1
|
Demir S, Turkmen Alemdar N, Kucuk H, Ayazoglu Demir E, Menteşe A, Aliyazıcıoğlu Y. Therapeutic effect of berberine against 5-fluorouracil induced ovarian toxicity in rats. Biotech Histochem 2024:1-7. [PMID: 39440588 DOI: 10.1080/10520295.2024.2415005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Berberine (BER) is a naturally occurring alkaloid with a multitude of beneficial effects on human health. Although it is one of the most studied phytochemicals, its curative effect against ovarian damage caused by 5-fluorouracil (5-FU) has not been demonstrated to date. The aim of this study was to investigate the possible protective effect of BER against 5-FU-induced ovotoxicity, focusing on its ability to attenuate oxidative stress, inflammation and apoptosis. The 30 female rats were randomly divided into five groups: Control, BER (2 mg/kg), 5-FU (100 mg/kg), 5-FU+BER (1 mg/kg) and 5-FU+BER (2 mg/kg). The levels of malondialdehyde (MDA), total oxidant status (TOS), total antioxidant status (TAS), superoxide dismutase (SOD), catalase (CAT), 8-hydroxy-2'-deoxyguanosine (8-OHdG), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and caspase-3 were determined using spectrophotometric methods. In addition, ovarian samples were evaluated histopathologically using hematoxylin&eosin staining method. The MDA, TOS, 8-OHdG, IL-6, TNF-α and caspase-3 levels significantly increased by 5-FU administration. Also, we found that 5-FU significantly decreased TAS, SOD and CAT levels. Treatments with BER significantly attenuated the 5-FU-induced ovarian damage via increasing the antioxidant capacity and reducing the oxidative stress, inflammation and apoptosis in a dose-dependent manner. Moreover, the ovoprotective effect of BER was also confirmed by histopathological evaluation. BER may be evaluated as a potential candidate molecule to reduce 5-FU-induced ovarian toxicity.
Collapse
Affiliation(s)
- Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, Trabzon, Turkiye
| | - Nihal Turkmen Alemdar
- Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, Rize, Turkiye
| | - Hatice Kucuk
- Department of Pathology, Kanuni Training and Research Hospital, University of Health Sciences, Trabzon, Turkiye
| | - Elif Ayazoglu Demir
- Department of Chemistry and Chemical Processing Technologies, Macka Vocational School, Karadeniz Technical University, Trabzon, Turkiye
| | - Ahmet Menteşe
- Department of Medical Services and Techniques, Vocational School of Health Services, Karadeniz Technical University, Trabzon, Turkiye
| | - Yuksel Aliyazıcıoğlu
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye
| |
Collapse
|
2
|
Mentese A, Demir S, Yulug E, Kucuk H, Alemdar NT, Demir EA, Aliyazicioglu Y. Gentisic acid attenuates 5-fluorouracil-induced ovotoxicity in rats via modulating Nrf2 signalling: An experimental approach. Reprod Toxicol 2024; 128:108661. [PMID: 38986848 DOI: 10.1016/j.reprotox.2024.108661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/25/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
5-Fluorouracil (5-FU) is the third most used chemotherapeutic in the world with its anticancer effect resulting from its potential to block DNA replication. Like other cytotoxic agents, 5-FU has side effects on healthy tissues, and the reproductive system is among the tissues most affected by these undesirable effects. Gentisic acid (GEA) is a secondary metabolite that is abundant in fruits, vegetables and spices and has antioxidant activity. This study was conducted to investigate the toxicity of 5-FU in rat ovarian tissue and to determine the therapeutic activity of GEA on ovotoxicity caused by 5-FU. The results showed that 5-FU caused histopathological findings by suppressing Nrf2 pathway and accordingly increasing oxidative stress, inflammation, endoplasmic reticulum stress and apoptosis. However, GEA treatments after 5-FU application ameliorated 5-FU-induced ovotoxicity dose-dependently through activation of Nrf2 pathway. All these findings provided strong evidence supporting the hypothesis that GEA treatment may have therapeutic effects against 5-FU-induced ovarian damage. However, the beneficial effect of GEA use in eliminating ovarian damage in women after 5-FU chemotherapy should continue to be investigated with more detailed molecular studies.
Collapse
Affiliation(s)
- Ahmet Mentese
- Department of Medical Services and Techniques, Vocational School of Health Services, Karadeniz Technical University, Trabzon 61080, Turkiye
| | - Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, Trabzon 61080, Turkiye.
| | - Esin Yulug
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Hatice Kucuk
- Department of Pathology, Kanuni Training and Research Hospital, University of Health Sciences, Trabzon 61250, Turkiye
| | - Nihal Turkmen Alemdar
- Department of Medical Biochemistry, Graduate School of Health Sciences, Karadeniz Technical University, Trabzon 61080, Turkiye; Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, Rize 53100, Turkiye
| | - Elif Ayazoglu Demir
- Department of Chemistry and Chemical Processing Technologies, Macka Vocational School, Karadeniz Technical University, Trabzon 61750, Turkiye
| | - Yuksel Aliyazicioglu
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| |
Collapse
|
3
|
Markowska A, Antoszczak M, Markowska J, Huczyński A. Gynotoxic Effects of Chemotherapy and Potential Protective Mechanisms. Cancers (Basel) 2024; 16:2288. [PMID: 38927992 PMCID: PMC11202309 DOI: 10.3390/cancers16122288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Chemotherapy is one of the leading cancer treatments. Unfortunately, its use can contribute to several side effects, including gynotoxic effects in women. Ovarian reserve suppression and estrogen deficiency result in reduced quality of life for cancer patients and are frequently the cause of infertility and early menopause. Classic alkylating cytostatics are among the most toxic chemotherapeutics in this regard. They cause DNA damage in ovarian follicles and the cells they contain, and they can also induce oxidative stress or affect numerous signaling pathways. In vitro tests, animal models, and a few studies among women have investigated the effects of various agents on the protection of the ovarian reserve during classic chemotherapy. In this review article, we focused on the possible beneficial effects of selected hormones (anti-Müllerian hormone, ghrelin, luteinizing hormone, melatonin), agents affecting the activity of apoptotic pathways and modulating gene expression (C1P, S1P, microRNA), and several natural (quercetin, rapamycin, resveratrol) and synthetic compounds (bortezomib, dexrazoxane, goserelin, gonadoliberin analogs, imatinib, metformin, tamoxifen) in preventing gynotoxic effects induced by commonly used cytostatics. The presented line of research appears to provide a promising strategy for protecting and/or improving the ovarian reserve in the studied group of cancer patients. However, well-designed clinical trials are needed to unequivocally assess the effects of these agents on improving hormonal function and fertility in women treated with ovotoxic anticancer drugs.
Collapse
Affiliation(s)
- Anna Markowska
- Department of Perinatology and Women’s Health, Poznań University of Medical Sciences, 60-535 Poznań, Poland
| | - Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Janina Markowska
- Gynecological Oncology Center, Poznańska 58A, 60-850 Poznań, Poland;
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
4
|
Chen Y, Mao X, Xu Y, Li L, Geng J, Dai T, Wang Q, Xue L, Tao L, Liu X. PTOV1-AS1 desensitizes colorectal cancer cells to 5-FU through depressing miR-149-5p to activate the positive feedback loop with Wnt/β-catenin pathway. Phytother Res 2024; 38:1313-1328. [PMID: 38194947 DOI: 10.1002/ptr.8095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
5-Fluorouracil is a commonly used chemotherapy drug for colorectal cancer. Resistance to 5-Fluorouracil remains a challenge. This research aimed to explore the mechanism of 5-Fluorouracil resistance in colorectal cancer. RT-qPCR and Western blot were used to determine the RNA and protein expression in both cells and exosome. Assays in vitro and in vivo were performed to measure the role of miR-149-5p in colorectal cancer cells. RIP, luciferase activity report, and RNA pulldown assay were applied to detect the association of PTOV1-AS1, SUV39H1, miR-149-5p, and FOXM1. MiR-149-5p was down-expressed in 5-Fluorouracil-resistant cells. MiR-149-5p enhanced the effectiveness of 5-Fluorouracil both in vitro and in vivo. Sensitive colorectal cancer cells released exosomal miR-149-5p to sensitize resistant cells to chemotherapy. Mechanistically, miR-149-5p targeted the FOXM1 to inactivate Wnt/β-catenin pathway, and PTOV1-AS1 recruited SUV39H1 to suppress miR-149-5p transcription, in turn activating Wnt/β-catenin pathway, and forming a positive feedback loop with FOXM1. PTOV1-AS1 inhibits miR-149-5p by a positive feedback loop with FOXM1-mediated Wnt/β-catenin pathway, which provides insights into a potential novel target for enhancing the effectiveness of chemotherapy in colorectal cancer patients.
Collapse
Affiliation(s)
- Yanan Chen
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaobei Mao
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yichen Xu
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lin Li
- Department of Health, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jian Geng
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tingting Dai
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qian Wang
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lijun Xue
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Medical Oncology, Jinling Hospital, First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Leilei Tao
- Department of Medical Oncology, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Medical Oncology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China
| | - Xiaobei Liu
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Medical Oncology, Jinling Hospital, First School of Clinical Medicine, Southern Medical University, Nanjing, China
| |
Collapse
|
5
|
Ayazoglu Demir E, Mentese A, Kucuk H, Turkmen Alemdar N, Demir S. The therapeutic effect of silibinin against 5-fluorouracil-induced ovarian toxicity in rats. J Biochem Mol Toxicol 2023; 37:e23408. [PMID: 37335224 DOI: 10.1002/jbt.23408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/28/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
5-Fluorouracil (5-FU) is a fluoropyrimidine group antineoplastic drug with antimetabolite properties and ovotoxicity is one of the most important side effects. Silibinin (SLB) is a natural compound that is used worldwide and stands out with its antioxidant and anti-inflammatory properties. The aim of this study was to evaluate the therapeutic effect of SLB in 5-FU-induced ovototoxicity using biochemical and histological analysis. This study was carried out in five main groups containing six rats in each group: control, SLB (5 mg/kg), 5-FU (100 mg/kg), 5-FU + SLB (2.5 mg/kg), and 5-FU + SLB (5 mg/kg). The levels of ovarian malondialdehyde (MDA), total oxidant status (TOS), total antioxidant status (TAS), superoxide dismutase (SOD), catalase (CAT), 8-hydroxy-2'-deoxyguanosine (8-OHdG), tumor necrosis factor-alpha (TNF-α), myeloperoxidase (MPO), and caspase-3 were determined using spectrophotometric methods. Hematoxylin and eosin staining method was employed for histopathological examination. MDA, TOS, 8-OHdG, TNF-α, MPO, and caspase-3 levels in 5-FU group were significantly increased compared with the control group, while the levels of TAS, SOD, and CAT were decreased (p < 0.05). SLB treatments statistically significantly restored this damage in a dose-dependent manner (p < 0.05). Although vascular congestion, edema, hemorrhage, follicular degeneration, and leukocyte infiltration were significantly higher in the 5-FU group compared with the control group, SLB treatments also statistically significantly restored these damages (p < 0.05). In conclusion, SLB has a therapeutic effect on the ovarian damage induced by 5-FU via decreasing the levels of oxidative stress, inflammation, and apoptosis. It may be helpful to consider the usefulness of SLB as an adjuvant therapy to counteract the side effects of chemotherapy.
Collapse
Affiliation(s)
- Elif Ayazoglu Demir
- Department of Chemistry and Chemical Processing Technologies, Macka Vocational School, Karadeniz Technical University, Trabzon, Turkiye
| | - Ahmet Mentese
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye
| | - Hatice Kucuk
- Department of Pathology, Kanuni Training and Research Hospital, University of Health Sciences, Trabzon, Turkiye
| | - Nihal Turkmen Alemdar
- Department of Medical Biochemistry, Graduate School of Health Sciences, Karadeniz Technical University, Trabzon, Turkiye
- Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, Rize, Turkiye
| | - Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, Trabzon, Turkiye
| |
Collapse
|
6
|
Alesi LR, Nguyen QN, Stringer JM, Winship AL, Hutt KJ. The future of fertility preservation for women treated with chemotherapy. REPRODUCTION AND FERTILITY 2023; 4:RAF-22-0123. [PMID: 37068157 PMCID: PMC10235927 DOI: 10.1530/raf-22-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/17/2023] [Indexed: 04/19/2023] Open
Abstract
Cytotoxic chemotherapies have been a mainstay of cancer treatment, but are associated with numerous systemic adverse effects, including impacts to fertility and endocrine health. Irreversible ovarian damage and follicle depletion are side-effects of chemotherapy that can lead to infertility and premature menopause, both being major concerns of young cancer patients. Notably, many women will proceed with fertility preservation, but unfortunately existing strategies don't entirely solve the problem. Most significantly, oocyte and embryo freezing do not prevent cancer treatment-induced ovarian damage from occurring, which may result in the impairment of long-term hormone production. Unfortunately, loss of endogenous endocrine function is not fully restored by hormone replacement therapy. Additionally, while GnRH agonists are standard care for patients receiving alkylating chemotherapy to lessen the risk of premature menopause, their efficacy is incomplete. The lack of more broadly effective options stems, in part, from our poor understanding of how different treatments damage the ovary. Here, we summarise the impacts of two commonly utilised chemotherapies - cyclophosphamide and cisplatin - on ovarian function and fertility, and discuss the mechanisms underpinning this damage. Additionally, we critically analyse current research avenues in the development of novel fertility preservation strategies, with a focus on fertoprotective agents.
Collapse
Affiliation(s)
- Lauren R Alesi
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Quynh-Nhu Nguyen
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Paediatric Integrated Cancer Service, VIC, Australia
| | - Jessica M Stringer
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Amy L Winship
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Karla J Hutt
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
7
|
Pirzaman AT, Ebrahimi P, Doostmohamadian S, Karim B, Almasi D, Madani F, Moghadamnia A, Kazemi S. 5-Flourouracil-induced toxicity in both male and female reproductive systems: A narrative review. Hum Exp Toxicol 2023; 42:9603271231217988. [PMID: 38064424 DOI: 10.1177/09603271231217988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The chemotherapeutic drug 5-flourouracil (5FU) is frequently used to treat a wide range of solid malignant tumors, such as colorectal, pancreatic, gastric, breast, and head and neck cancers. Its antitumoral effects are achieved by interfering with the synthesis of RNA and DNA and by inhibiting thymidylate synthase in both malignant and non-malignant cells. Therefore, it can be responsible for severe toxicities in crucial body organs, including heart, liver, kidney, and reproductive system. Given the fact that 5FU-induced reproductive toxicity may limit the clinical application of this drug, in this study, we aimed to discuss the main locations and mechanisms of the 5FU-induced reproductive toxicity. Initially, we discussed the impact of 5FU on the male reproductive system, which leads to damage of the seminiferous epithelial cells and the development of vacuoles in Sertoli cells. Although no noticeable changes occur at the histopathological level, there is a decrease in the weight of the prostate. Additionally, 5FU causes significant abnormalities in spermatogenesis, including germ cell shedding, spermatid halo formation, polynucleated giant cells, and decreased sperm count. Finally, in females, 5FU-induced reproductive toxicity is characterized by the presence of atretic secondary and antral follicles with reduced numbers of growing follicles, ovarian weight, and maturity impairment.
Collapse
Affiliation(s)
- Ali Tavakoli Pirzaman
- Student research committee, Health Research Center, Babol University of Medical Science, Babol, Iran
| | - Pouyan Ebrahimi
- Student research committee, Health Research Center, Babol University of Medical Science, Babol, Iran
| | | | - Bardia Karim
- Student research committee, Health Research Center, Babol University of Medical Science, Babol, Iran
| | - Darya Almasi
- Pharmaceutical Sciences Research Center, Health Research Institute, Babol University of Medical Science, Babol, Iran
| | - Fatemeh Madani
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Science, Babol, Iran
| | - Ahmadreza Moghadamnia
- Student research committee, Health Research Center, Babol University of Medical Science, Babol, Iran
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Science, Babol, Iran
| |
Collapse
|
8
|
Reproductive and developmental toxicities of 5-fluorouracil in model organisms and humans. Expert Rev Mol Med 2022; 24:e9. [PMID: 35098910 PMCID: PMC9884763 DOI: 10.1017/erm.2022.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Chemotherapy, as an important clinical treatment, has greatly enhanced survival in cancer patients, but the side effects and long-term sequelae bother both patients and clinicians. 5-Fluorouracil (5-FU) has been widely used as a chemotherapeutic agent in the clinical treatment of various cancers, but several studies showed its adverse effects on reproduction. Reproductive toxicity of 5-FU often associates with developmental block, malformation and ovarian damage in the females. In males, 5-FU administration alters the morphology of sexual organs, the levels of reproductive endocrine hormones and the progression of spermatogenesis, ultimately reducing sperm numbers. Mechanistically, 5-FU exerts its effect through incorporating the active metabolites into nucleic acids directly, or inhibiting thymidylate synthase to disrupt the function of DNA and RNA, leading to profound effects on cellular metabolism and viability. However, some studies suggested that the toxicity of 5-FU on reproduction is reversible and certain drugs used in combination with 5-FU during chemotherapy could protect reproductive systems from 5-FU damage both in females and males. Herein, we summarise the recent findings and discuss underlying mechanisms of the 5-FU-induced reproductive toxicity, providing a reference for future research and clinical treatments.
Collapse
|
9
|
Almeida JZ, Vieira LA, Maside C, Ferreira ACA, Sá NAR, Correia HHV, Araújo VR, Raposo RS, Smitz J, Campello CC, Figueiredo JR, Oriá RB. In vitro cytotoxic effects of 5-Fluorouracil on isolated murine ovarian preantral follicles. Theriogenology 2022; 178:60-66. [PMID: 34775200 DOI: 10.1016/j.theriogenology.2021.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 12/01/2022]
Abstract
5 fluorouracil (5FU), an antineoplastic drug, is often utilized in the therapeutic regimen for several types of cancer, including the hepatoblastoma in children. The effects of 5FU on the population of ovarian preantral follicles, which is the largest oocyte reservoir, is still poorly understood. The integrity of the ovarian preantral follicle pool is important for lifelong fertility. The better understanding of such effects may favor intervention strategies to protect fertility in 5FU-treated children and women coping with cancer. To analyze the effects of 5FU on isolated murine secondary follicles in vitro, ovaries were collected from young mice (28-30 days old), and secondary follicles were isolated and cultured for 12 days in basic culture medium, with or without 5FU at concentrations of 0.3 mM, 1 mM, 3 mM, 10 mM, and 30 mM. In the in vitro study, we analyzed the percentage of morphologically normal follicles, antrum formation, follicular diameter, and hormone production. On day 12, oocytes were recovered for in vitro maturation. 5FU treatment did not alter the percentage of morphologically normal follicles. On day 12, only 1, 10, and 30 mM 5FU significantly reduced the percentage of antrum. From day 4 onwards, 5FU treatments significantly reduced follicle diameter. The meiosis resumption rate was significantly lower in all 5FU treatments. 5FU concentrations ≥3 mM reduced estradiol levels. In conclusion, 5FU does not affect follicular morphology. However, 5FU deleteriously affects follicular growth, estradiol production, and oocyte maturation in isolated ovarian follicles.
Collapse
Affiliation(s)
- Juliana Z Almeida
- Laboratory of Tissue Healing, Ontogeny, and Nutrition (LABICONTE), Department of Morphology, Institute of Biomedicine, School of Medicine, Federal University of Ceara (UFC), 1315 Rua Cel. Nunes de Melo, Fortaleza, CE, 60430-270, Brazil
| | - L A Vieira
- Faculty of Veterinary Medicine, Laboratory of Oocytes and Preantral Follicles Manipulation (LAMOFOPA), State University of Ceara (UECE), 1700 Av. Dr. Silas Munguba, Fortaleza, CE, 60741-000, Brazil
| | - C Maside
- Faculty of Veterinary Medicine, Laboratory of Oocytes and Preantral Follicles Manipulation (LAMOFOPA), State University of Ceara (UECE), 1700 Av. Dr. Silas Munguba, Fortaleza, CE, 60741-000, Brazil
| | - A C A Ferreira
- Faculty of Veterinary Medicine, Laboratory of Oocytes and Preantral Follicles Manipulation (LAMOFOPA), State University of Ceara (UECE), 1700 Av. Dr. Silas Munguba, Fortaleza, CE, 60741-000, Brazil
| | - N A R Sá
- Faculty of Veterinary Medicine, Laboratory of Oocytes and Preantral Follicles Manipulation (LAMOFOPA), State University of Ceara (UECE), 1700 Av. Dr. Silas Munguba, Fortaleza, CE, 60741-000, Brazil
| | - H H V Correia
- Faculty of Veterinary Medicine, Laboratory of Oocytes and Preantral Follicles Manipulation (LAMOFOPA), State University of Ceara (UECE), 1700 Av. Dr. Silas Munguba, Fortaleza, CE, 60741-000, Brazil
| | - V R Araújo
- Faculty of Veterinary Medicine, Laboratory of Oocytes and Preantral Follicles Manipulation (LAMOFOPA), State University of Ceara (UECE), 1700 Av. Dr. Silas Munguba, Fortaleza, CE, 60741-000, Brazil
| | - R S Raposo
- Experimental Biology Center, University of Fortaleza (UNIFOR), 1321 Av. Washington Soares, Fortaleza, CE, 60811-905, Brazil
| | - J Smitz
- Laboratory of Follicle Biology, Center for Reproductive Medicine, UZ Brussel, Laarbeeklaan 101, Brussels, B-1090, Brazil
| | - C C Campello
- Faculty of Veterinary Medicine, Laboratory of Oocytes and Preantral Follicles Manipulation (LAMOFOPA), State University of Ceara (UECE), 1700 Av. Dr. Silas Munguba, Fortaleza, CE, 60741-000, Brazil
| | - J R Figueiredo
- Faculty of Veterinary Medicine, Laboratory of Oocytes and Preantral Follicles Manipulation (LAMOFOPA), State University of Ceara (UECE), 1700 Av. Dr. Silas Munguba, Fortaleza, CE, 60741-000, Brazil.
| | - R B Oriá
- Laboratory of Tissue Healing, Ontogeny, and Nutrition (LABICONTE), Department of Morphology, Institute of Biomedicine, School of Medicine, Federal University of Ceara (UFC), 1315 Rua Cel. Nunes de Melo, Fortaleza, CE, 60430-270, Brazil
| |
Collapse
|
10
|
Naren G, Wang L, Zhang X, Cheng L, Yang S, Yang J, Guo J, Nashun B. The reversible reproductive toxicity of 5-fluorouracil in mice. Reprod Toxicol 2021; 101:1-8. [PMID: 33581264 DOI: 10.1016/j.reprotox.2021.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/15/2021] [Accepted: 02/03/2021] [Indexed: 11/22/2022]
Abstract
5-Fluorouracil (5-FU) is a "cytotoxic" drug used for cancer chemotherapy, which inhibits cells division via affecting DNA synthesis. Although being widely used for cancer treatment, 5-FU has non-negligible side effects. In the present study, the effects of 5-FU on oocyte and early embryonic development were investigated. Multiple intraperitoneal administration of 5-FU (50 mg/kg/day) in female mice resulted in small ovarian size and reduced number of corpus luteum in the ovary, and lead to ovulation failure. However, these defects could be recovered after one week. In vitro experiments further indicated that exposure to 5-FU inhibited oocytes maturation and reduced developmental potential of pre-implantation embryos. Our data suggested that 5-FU has negative impact on ovarian function, oocyte and early embryonic development, but the adverse effect could be reversed after withdrawal of 5-FU administration.
Collapse
Affiliation(s)
- Gerile Naren
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lu Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xiaolei Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lijuan Cheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shuai Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jiajie Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jiaojiao Guo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Buhe Nashun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
11
|
Almeida JZ, Lima LF, Vieira LA, Maside C, Ferreira ACA, Araújo VR, Duarte ABG, Raposo RS, Báo SN, Campello CC, Oliveira LFS, da Costa TP, Abreu JG, Figueiredo JR, Oriá RB. 5-Fluorouracil disrupts ovarian preantral follicles in young C57BL6J mice. Cancer Chemother Pharmacol 2021; 87:567-578. [PMID: 33471160 DOI: 10.1007/s00280-020-04217-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/11/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE 5-Fluorouracil (5-FU), an anti-cancer drug, has been used for hepatoblastoma (HB) chemotherapy in children, who may have impaired ovarian follicle pool reserve with lasting effects to reproduction. Therefore, this study aimed to investigate 5-FU effects on survival, growth, and morphology of ovarian preantral follicles from C57BL6J young mice. METHODS Experiments were carried-out both in vivo and in vitro. Mice were treated with 5-FU injection (450 mg/kg i.p) or saline and sacrificed 3 days after to obtain ovaries for histology and molecular biology. Ovaries for in vitro studies were obtained from unchallenged mice and cultured under basic culture medium (BCM) or BCM plus 5-FU (9.2, 46.1, 92.2 mM). Preantral follicles were classified according to developmental stages, and as normal or degenerated. To assess cell viability, caspase-3 immunostaining was performed. Transcriptional levels for apoptosis (Bax, Bcl2, p53, Bax/Bcl2) and Wnt pathway genes (Wnt2 and Wnt4) were also analyzed. Ultrastructural analyses were carried-out on non-cultured ovaries. In addition, β-catenin immunofluorescence was assessed in mouse ovaries. RESULTS The percentage of all-types normal follicles was significantly lower after 5-FU challenge. A total loss of secondary normal follicles was found in the 5-FU group. The highest 5-FU concentrations reduced the percentage of cultured normal primordial follicles. Large vacuoles were seen in granulosa cells and ooplasm of preantral follicles by electron microscopy. A significantly higher gene expression for Bax and Bax/Bcl2 ratio was seen after 5-FU treatment. A marked reduction in β-catenin immunolabeling was seen in 5-FU-challenged preantral follicles. In the in vitro experiments, apoptotic and Wnt gene transcriptions were significantly altered. CONCLUSION Altogether, our findings suggest that 5-FU can deleteriously affect the ovarian follicle reserve by reducing preantral follicles survival.
Collapse
Affiliation(s)
- Juliana Z Almeida
- Department of Morphology, Institute of Biomedicine, Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, School of Medicine, Federal University of Ceara, 1315 Rua Cel. Nunes de Melo, Fortaleza, CE, 60430-270, Brazil
| | - Laritza F Lima
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceara, Fortaleza, CE, Brazil
| | - Luís A Vieira
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceara, Fortaleza, CE, Brazil
| | - Carolina Maside
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceara, Fortaleza, CE, Brazil
| | - Anna C A Ferreira
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceara, Fortaleza, CE, Brazil
| | - Valdevane R Araújo
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceara, Fortaleza, CE, Brazil
| | - Ana B G Duarte
- Department of Morphology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Ramon S Raposo
- Experimental Biology Core, University of Fortaleza, Fortaleza, CE, Brazil
| | - Sônia N Báo
- Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Cláudio C Campello
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceara, Fortaleza, CE, Brazil
| | - Luiz F S Oliveira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thayse P da Costa
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - José Garcia Abreu
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - José R Figueiredo
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceara, Fortaleza, CE, Brazil
| | - Reinaldo B Oriá
- Department of Morphology, Institute of Biomedicine, Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, School of Medicine, Federal University of Ceara, 1315 Rua Cel. Nunes de Melo, Fortaleza, CE, 60430-270, Brazil.
| |
Collapse
|
12
|
Sarma UC, Winship AL, Hutt KJ. Comparison of methods for quantifying primordial follicles in the mouse ovary. J Ovarian Res 2020; 13:121. [PMID: 33054849 PMCID: PMC7560236 DOI: 10.1186/s13048-020-00724-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/01/2020] [Indexed: 12/29/2022] Open
Abstract
Background Accurate evaluation of primordial follicle numbers in mouse ovaries is an essential endpoint for studies investigating how endogenous and exogenous insults, such as maternal aging and chemotherapy, impact the ovarian reserve. In this study, we compared and contrasted two methods for counting healthy primordial follicles following exposure to cyclophosphamide (75 mg/kg), a well-established model of follicle depletion. The first was the fractionator/optical dissector technique, an unbiased, assumption-free stereological approach for quantification of primordial follicle numbers. While accurate, highly reproducible and sensitive, this method relies on specialist microscopy equipment and software, requires specific fixation, embedding and sectioning parameters to be followed, and is largely a manual process that is tedious and time-consuming. The second method was the more widely used serial section and direct count approach, which is relatively quick and easy. We also compared the impacts of different fixatives, embedding material and section thickness on the overall results for each method. Results Direct counts resulted in primordial follicle numbers that were significantly lower than those obtained by stereology, irrespective of fixation and embedding material. When applied to formalin fixed tissue, the direct count method did not detect differences in follicle numbers between saline and cyclophosphamide treated groups to the same degree of sensitivity as the gold standard stereology method (referred to as the Reference standard). However, when Bouin’s fixative was used, direct counts and stereology were comparable in their ability to detect follicle depletion caused by cyclophosphamide. Conclusions This work indicates that the direct count method can produce similar results to stereology when Bouin’s fixative is used instead of formalin. The findings presented here will assist others to select the most appropriate experimental approach for accurate follicle enumeration, depending on whether the primary objective of the study is to determine absolute primordial follicle numbers or relative differences between groups.
Collapse
Affiliation(s)
- Urooza C Sarma
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Level 3, Building 76, 19 Innovation walk, Clayton, VIC, 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Level 3, Building 76, 19 Innovation walk, Clayton, VIC, 3800, Australia
| | - Amy L Winship
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Level 3, Building 76, 19 Innovation walk, Clayton, VIC, 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Level 3, Building 76, 19 Innovation walk, Clayton, VIC, 3800, Australia
| | - Karla J Hutt
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Level 3, Building 76, 19 Innovation walk, Clayton, VIC, 3800, Australia. .,Department of Anatomy and Developmental Biology, Monash University, Level 3, Building 76, 19 Innovation walk, Clayton, VIC, 3800, Australia.
| |
Collapse
|
13
|
Peng H, Zeng L, Zhu L, Luo S, Xu L, Zeng L, Li J, Liang Q, Geng H. Zuogui Pills inhibit mitochondria-dependent apoptosis of follicles in a rat model of premature ovarian failure. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111855. [PMID: 30953821 DOI: 10.1016/j.jep.2019.111855] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zuogui Pills (ZGP), which is a classical prescription of Traditional Chinese Medicine (TCM), has been reported to be widely used in the treatment of premature ovarian failure (POF). AIM OF THE STUDY To investigate the therapeutic effects of ZGP on the treatment of POF induced by chemotherapy, and elucidate the potential molecular mechanism. MATERIALS AND METHODS Female 8-week-old Sprague-Dawley rats (N = 54) were randomized to six groups, containing the Control group, Model group, three ZGP groups and Triptorelin group which was served as a positive control. The Triptorelin group received triptorelin injection ten days before model establishment by cyclophosphamide. The three ZGP groups (high dose group, medium dose group and low dose group) were given a daily intragastric administration of ZGP at doses of 3.2, 1.6 and 0.8 g/kg for sixty days. We observed the general growth of rats and examed the estrous cycle and the rate of pregnancy, ovarian ultrastructures, follicles and corpora lutea numbers. The serum hormone concentrations were measured by Enzyme-linked immunosorbent assay (ELISA). To explore the molecular mechanism of the effect, gene and protein expression levels of Bax, Bcl-2 and Cyt-c related to apoptosis were determined by quantitative PCR (qPCR), Western Blot and Immunohistochemistry analysis, respectively. RESULTS After treating with ZGP, though the rate of pregnancy showed no significant difference, the estrous cycle, ovarian ultrastructures, numbers of follicles and corpora lutea were improved significantly. And ZGP led to a significant lower concentration of follicle stimulating hormone (FSH) in the serum, and the concentration of oestradiol (E2) was increased. Furthermore, a significant downregulation of Bax, cytochrome c (Cyt-c), and upregulation of B cell lymphoma/leukemia-2 (Bcl-2) both on gene and protein levels were observed after the administration with ZGP. And effects showed a positive correlation with the dosages. CONCLUSIONS Our study suggested that ZGP exerted significant effect on POF, which was meditated by inhibiting mitochondria-dependent apoptosis in the follicles.
Collapse
Affiliation(s)
- Huijuan Peng
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lihua Zeng
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ling Zhu
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Songping Luo
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Limian Xu
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lei Zeng
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jing Li
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qunying Liang
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hongling Geng
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
14
|
Stringer JM, Swindells EOK, Zerafa N, Liew SH, Hutt KJ. Multidose 5-Fluorouracil is Highly Toxic to Growing Ovarian Follicles in Mice. Toxicol Sci 2018; 166:97-107. [DOI: 10.1093/toxsci/kfy189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jessica M Stringer
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Elyse O K Swindells
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Nadeen Zerafa
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Seng H Liew
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Karla J Hutt
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|