Woodruff TK. Alginate encapsulation supports the growth and differentiation of human primordial follicles within ovarian cortical tissue. J Assist Reprod Genet 2014; 31:1013-28. [PMID: 24845158 PMCID: PMC4130945 DOI: 10.1007/s10815-014-0252-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/07/2014] [Indexed: 01/07/2023] Open
Abstract
PURPOSE In vitro follicle growth (IVFG) is an investigational fertility preservation technique in which immature follicles are grown in culture to produce mature eggs that can ultimately be fertilized. Although progress has been made in growing primate primary and secondary follicles in vitro, it has been a relatively greater challenge to isolate and culture primordial follicles. The purpose of this study was to develop methods to grow human primordial follicles in vitro using alginate hydrogels. METHODS We obtained human ovarian tissue for research purposes through the National Physicians Cooperative from nationwide sites and used it to test two methods for culturing primordial follicles. First, primordial follicles were isolated from the ovarian cortex and encapsulated in alginate hydrogels. Second, 1 mm × 1 mm pieces of 500 μm-thick human ovarian cortex containing primordial follicles were encapsulated in alginate hydrogels, and survival and follicle development within the tissue was assessed for up to 6 weeks. RESULTS We found that human ovarian tissue could be kept at 4 °C for up to 24 h while still maintaining follicle viability. Primordial follicles isolated from ovarian tissue did not survive culture. However, encapsulation and culture of ovarian cortical pieces supported the survival, differentiation, and growth of primordial and primary follicles. Within several weeks of culture, many of the ovarian tissue pieces had formed a defined surface epithelium and contained growing preantral and antral follicles. CONCLUSIONS The early stages of in vitro human follicle development require the support of the native ovarian cortex.
Collapse
Affiliation(s)
- Monica M. Laronda
- />Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-121, Chicago, IL 60611 USA
| | - Francesca E. Duncan
- />Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-121, Chicago, IL 60611 USA
| | - Jessica E. Hornick
- />Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-121, Chicago, IL 60611 USA
| | - Min Xu
- />Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-121, Chicago, IL 60611 USA
| | - Jennifer E. Pahnke
- />Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-121, Chicago, IL 60611 USA
| | - Kelly A. Whelan
- />Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-121, Chicago, IL 60611 USA
| | - Lonnie D. Shea
- />Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
- />Institute of Bio-Nanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL 60611 USA
| | - Teresa K. Woodruff
- />Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-121, Chicago, IL 60611 USA
| |
Collapse
|
47
|
McLaughlin M, Kinnell HL, Anderson RA, Telfer EE. Inhibition of phosphatase and tensin homologue (PTEN) in human ovary in vitro results in increased activation of primordial follicles but compromises development of growing follicles. Mol Hum Reprod 2014; 20:736-44. [PMID: 24830779 PMCID: PMC4106636 DOI: 10.1093/molehr/gau037] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the mammalian ovary a small number of follicles are steadily recruited from the quiescent pool to undergo development. Follicle loss, maintenance and growth are strictly controlled by complex molecular interactions including the phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt) signalling pathway. Stimulation of PI3K promotes phosphorylation of Akt resulting in follicle survival and activation of growth whereas this pathway is suppressed by the actions of the phosphatase and tensin homologue (PTEN). The aim of this study was to determine the effect of dipotassium bisperoxo(5-hydroxypyridine-2-carboxyl)oxovanadate (bpV), a reversible inhibitor of PTEN, on the activation, survival and development of human ovarian follicles in vitro. Biopsied ovarian tissue fragments were obtained from 17 women aged 23-46 years and exposed to 1 µM bpV(HOpic) (n = 146) or control medium (n = 128) for 24 h. Media were then replaced with control medium and all tissue incubated for a further 5 days. Ovarian tissue from each treatment group was fixed after the initial 24 h culture period and phosphorylated Akt was quantified by western blotting. After 6 days incubation all tissue fragments were inspected under light microscopy and any secondary follicles ≥100 µm isolated. Isolated follicles were cultured individually in control medium supplemented with 100 ng/ml recombinant human activin A. Tissue fragments without follicles suitable for isolation were fixed and processed for histological and immunohistochemical analysis. During 6 days culture, follicle activation occurred in tissue samples from both treatment groups but with significantly more follicles progressing to the secondary stage of development in the presence of 1 µM bpV(HOpic) compared with control (31 versus 16%; P < 0.05). Increased activation was associated with increased Akt phosphorylation and increased nuclear export of FOXO3. However isolated and cultured follicles that had been exposed to bpV(HOpic) showed limited growth and reduced survival compared with follicles from control fragments (P < 0.05). This study demonstrates that inhibition of PTEN with bpV(HOpic) affects human ovarian follicle development by promoting the initiation of follicle growth and development to the secondary stage, as in rodent species, but severely compromises the survival of isolated secondary follicles.
Collapse
Affiliation(s)
- Marie McLaughlin
- Institute of Cell Biology and Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Hazel L Kinnell
- Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Richard A Anderson
- Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Evelyn E Telfer
- Institute of Cell Biology and Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|
48
|
Santos JMS, Menezes VG, Barberino RS, Macedo TJS, Lins TLB, Gouveia BB, Barros VRP, Santos LP, Gonçalves RJS, Matos MHT. Immunohistochemical localization of fibroblast growth factor-2 in the sheep ovary and its effects on pre-antral follicle apoptosis and development in vitro. Reprod Domest Anim 2014; 49:522-8. [PMID: 24750547 DOI: 10.1111/rda.12322] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 03/23/2014] [Indexed: 01/14/2023]
Abstract
Studies with sheep are important to improve our knowledge about the factors that control folliculogenesis in mammals and to explore possible physiological differences among species. The aims of this study were to characterize FGF-2 protein expression in ovine ovaries and to verify the effect of FGF-2 on the morphology, apoptosis and growth of ovine pre-antral follicles cultured in vitro. After collection, one fragment of ovarian tissue was fixed for histological analysis and TUNEL analysis (fresh control). The remaining fragments were cultured for 7 days in control medium (α-MEM(+) ) alone or supplemented with FGF-2 at different concentrations (1, 10, 50, 100 or 200 ng/ml). After culturing, ovarian tissue was destined to histology and TUNEL analysis, and oocyte and follicle diameters were measured. The immunostaining for FGF-2 was observed in oocytes from primordial, primary and secondary follicles, as well as in granulosa cells of secondary and antral follicles. The percentage of normal follicles was similar among control medium, 1 and 10 ng/ml FGF-2, and significantly higher than those observed in 50, 100 or 200 ng/ml FGF-2. A significant increase in follicle diameter was observed when tissues were cultured in 10, 50, 100 or 200 ng/ml FGF-2 compared with the fresh control and the other treatments. Similar results were observed for oocyte diameter in tissues cultured with 50, 100 or 200 ng/ml FGF-2 (p < 0.05). However, the percentage of apoptotic cells only decreased (p < 0.05) in ovarian tissues cultured in 1 or 10 ng/ml FGF-2 compared with the control medium and other FGF-2 treatments. In conclusion, this study demonstrated the presence of FGF-2 in ovine ovaries. Furthermore, 10 ng/ml FGF-2 inhibits apoptosis and promotes ovine follicle growth. As the sheep ovary is more similar to that of humans, the culture system demonstrated in this work seems to be an appropriate tool for studies towards human folliculogenesis.
Collapse
Affiliation(s)
- J M S Santos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of San Francisco Valley, Petrolina, PE, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|