1
|
Del Bianco D, Gentile R, Sallicandro L, Biagini A, Quellari PT, Gliozheni E, Sabbatini P, Ragonese F, Malvasi A, D’Amato A, Baldini GM, Trojano G, Tinelli A, Fioretti B. Electro-Metabolic Coupling of Cumulus-Oocyte Complex. Int J Mol Sci 2024; 25:5349. [PMID: 38791387 PMCID: PMC11120766 DOI: 10.3390/ijms25105349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Oocyte-cumulus cell interaction is essential for oocyte maturation and competence. The bidirectional crosstalk network mediated by gap junctions is fundamental for the metabolic cooperation between these cells. As cumulus cells exhibit a more glycolytic phenotype, they can provide metabolic substrates that the oocyte can use to produce ATP via oxidative phosphorylation. The impairment of mitochondrial activity plays a crucial role in ovarian aging and, thus, in fertility, determining the success or failure of assisted reproductive techniques. This review aims to deepen the knowledge about the electro-metabolic coupling of the cumulus-oocyte complex and to hypothesize a putative role of potassium channel modulators in order to improve fertility, promote intracellular Ca2+ influx, and increase the mitochondrial biogenesis and resulting ATP levels in cumulus cells.
Collapse
Affiliation(s)
- Diletta Del Bianco
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
| | - Rosaria Gentile
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Luana Sallicandro
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Andrea Biagini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Paola Tiziana Quellari
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
- ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy
| | - Elko Gliozheni
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tirana, AL1005 Tirana, Albania
| | - Paola Sabbatini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
| | - Francesco Ragonese
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Antonio Malvasi
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70121 Bari, Italy;
| | - Antonio D’Amato
- 1st Unit of Obstetrics and Gynecology, University of Bari, 70121 Bari, Italy;
| | | | - Giuseppe Trojano
- Department of Maternal and Child Health, “Madonna delle Grazie” Hospital ASM, 75100 Matera, Italy;
| | - Andrea Tinelli
- Department of Obstetrics and Gynecology and CERICSAL (CEntro di RIcerca Clinico SALentino), Veris delli Ponti Hospital, Via Giuseppina delli Ponti, 73020 Scorrano, Lecce, Italy
| | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| |
Collapse
|
2
|
Zhang CH, Liu XY, Wang J. Essential Role of Granulosa Cell Glucose and Lipid Metabolism on Oocytes and the Potential Metabolic Imbalance in Polycystic Ovary Syndrome. Int J Mol Sci 2023; 24:16247. [PMID: 38003436 PMCID: PMC10671516 DOI: 10.3390/ijms242216247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Granulosa cells are crucial for the establishment and maintenance of bidirectional communication among oocytes. Various intercellular material exchange modes, including paracrine and gap junction, are used between them to achieve the efficient delivery of granulosa cell structural components, energy substrates, and signaling molecules to oocytes. Glucose metabolism and lipid metabolism are two basic energy metabolism pathways in granulosa cells; these are involved in the normal development of oocytes. Pyruvate, produced by granulosa cell glycolysis, is an important energy substrate for oocyte development. Granulosa cells regulate changes in intrafollicular hormone levels through the processing of steroid hormones to control the development process of oocytes. This article reviews the material exchange between oocytes and granulosa cells and expounds the significance of granulosa cells in the development of oocytes through both glucose metabolism and lipid metabolism. In addition, we discuss the effects of glucose and lipid metabolism on oocytes under pathological conditions and explore its relationship to polycystic ovary syndrome (PCOS). A series of changes were found in the endogenous molecules and ncRNAs that are related to glucose and lipid metabolism in granulosa cells under PCOS conditions. These findings provide a new therapeutic target for patients with PCOS; additionally, there is potential for improving the fertility of patients with PCOS and the clinical outcomes of assisted reproduction.
Collapse
Affiliation(s)
- Chen-Hua Zhang
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China; (C.-H.Z.); (X.-Y.L.)
| | - Xiang-Yi Liu
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China; (C.-H.Z.); (X.-Y.L.)
| | - Jing Wang
- Department of Cell Biology, School of Medicine, Nanchang University, Nanchang 330006, China
| |
Collapse
|
3
|
Kumar S, Chaves MS, da Silva AFB, Vale WG, Filho STR, Ferreira-Silva JC, Melo LM, de Figueiredo Freitas VJ. Factors affecting the in vitro embryo production in buffalo ( Bubalus bubalis): A review. VET MED-CZECH 2023; 68:45-56. [PMID: 38332761 PMCID: PMC10847820 DOI: 10.17221/48/2022-vetmed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/15/2022] [Indexed: 02/10/2024] Open
Abstract
Under natural and well-managed conditions, the buffalo has good reproductive and productive indices. However, in vitro embryo production (IVEP) has been used commercially to maximise the number of elite animals. In this species, several factors (donor management, in vitro culture medium, semen, in vitro conditions, embryo transfer) still affect the IVEP results. In addition, the cost of this technique is very high for this purpose. Therefore, more studies, as well as adequate plans, are needed to achieve this objective efficiently. In this review, we discussed the current commercial status, influencing factors (in vivo and in vitro), and the progress and future challenges of IVEP in buffalo. A total of 81 references were used from 1979 to 2022. The relevant data or literature were searched using the following databases: Google, ResearchGate, Science Alert, Science Direct and PubMed, using the following keywords: buffalo oocytes/COCs, buffalo embryos, pregnancy and calving or live birth rate after embryo transfer. The best maturation, cleavage and blastocyst rates in the in vitro production of buffalo embryos were 95.8, 75.2 and 33.4%, respectively. The pregnancy and live birth rates ranged from 22.2% to 43.5% and from 15.3% to 36.5%, respectively, after the transfer of fresh embryos produced in vitro to the recipients. This review will help to contextualise IVEP in buffaloes, as well as create an adequate plan for implementing IVEP in buffaloes.
Collapse
Affiliation(s)
- Satish Kumar
- Laboratory of Physiology and Control of Reproduction, State University of Ceará, Fortaleza, Brazil
| | - Maiana Silva Chaves
- Laboratory of Physiology and Control of Reproduction, State University of Ceará, Fortaleza, Brazil
| | | | - William Gomes Vale
- Postgraduate Program in Veterinary Science, State University of Ceará, Fortaleza, Brazil
| | | | | | | | | |
Collapse
|
4
|
PGAM1 regulates the glycolytic metabolism of SCs in tibetan sheep and its influence on the development of SCs. Gene 2021; 804:145897. [PMID: 34418471 DOI: 10.1016/j.gene.2021.145897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/20/2021] [Accepted: 08/06/2021] [Indexed: 11/20/2022]
Abstract
This study was to explore the regulation effect of PGAM1 on the proliferation, apoptosis and glycolysis pathway of Tibetan sheep Sertoli cells. In this paper, the reproductive organs of male Tibetan sheep before pre-puberty (3 months old), sexual maturity (1 year old) and adult (3 years old) were used as experimental materials. The complete CDS region sequence of PGAM1 gene was cloned for bioinformatics analysis, and had the closest relationship with Tibetan antelope. QRT-PCR, Western blot and immunohistochemical staining were used to detect the expression and localization of PGAM1 in the testis and epididymis tissues of Tibetan sheep at different growth and development stages at the transcription and translation levels. Then the Tibetan sheep primary Sertoli cells (SCs) were isolated to construct PGAM1 gene overexpression and interference vectors, and to transfect primary SCs so as to promote and inhibit PGAM1 gene expression; CCK-8 and flow cytometry were used to detect the proliferation effect of SCs;qRT-PCR technology was employed to detect the changes in the expression of genes related to cell proliferation and apoptosis. Different kits were used to detect pyruvate, lactic acid, ATP production and LDH activity during glycolysis, and to detect the changes in the expression of downstream genes in the glycolysis pathway. The results showed that the CDS region of Tibetan sheep PGAM1 gene was 765 bp in length, which can encode 254 amino acids; and the expression of PGAM1 protein in the testis and epididymis increased at 1Y group and 3Ygroup compared with 3 M group, and that the PGAM1 protein mainly existed in SCs and Leydig cells at different developmental stages. CCK-8 and flow cytometry test results found that compared with the empty vector group (pcDNA3.1(+)), the proliferation rate of the PGAM1 gene overexpression group (pcDNA3.1(+)-PGAM1) decreased. The mRNA expression of the cell proliferation related genes PCNA and Bcl2 was significantly decreased (P < 0.05), and the expression of apoptosis-related genes Bax and caspase3 was significantly increased (P < 0.05). The expression of downstream genes in the glycolysis pathway was significant increased (P < 0.05), pyruvate content, ATP content, lactic acid production and LDH activity increased significantly (P < 0.05). Compared with the interference control group (NC), the proliferation rate of the PGAM1 gene interference group (si-PGAM1) was weakened. The mRNA expression of the cell proliferation-related genes PCNA and Bcl2 was significantly increased (P < 0.05), and the expression of cell apoptosis related genes Bax and caspase3 was significantly decreased (P < 0.05). The expression of downstream genes in the glycolysis pathway was significantly reduced (P < 0.05), and the pyruvate content, ATP content, lactic acid production and LDH activity were significantly decreased (P < 0.05). The PGAM1 gene might regulate the glycolytic metabolism pathway and regulate the sperm formation and maturation process by affecting the proliferation and apoptosis of SCs. This result provides basic data for the study of the function of PGAM1 in sheep testicular development.
Collapse
|
5
|
Imanaka S, Shigetomi H, Kobayashi H. Reprogramming of glucose metabolism of cumulus cells and oocytes and its therapeutic significance. Reprod Sci 2021; 29:653-667. [PMID: 33675030 DOI: 10.1007/s43032-021-00505-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/21/2021] [Indexed: 12/17/2022]
Abstract
The aim of this review is to summarize our current understanding of the molecular mechanism for the glucose metabolism, especially pyruvate dehydrogenase (PDH), during oocyte maturation, as well as future perspectives of therapeutic strategies for aging focusing on metabolic regulation between aerobic glycolysis and the tricarboxylic acid (TCA) cycle/oxidative phosphorylation (OXPHOS). Each keyword alone or in combination was used to search from PubMed. Glucose metabolism is a dynamic process involving "On" and "Off" switches by the pyruvate dehydrogenase kinase (PDK)-PDH axis, which is crucial for energy metabolism and mitochondrial efficiency in cumulus cell differentiation and oocyte maturation. Activation of PDK suppresses the conversion of pyruvate to acetyl-coenzyme A (acetyl-CoA) through the inactivation of PDH, which allows the cumulus cells to supply sufficient amounts of pyruvate, lactate, and nicotinamide adenine dinucleotide phosphate (NADPH) to the oocytes. On the other hand, inactivation of PDK in oocytes can produce adenosine triphosphate (ATP) through a metabolic shift from aerobic glycolysis to the TCA cycle/OXPHOS. The metabolic balance between aerobic glycolysis and TCA cycle/OXPHOS presents us with a number of enzymes, ligands, receptors, and antioxidants that are potential therapeutic targets, some of which have already been successfully pursued to improve fertility outcomes. However, there are also many reports that question their efficacy. In conclusion, understanding the molecular mechanisms involved in the PDK-PDH axis is a crucial step to advance in novel therapeutic strategies to improve oocyte quality.
Collapse
Affiliation(s)
- Shogo Imanaka
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan.,Ms.Clinic MayOne, Kashihara, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan.,Aska Ladies Clinic, Nara, Japan
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan. .,Ms.Clinic MayOne, Kashihara, Japan.
| |
Collapse
|
6
|
Cellular and molecular alterations of buffalo oocytes cultured under two different levels of oxygen tension during in vitro maturation. ZYGOTE 2021; 29:314-324. [PMID: 33622439 DOI: 10.1017/s0967199420000945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study was conducted to monitor the cellular and molecular changes of buffalo cumulus-oocytes complexes (COCs) cultured under high or low oxygen levels. Morphologically good quality COCs (n = 1627) were screened using brilliant cresyl blue (BCB) staining and placed into three groups (BCB+, BCB- and control). All groups of COCs were cultured under low (5%) or high (20%) oxygen tensions. Intracellular and molecular changes including oocyte ultrastructure, lipid contents, mitochondrial activity and transcript abundance of genes regulating different pathways were analyzed in the matured oocyte groups. The results revealed that oxygen tension did not affect cumulus expansion rates, however the BCB+ group had a higher (P ≤ 0.05) expansion rate compared with the BCB- group. BCB- oocytes recorded the lowest meiotic progression rate (P ≤ 0.05) under high oxygen levels that was linked with an increased level of reactive oxygen species (ROS) compared with the BCB+ oocytes. Ultrastructure examination indicated that BCB+ oocytes had a higher rate of cortical granules migration compared with BCB- under low oxygen tension. In parallel, our results indicated the upregulation of NFE2L2 in groups of oocytes cultured under high oxygen tension that was coupled with reduced mitochondrial activity. In contrast, the expression levels of MAPK14 and CPT2 genes were increased (P ≤ 0.05) in groups of oocytes cultured under low compared with high oxygen tension that was subsequently associated with increased mitochondrial activity. In conclusion, data from the present investigation indicated that low oxygen tension is a favourable condition for maintaining the mitochondrial activity required for nuclear maturation of buffalo oocytes. However, low-quality oocytes (BCB-) responded negatively to high oxygen tension by reducing the expression of gene-regulating metabolic activity (CPT2). This action was an attempt by BCB- oocytes to reduce the increased levels of endogenously produced ROS that was coupled with decreased expression of the gene controlling meiotic progression (MAPK14) in addition to nuclear maturation rate.
Collapse
|
7
|
Parthenogenetic activation of buffalo ( Bubalus bubalis) oocytes: comparison of different activation reagents and different media on their developmental competence and quantitative expression of developmentally regulated genes. ZYGOTE 2020; 29:49-58. [PMID: 33004105 DOI: 10.1017/s0967199420000519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study was carried out to compare the efficacy of different methods to activate buffalo A + B and C + D quality oocytes parthenogenetically and to study the in vitro developmental competence of oocytes and expression of some important genes at the different developmental stages of parthenotes. The percentage of A + B oocytes (62.16 ± 5.06%, range 53.8-71.3%) was significantly higher (P < 0.001) compared with that of C + D oocytes (37.8 ± 5.00%, range 28.6-46.1%) retrieved from slaughterhouse buffalo ovaries. Among all combinations, ethanol activation followed by culture in research vitro cleave medium gave the highest cleavage and blastocyst yields for both A + B and C + D grade oocytes. Total cell numbers, inner cell mass/trophectoderm ratio and apoptotic index of A + B group blastocysts were significantly different (P < 0.05) from their C + D counterpart. To determine the status of expression patterns of developmentally regulated genes, the expression of cumulus-oocyte complexes, fertilization, developmental competence and apoptotic-related genes were also studied in parthenogenetically produced buffalo embryos at different stages, and indicated that the differential expression patterns of the above genes had a role in early embryonic development.
Collapse
|
8
|
He H, Zhang H, Li Q, Fan J, Pan Y, Zhang T, Robert N, Zhao L, Hu X, Han X, Yang S, Cui Y, Yu S. Low oxygen concentrations improve yak oocyte maturation and enhance the developmental competence of preimplantation embryos. Theriogenology 2020; 156:46-58. [PMID: 32673901 DOI: 10.1016/j.theriogenology.2020.06.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/30/2022]
Abstract
Mammalian oocyte maturation and early embryo development are highly sensitive to the in vitro culture environment, and oxygen concentration is one of the important factors. In the present study, we aimed to explore the effects of different oxygen concentrations (20%, 10%, 5% or 1% O2) on yak oocyte maturation, in vitro fertilization (IVF), and embryo development competence, as well as its effects on the oxidative response, metabolism, and apoptosis in cumulus-oocyte complexes (COCs) and the embryo. The results revealed that the maturation rate of oocytes, blastocysts rate and hatched blastocysts rate in the group with 5% oxygen concentration were significantly higher (P < 0.05) than other groups, but the cleavage rate with 5% oxygen concentration was significantly lower (P < 0.05) than the 20% and 10% oxygen concentrations. The maturation rate of oocytes, the cleavage rate, blastocysts rate and hatched blastocysts rate with the 1% oxygen concentration were the lowest. The blastocyst cultured with 5% oxygen concentration had significantly greater (P < 0.05) numbers of total cells, inner cell mass (ICM) cells and trophectoderm (TE) cells compared to the other groups. Analysis of the apoptosis index of oocytes and blastocyst cells by transferase dUTP nick end labeling (TUNEL) showed that the number of apoptotic cells significantly reduced (P < 0.05) with 5% oxygen concentration, but increased significantly (P < 0.05) in the 1% oxygen concentration group. Also, the qRT-PCR and western immunoblotting analysis confirmed that the transcription levels of the metabolism genes, antioxidant response genes, apoptosis genes, oocyte competence genes and embryonic developmental markers showed significant differences (P < 0.05) in the COCs or blastocysts matured in 5% oxygen concentration group compared to the other groups. In summary, our findings demonstrate that 5% oxygen concentration improves oocyte maturation and blastocyst development in the yak, increases blastocyst cell numbers, reduces apoptosis rate in the oocyte and blastocyst as well as reduces embryo cleavage rate.
Collapse
Affiliation(s)
- Honghong He
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Huizhu Zhang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Qin Li
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jiangfeng Fan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yangyang Pan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tongxiang Zhang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Niayale Robert
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ling Zhao
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xuequan Hu
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiaohong Han
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shanshan Yang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
9
|
Wen J, Wang GL, Yuan HJ, Zhang J, Xie HL, Gong S, Han X, Tan JH. Effects of glucose metabolism pathways on nuclear and cytoplasmic maturation of pig oocytes. Sci Rep 2020; 10:2782. [PMID: 32066834 PMCID: PMC7026050 DOI: 10.1038/s41598-020-59709-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 02/03/2020] [Indexed: 12/11/2022] Open
Abstract
The developmental competence of IVM porcine oocytes is still low compared with that in their in vivo counterparts. Although many studies reported effects of glucose metabolism (GM) on oocyte nuclear maturation, few reported on cytoplasmic maturation. Previous studies could not differentiate whether GM of cumulus cells (CCs) or that of cumulus-denuded oocytes (DOs) supported oocyte maturation. Furthermore, species differences in oocyte GM are largely unknown. Our aim was to address these issues by using enzyme activity inhibitors, RNAi gene silencing and special media that could support nuclear but not cytoplasmic maturation when GM was inhibited. The results showed that GM in CCs promoted pig oocyte maturation by releasing metabolites from both pentose phosphate pathway and glycolysis. Both pyruvate and lactate were transferred into pig DOs by monocarboxylate transporter and pyruvate was further delivered into mitochondria by mitochondrial pyruvate carrier in both pig DOs and CCs. In both pig DOs and CCs, pyruvate and lactate were utilized through mitochondrial electron transport and LDH-catalyzed oxidation to pyruvate, respectively. Pig and mouse DOs differed in their CC dependency for glucose, pyruvate and lactate utilization. While mouse DOs could not, pig DOs could use the lactate-derived pyruvate.
Collapse
Affiliation(s)
- Jing Wen
- College of Life Science, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Guo-Liang Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, P.R. China
| | - Hong-Jie Yuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, P.R. China
| | - Jie Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, P.R. China
| | - Hong-Li Xie
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, P.R. China
| | - Shuai Gong
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, P.R. China
| | - Xiao Han
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, P.R. China
| | - Jing-He Tan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, P.R. China. .,College of Life Science, Northeast Agricultural University, Harbin, 150030, P.R. China.
| |
Collapse
|
10
|
Mirzahosseini-pourranjbar A, Karimabad MN, Hajizadeh MR, Khoshdel A, Fahmidehkar MA, Mohammad-Sadeghipour M, Afshari-Nesab M, Mahmoodi M. The effect of Prosopis farcta extract on the expression of some key genes of the glycolysis pathway and the genes involved in insulin signaling in HepG2 cells. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Song J, Xiang S, Yang Y, Sun Z. Assessment of follicular fluid metabolomics of polycystic ovary syndrome in kidney yang deficiency syndrome. Eur J Integr Med 2019. [DOI: 10.1016/j.eujim.2019.100944] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Hatırnaz Ş, Ata B, Hatırnaz ES, Dahan MH, Tannus S, Tan J, Tan SL. Oocyte in vitro maturation: A sytematic review. Turk J Obstet Gynecol 2018; 15:112-125. [PMID: 29971189 PMCID: PMC6022428 DOI: 10.4274/tjod.23911] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023] Open
Abstract
In vitro maturation (IVM) is one of the most controversial aspects of assisted reproductive technology. Although it has been studied extensively, it is still not a conventional treatment option and is accepted as an alternative treatment. However, studies have shown that IVM can be used in almost all areas where in vitro fertilization (IVF) is used and it has a strong place in fertility protection and Ovarian Hyperstimulation syndrome management. The aim of this systematic review was to address all aspects of the current knowledge of IVM treatment together with the evolution of IVM and IVF.
Collapse
Affiliation(s)
- Şafak Hatırnaz
- Medicana International Hospital, In Vitro Fertilization Center, Samsun, Turkey
| | - Barış Ata
- Koç University Faculty of Medicine, Department of Obstetrics and Gynecology, In Vitro Fertilization Center, İstanbul, Turkey
| | | | - Michael Haim Dahan
- Mc Gill University Faculty of Medicine, Department of Obstetrics and Gynecology, Quebec, Canada
| | - Samer Tannus
- Mc Gill University Faculty of Medicine, Department of Obstetrics and Gynecology, Quebec, Canada
| | - Justin Tan
- Mc Gill University Faculty of Medicine, Department of Obstetrics and Gynecology, Quebec, Canada
| | - Seang Lin Tan
- Originelle Women and Reproductive Medicine Center, Clinic of Obstetrics and Gynecology, Montreal, Quebec, Canada
| |
Collapse
|
13
|
de los Santos MJ, Gámiz P, de los Santos JM, Romero JL, Prados N, Alonso C, Remohí J, Dominguez F. The Metabolomic Profile of Spent Culture Media from Day-3 Human Embryos Cultured under Low Oxygen Tension. PLoS One 2015; 10:e0142724. [PMID: 26562014 PMCID: PMC4643011 DOI: 10.1371/journal.pone.0142724] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/09/2015] [Indexed: 11/18/2022] Open
Abstract
Despite efforts made to improve the in vitro embryo culture conditions used during assisted reproduction procedures, human embryos must adapt to different in vitro oxygen concentrations and the new metabolic milieu provided by the diverse culture media used for such protocols. It has been shown that the embryo culture environment can affect not only cellular metabolism, but also gene expression in different species of mammalian embryos. Therefore we wanted to compare the metabolic footprint left by human cleavage-stage embryos under two types of oxygen atmospheric culture conditions (6% and 20% O2). The spent culture media from 39 transferred and implanted embryos from a total of 22 patients undergoing egg donation treatment was analyzed; 23 embryos came from 13 patients in the 6% oxygen concentration group, and 16 embryos from 9 patients were used in the 20% oxygen concentration group. The multivariate statistics we used in our analysis showed that human cleavage-stage embryos grown under both types of oxygen concentration left a similar metabolic fingerprint. We failed to observe any change in the net depletion or release of relevant analytes, such as glucose and especially fatty acids, by human cleavage-stage embryos under either type of culture condition. Therefore it seems that low oxygen tension during embryo culture does not alter the global metabolism of human cleavage-stage embryos.
Collapse
Affiliation(s)
- Maria José de los Santos
- IVI Valencia, Valencia, Spain
- INCLIVA Biomedical Research and Fundación IVI, Valencia, Spain
- * E-mail: (FD); (MJDLS)
| | | | | | | | | | | | - José Remohí
- IVI Valencia, Valencia, Spain
- INCLIVA Biomedical Research and Fundación IVI, Valencia, Spain
| | - Francisco Dominguez
- INCLIVA Biomedical Research and Fundación IVI, Valencia, Spain
- * E-mail: (FD); (MJDLS)
| |
Collapse
|
14
|
Kim SH, Choi KH, Lee DK, Oh JN, Hwang JY, Park CH, Lee CK. Ginsenoside Rg1 Improves In vitro-produced Embryo Quality by Increasing Glucose Uptake in Porcine Blastocysts. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 29:1095-101. [PMID: 26954154 PMCID: PMC4932562 DOI: 10.5713/ajas.15.0678] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 10/01/2015] [Accepted: 10/16/2015] [Indexed: 11/27/2022]
Abstract
Ginsenoside Rg1 is a natural compound with various efficacies and functions. It has beneficial effects on aging, diabetes, and immunity, as well as antioxidant and proliferative functions. However, its effect on porcine embryo development remains unknown. We investigated the effect of ginsenoside Rg1 on the in vitro development of preimplantation porcine embryos after parthenogenetic activation in high-oxygen conditions. Ginsenoside treatment did not affect cleavage or blastocyst formation rates, but did increase the total cell number and reduced the rate of apoptosis. In addition, it had no effect on the expression of four apoptosis-related genes (Bcl-2 homologous antagonist/killer, B-cell lymphoma-extra large, Caspase 3, and tumor protein p53) or two metabolism-related genes (mechanistic target of rapamycin, carnitine palmitoyltransferase 1B), but increased the expression of Glucose transporter 1 (GLUT1), indicating that it may increase glucose uptake. In summary, treatment with the appropriate concentration of ginsenoside Rg1 (20 μg/mL) can increase glucose uptake, thereby improving the quality of embryos grown in high-oxygen conditions.
Collapse
Affiliation(s)
- Seung-Hun Kim
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 151-921, Korea
| | - Kwang-Hwan Choi
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 151-921, Korea
| | - Dong-Kyung Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 151-921, Korea
| | - Jong-Nam Oh
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 151-921, Korea
| | - Jae Yeon Hwang
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 151-921, Korea.,Department of Animal Life Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Chi-Hun Park
- Designed Animal and Transplantation Research Institute, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 232-916, Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 151-921, Korea.,Designed Animal and Transplantation Research Institute, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 232-916, Korea
| |
Collapse
|