1
|
Wang X, Liu Y, Wang J, Lu X, Guo Z, Lv S, Sun Z, Gao T, Gao F, Yuan J. Mitochondrial Quality Control in Ovarian Function: From Mechanisms to Therapeutic Strategies. Reprod Sci 2024:10.1007/s43032-024-01634-4. [PMID: 38981995 DOI: 10.1007/s43032-024-01634-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Mitochondrial quality control plays a critical role in cytogenetic development by regulating various cell-death pathways and modulating the release of reactive oxygen species (ROS). Dysregulated mitochondrial quality control can lead to a broad spectrum of diseases, including reproductive disorders, particularly female infertility. Ovarian insufficiency is a significant contributor to female infertility, given its high prevalence, complex pathogenesis, and profound impact on women's health. Understanding the pathogenesis of ovarian insufficiency and devising treatment strategies based on this understanding are crucial. Oocytes and granulosa cells (GCs) are the primary ovarian cell types, with GCs regulated by oocytes, fulfilling their specific energy requirements prior to ovulation. Dysregulation of mitochondrial quality control through gene knockout or external stimuli can precipitate apoptosis, inflammatory responses, or ferroptosis in both oocytes and GCs, exacerbating ovarian insufficiency. This review aimed to delineate the regulatory mechanisms of mitochondrial quality control in GCs and oocytes during ovarian development. This study highlights the adverse consequences of dysregulated mitochondrial quality control on GCs and oocyte development and proposes therapeutic interventions for ovarian insufficiency based on mitochondrial quality control. These insights provide a foundation for future clinical approaches for treating ovarian insufficiency.
Collapse
Affiliation(s)
- Xiaomei Wang
- College of Basic Medical, Jining Medical University, Jining, China
| | - Yuxin Liu
- College of Second Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Jinzheng Wang
- College of Second Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Xueyi Lu
- College of Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Zhipeng Guo
- College of Second Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Shenmin Lv
- College of Second Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Zhenyu Sun
- College of Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Tan Gao
- College of Second Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Fei Gao
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Jinxiang Yuan
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China.
| |
Collapse
|
2
|
Roach CM, Mayorga EJ, Baumgard LH, Ross JW, Keating AF. Zearalenone exposure differentially affects the ovarian proteome in pre-pubertal gilts during thermal neutral and heat stress conditions. J Anim Sci 2024; 102:skae115. [PMID: 38666409 PMCID: PMC11217906 DOI: 10.1093/jas/skae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/23/2024] [Indexed: 07/04/2024] Open
Abstract
Zearalenone (ZEN), a nonsteroidal estrogenic mycotoxin, causes endocrine disruption and porcine reproductive dysfunction. Heat stress (HS) occurs when exogenous and metabolic heat accumulation exceeds heat dissipation. Independently, HS and ZEN both compromise swine reproduction; thus, the hypothesis investigated was two-pronged: that ZEN exposure would alter the ovarian proteome and that these effects would differ in thermal neutral (TN) and HS pigs. Pre-pubertal gilts (n = 38) were fed ad libitum and assigned to either (TN: 21.0 ± 0.1 °C) or HS (12 h cyclic temperatures of 35.0 ± 0.2 °C and 32.2 ± 0.1 °C). Within the TN group, a subset of pigs were pair-fed (PF) to the amount of feed that the HS gilts consumed to eliminate the confounding effects of dissimilar nutrient intake. All gilts orally received a vehicle control (CT) or ZEN (40 μg/kg/BW) resulting in six treatment groups: thermoneutral (TN) vehicle control (TC; n = 6); TN ZEN (TZ; n = 6); PF vehicle control (PC; n = 6); PF ZEN (PZ; n = 6); HS vehicle control (HC; n = 7); or HS ZEN (HZ; n = 7) for 7 d. When compared to the TC pigs, TZ pigs had 45 increased and 39 decreased proteins (P ≤ 0.05). In the HZ pigs, 47 proteins were increased and 61 were decreased (P ≤ 0.05). Exposure to ZEN during TN conditions altered sec61 translocon complex (40%), rough endoplasmic reticulum membrane (8.2%), and proteasome complex (5.4%), asparagine metabolic process (0.60%), aspartate family amino acid metabolic process (0.14%), and cellular amide metabolic process (0.02%) pathways. During HS, ZEN affected cellular pathways associated with proteasome core complex alpha subunit complex (0.23%), fibrillar collagen trimer (0.14%), proteasome complex (0.05%), and spliceosomal complex (0.03%). Thus, these data identify ovarian pathways altered by ZEN exposure and suggest that the molecular targets of ZEN differ in TN and HS pigs.
Collapse
Affiliation(s)
- Crystal M Roach
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
3
|
Idrees M, Kumar V, Khan AM, Joo MD, Lee KW, Sohn SH, Kong IK. Cycloastragenol activation of telomerase improves β-Klotho protein level and attenuates age-related malfunctioning in ovarian tissues. Mech Ageing Dev 2023; 209:111756. [PMID: 36462538 DOI: 10.1016/j.mad.2022.111756] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022]
Abstract
Age-related deterioration in the reproductive capacity of women is directly related to the poor developmental potential of ovarian follicles. Although telomerase plays a key role in female fertility, TERT-targeting therapeutic strategies for age-related female infertility have yet to be investigated. This study elucidated the effect of Telomerase activation on mice ovaries and more specifically on Klb (β-Klotho) gene expression, which is linked to ageing, female hormonal regulation, and cyclicity. The homology-based 3D model of hTERT was used to predict its binding mode of Cycloastragenol (CAG) using molecular docking and molecular dynamics simulations. Based on docking score, simulation behavior, and interaction with hTERT residues it was observed that CAG could bind with the hTERT model. CAG treatment to primary cultured mouse granulosa cells and activation of telomerase was examined via telomerase activity assay (Mouse TE (telomerase) ELISA Kit) and telomere length by quantitative fluorescence in situ hybridization. CAG mediated telomerase also significantly improved β-Klotho protein level in the aged granulosa cells. To demonstrate that β-Klotho is telomerase dependent, the TERT was knocked down via siRNA in granulosa cells and protein level of β-Klotho was examined. Furthermore, CAG-mediated telomerase activation significantly enhanced the level of Klb and recovered ovarian follicles in the D-galactose (D-gal)-induced ovarian ageing mouse model. Moreover, Doxorubicin-induced ovarian damage, which changes ovarian hormones, and inhibit follicular growth was successfully neutralized by CAG activated telomerase and its recovery of β-Klotho level. In conclusion, TERT dependent β-Klotho regulation in ovarian tissues is one of the mechanisms, which can overcome female infertility.
Collapse
Affiliation(s)
- Muhammad Idrees
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea.
| | - Vikas Kumar
- Division of Life Sciences, Department of Bio & Medical Big Data (BK21 Four), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea.
| | - Abdul Majid Khan
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea.
| | - Myeong-Don Joo
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea.
| | - Keun-Woo Lee
- Division of Life Sciences, Department of Bio & Medical Big Data (BK21 Four), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea.
| | - Sea-Hwan Sohn
- Department of Animal Science and Biotechnology, Gyeongsang National University, Jinju 52725, Gyeongnam Province, Republic of Korea.
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea; Institute of Agriculture and Life Science, Gyeongsang National University, Gyeongnam Province, Republic of Korea; The King Kong Corp. Ltd., Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea.
| |
Collapse
|
4
|
Wang C, Zhang Y. Endoplasmic Reticulum Stress: A New Research Direction for Polycystic Ovary Syndrome? DNA Cell Biol 2022; 41:356-367. [PMID: 35353637 DOI: 10.1089/dna.2021.1050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common gynecological endocrine disorders, with sporadic ovulation, excessive androgens, and polycystic ovarian changes as the main clinical manifestations. Due to the high heterogeneity of its clinical manifestations, the discussion on its pathogenesis has not been unified. Current research has found that genetic factors, hyperandrogenism, chronic inflammation and oxidative stress, insulin resistance, and obesity are strongly associated with PCOS. Recently, when studying the specific mechanisms of the abovementioned factors in PCOS, the biological response process of endoplasmic reticulum stress (ERS) has gradually come to researchers' attention, and several studies have confirmed the involvement of ERS in the pathogenesis of PCOS and the improvement of a series of pathological manifestations of PCOS after the application of ERS inhibitors, which may be a new entry point for the treatment of PCOS. In this article, we review the relationship between ERS and various pathogenic factors of PCOS.
Collapse
Affiliation(s)
- Chengzhe Wang
- Department of Gynecology of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan City, China
| | - Yingjie Zhang
- Department of Gynecology of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan City, China
| |
Collapse
|
5
|
Female fertility: The role of mitochondrial protease LONP1 in oocyte development and survival. EBioMedicine 2022; 77:103881. [PMID: 35180556 PMCID: PMC8857585 DOI: 10.1016/j.ebiom.2022.103881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
|
6
|
Zhou Z, Tu Z, Zhang J, Tan C, Shen X, Wan B, Li Y, Wang A, Zhao L, Hu J, Ma N, Zhou J, Chen L, Song Y, Lu W. Follicular Fluid-Derived Exosomal MicroRNA-18b-5p Regulates PTEN-Mediated PI3K/Akt/mTOR Signaling Pathway to Inhibit Polycystic Ovary Syndrome Development. Mol Neurobiol 2022; 59:2520-2531. [PMID: 35092573 DOI: 10.1007/s12035-021-02714-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022]
Abstract
Small RNA sequences in follicular fluid (FF)-derived exosomes (extracellular vesicles contain proteins, DNA, and RNA) vitally function in the development of polycystic ovary syndrome (PCOS). It has been identified that microRNA (miR)-18b-5p is one of miRs that differ between control and PCOS women that passed the false discovery rate, and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is an important modifier of biological functions of ovarian granulosa cells (GCs) in PCOS. However, whether miR-18b-5p could functionally mediate the progression of PCOS via PTEN was not clarified completely, which was the issue we wanted to solve in our research. FF-derived exosomes were isolated using an extraction kit. KGN cells were co-cultured with miR-18b-5p-modified exosomes or transfected with a PTEN-related vector. After treatment, cell proliferation and apoptosis were observed. A rat model of PCOS was established by letrozole and then injected with miR-18b-5p-modified exosomes. Then, serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone, and estradiol (E2) levels in PCOS rats were measured. miR-18b-5p, PTEN, and phosphatidylinositol 3 kinases/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway-related genes were tested. In PCOS patients, miR-18b-5p was downregulated, and PTEN was highly expressed in FF and GCs. PTEN knockdown increased KGN cell proliferation and limited apoptosis. FF-derived exosomes stimulated proliferation and suppressed apoptosis of KGN cells; decreased FSH, LH, and testosterone; and increased E2 in PCOS rats. Upregulating miR-18b-5p further enhanced the inhibitory effects of exosomes on suppressing the progression of PCOS. miR-18b-5p targeted PTEN and could activate PI3K/Akt/mTOR pathway. miR-18b-5p produced by FF-derived exosomes reduces PTEN expression and promotes the activation of the PI3K/Akt/mTOR signaling pathway to improve PCOS. Based on that, circulating miR-18b-5p levels can contribute to the progression of PCOS complications.
Collapse
Affiliation(s)
- Zhi Zhou
- Reproductive Medical Center, Hainan Women and Children's Medical Center, No.75 Longkun South Road, Haikou, 570206, Hainan, China
| | - Zhihua Tu
- Reproductive Medical Center, Hainan Women and Children's Medical Center, No.75 Longkun South Road, Haikou, 570206, Hainan, China
| | - Juan Zhang
- Reproductive Medical Center, Zhuzhou Central Hospital, Zhuzhou, 412007, Hunan, China
| | - Can Tan
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Xiaoyong Shen
- Yikon Genomics Co. Ltd., Suzhou, 215000, Jiangsu, China
| | - Bangbei Wan
- Reproductive Medical Center, Hainan Women and Children's Medical Center, No.75 Longkun South Road, Haikou, 570206, Hainan, China
| | - Yejuan Li
- Reproductive Medical Center, Hainan Women and Children's Medical Center, No.75 Longkun South Road, Haikou, 570206, Hainan, China
| | - Anguo Wang
- Reproductive Medical Center, Hainan Women and Children's Medical Center, No.75 Longkun South Road, Haikou, 570206, Hainan, China
| | - Liqiang Zhao
- Reproductive Medical Center, Hainan Women and Children's Medical Center, No.75 Longkun South Road, Haikou, 570206, Hainan, China
| | - Jiajia Hu
- Reproductive Medical Center, Hainan Women and Children's Medical Center, No.75 Longkun South Road, Haikou, 570206, Hainan, China
| | - Ning Ma
- Reproductive Medical Center, Hainan Women and Children's Medical Center, No.75 Longkun South Road, Haikou, 570206, Hainan, China
| | - Jing Zhou
- Reproductive Medical Center, Hainan Women and Children's Medical Center, No.75 Longkun South Road, Haikou, 570206, Hainan, China
| | - Lin Chen
- Reproductive Medical Center, Hainan Women and Children's Medical Center, No.75 Longkun South Road, Haikou, 570206, Hainan, China
| | - Yanqin Song
- Reproductive Medical Center, Hainan Women and Children's Medical Center, No.75 Longkun South Road, Haikou, 570206, Hainan, China
| | - Weiying Lu
- Reproductive Medical Center, Hainan Women and Children's Medical Center, No.75 Longkun South Road, Haikou, 570206, Hainan, China.
| |
Collapse
|
7
|
Song L, Yu J, Zhang D, Li X, Chen L, Cai Z, Yu C. Androgen Excess Induced Mitochondrial Abnormality in Ovarian Granulosa Cells in a Rat Model of Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2022; 13:789008. [PMID: 35370945 PMCID: PMC8967935 DOI: 10.3389/fendo.2022.789008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/14/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Androgen excess could profoundly lead to follicular dysplasia or atresia, and finally result in polycystic ovary syndrome (PCOS); however, the exact mechanism remains to be fully elucidated. METHODS PCOS model rats were induced by dehydroepiandrosterone, and their fertility was assessed. The ovarian granulosa cells (GCs) from matured follicles of PCOS model rats were collected and identified by immunofluorescence. The mitochondrial ultrastructure was observed by transmission electron microscope and the mitochondrial function was determined by detecting the adenosine triphosphate (ATP) content and mtDNA copy number. Besides, the expressions of respiratory chain complexes and ATP synthases in relation to mitochondrial function were analyzed. RESULTS The PCOS model rats were successfully induced, and their reproductive outcomes were obviously adverse. The GCs layer of the ovarian was apparently cut down and the mitochondrial ultrastructure of ovarian GCs was distinctly destroyed. The ATP content and mtDNA copy number of ovarian GCs in PCOS model rats were greatly reduced, and the expressions of NDUFB8 and ATP5j were significantly down-regulated without obvious deletion of mtDNA 4834-bp. CONCLUSIONS Androgen excess could damage mitochondrial ultrastructure and function of GCs in rat ovary by down-regulating expression of NDUFB8 and ATP5j in PCOS.
Collapse
Affiliation(s)
- Linyi Song
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Chinese People’s Liberation Army (PLA) Naval Medical University, Shanghai, China
- Department of Traditional Chinese Medicine, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Jin Yu
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Chinese People’s Liberation Army (PLA) Naval Medical University, Shanghai, China
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Danying Zhang
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Chinese People’s Liberation Army (PLA) Naval Medical University, Shanghai, China
| | - Xi Li
- Department of Gynecology of Traditional Chinese Medicine, Integrated Traditional Chinese and Western Medicine of Jiangsu Hospital, Chinese Academy of Medical Sciences, Nanjing, China
| | - Lu Chen
- Department of traditional Chinese and Western medicine, Zhejiang Association of Traditional Chinese Medicine, Hangzhou, China
| | - Zailong Cai
- Department of Biochemistry and Molecular Biology, Chinese People’s Liberation Army (PLA) Naval Medical University, Shanghai, China
- *Correspondence: Chaoqin Yu, ; Zailong Cai,
| | - Chaoqin Yu
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Chinese People’s Liberation Army (PLA) Naval Medical University, Shanghai, China
- *Correspondence: Chaoqin Yu, ; Zailong Cai,
| |
Collapse
|
8
|
Sun L, Tian H, Xue S, Ye H, Xue X, Wang R, Liu Y, Zhang C, Chen Q, Gao S. Circadian Clock Genes REV-ERBs Inhibits Granulosa Cells Apoptosis by Regulating Mitochondrial Biogenesis and Autophagy in Polycystic Ovary Syndrome. Front Cell Dev Biol 2021; 9:658112. [PMID: 34422794 PMCID: PMC8374745 DOI: 10.3389/fcell.2021.658112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrinopathy with complex pathophysiology that is a common cause of anovulatory infertility in women. Although the disruption of circadian rhythms is indicated in PCOS, the role of the clock in the etiology of these pathologies has yet to be appreciated. The nuclear receptors REV-ERBα and REV-ERBβ are core modulators of the circadian clock and participate in the regulation of a diverse set of biological functions. However, in PCOS, the expression of REV-ERBs and their effects remain unclear. Here, we demonstrate that the levels of REV-ERBα and REV-ERBβ expression were lower in the granulosa cells of PCOS patients than in control subjects. In vitro, we found that the overexpression of REV-ERBα and REV-ERBβ, and their agonist SR9009, promoted the expression of mitochondrial biosynthesis genes PGC-1α, NRF1, and TFAM and inhibited autophagy in KGN cells. Our results also indicate that REV-ERBα and REV-ERBβ can inhibit apoptosis in granulosa cells and promote proliferation. Importantly, the REV-ERB agonist SR9009 ameliorates abnormal follicular development by promoting mitochondrial biosynthesis and inhibiting autophagy in a mouse PCOS model. This allows us to speculate that SR9009 has potential as a therapeutic agent for the treatment of PCOS.
Collapse
Affiliation(s)
- Lihua Sun
- Department of Reproductive Medicine Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hui Tian
- Department of Reproductive Medicine Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Songguo Xue
- Department of Reproductive Medicine Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongjuan Ye
- Department of Reproductive Medicine Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xue Xue
- Department of Reproductive Medicine Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rongxiang Wang
- Department of Reproductive Medicine Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Liu
- Department of Reproductive Medicine Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Caixia Zhang
- Department of Reproductive Medicine Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiuju Chen
- Department of Assisted Reproduction, Shanghai Ninth Peoples Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Si C, Wang N, Wang M, Liu Y, Niu Z, Ding Z. TMT-based proteomic and bioinformatic analyses of human granulosa cells from obese and normal-weight female subjects. Reprod Biol Endocrinol 2021; 19:75. [PMID: 34016141 PMCID: PMC8135161 DOI: 10.1186/s12958-021-00760-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/10/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Increasing evidence supports a relationship between obesity and either infertility or subfertility in women. Most previous omics studies were focused on determining if the serum and follicular fluid expression profiles of subjects afflicted with both obesity-related infertility and polycystic ovary syndrome (PCOS) are different than those in normal healthy controls. As granulosa cells (GCs) are essential for oocyte development and fertility, we determined here if the protein expression profiles in the GCs from obese subjects are different than those in their normal-weight counterpart. METHODS GC samples were collected from obese female subjects (n = 14) and normal-weight female subjects (n = 12) who were infertile and underwent in vitro fertilization (IVF) treatment due to tubal pathology. A quantitative approach including tandem mass tag labeling and liquid chromatography tandem mass spectrometry (TMT) was employed to identify differentially expressed proteins. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were then conducted to interrogate the functions and pathways of identified proteins. Clinical, hormonal, and biochemical parameters were also analyzed in both groups. RESULTS A total of 228 differentially expressed proteins were noted, including 138 that were upregulated whereas 90 others were downregulated. Significant pathways and GO terms associated with protein expression changes were also identified, especially within the mitochondrial electron transport chain. The levels of free fatty acids in both the serum and follicular fluid of obese subjects were significantly higher than those in matched normal-weight subjects. CONCLUSIONS In GCs obtained from obese subjects, their mitochondria were damaged and the endoplasmic reticulum stress response was accompanied by dysregulated hormonal synthesis whereas none of these changes occurred in normal-weight subjects. These alterations may be related to the high FFA and TG levels detected in human follicular fluid.
Collapse
Affiliation(s)
- Chenchen Si
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China
- Department of Gynecology and Obstetrics, Reproductive Medical Center, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, 200025, Shanghai, China
| | - Nan Wang
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China
| | - Mingjie Wang
- Department of Gynecology and Obstetrics, Reproductive Medical Center, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, 200025, Shanghai, China
| | - Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China
| | - Zhihong Niu
- Department of Gynecology and Obstetrics, Reproductive Medical Center, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, 200025, Shanghai, China.
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China.
| |
Collapse
|
10
|
Zeng X, Huang Q, Long SL, Zhong Q, Mo Z. Mitochondrial Dysfunction in Polycystic Ovary Syndrome. DNA Cell Biol 2020; 39:1401-1409. [PMID: 32077751 DOI: 10.1089/dna.2019.5172] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common female reproductive metabolisms. It is an endocrine disease that affects reproductive women and often exhibits with hyperandrogenemia, insulin resistance (IR), low inflammation, and an increased risk of type 2 diabetes mellitus, metabolic syndrome, and cardiovascular events such as hypertension and dyslipidemia in patients. However, the molecular mechanism of PCOS is still unclear. Recently, an increasing number of studies have shown that the oxidative stress induced by mitochondrial dysfunction has negative effects on IR, lipid metabolism, and follicular development, suggesting that mitochondrial dysfunction plays an essential role in the development of PCOS. Abnormal mitochondrial DNA copy number in patients with PCOS, and mitochondrial gene mutations, has been the focus of research in recent years, and functional mitochondrial diseases have been gradually accepted as a related factor in PCOS. This review is intended to summarize and discuss previous and recent studies and findings on the connections between mitochondrial dysfunction and PCOS.
Collapse
Affiliation(s)
- Xin Zeng
- Department of Histology and Embryology, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qin Huang
- Department of Histology and Embryology, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shuang Lian Long
- Department of Histology and Embryology, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qiaoqing Zhong
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zhongcheng Mo
- Department of Histology and Embryology, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Institute of Basic Medical Sciences, Guilin Medical University, Guangxi, Guilin, China
| |
Collapse
|
11
|
Zhao WP, Wang HW, Liu J, Zhang ZH, Zhu SQ, Zhou BH. Mitochondrial respiratory chain complex abnormal expressions and fusion disorder are involved in fluoride-induced mitochondrial dysfunction in ovarian granulosa cells. CHEMOSPHERE 2019; 215:619-625. [PMID: 30342406 DOI: 10.1016/j.chemosphere.2018.10.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/03/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
Excessive fluoride intake has a strong female reproductive toxicity, which can result in follicular developmental dysplasia and decrease oocytes developmental potential. The underlying mechanisms of fluoride-induced mitochondrial dysfunction in ovarian granulosa cells remain largely unknown. In this study, the ultrastructure changes of mitochondria and DNA damage in ovarian granulosa cells were observed under transmission electron microscope and TUNEL staining. Then, the ATP content and ROS level in granulosa cells were measured. The expression of mitochondrial fusion proteins and mitochondrial respiratory chain complexes, including OPA1 and Mfn1, and NDUFV2, SDHA and CYC1, in the ovarian tissues were measured by immunohistochemistry, Western blot and Quantitative real-time PCR analyses. The expression of ATP5j and ATP5h in the ovarian tissues was also measured. Results show that fluoride treatment considerably damages mitochondrial ultrastructure and enhances the apoptosis of granulosa cells. The ATP content greatly decreased, whereas the ROS level increased after fluoride treatment. The expression level of Mfn1 in the ovarian tissue was up-regulated, whereas OPA1 expression had no significant change. The expression levels of NDUFV2, SDHA and CYC1 were considerably up-regulated, and the expression of ATP5j and ATP5h were down-regulated after fluoride treatment. In summary, the damage in the mitochondrial ultrastructure, ATP content decrease, ROS level increase and the abnormal expression of OPA1, Mfn1, NDUFV2, SDHA, CYC1, ATP5j and ATP5h in ovary tissue are closely associated with fluoride-induced mitochondrial dysfunction, which might be responsible for the follicular developmental dysplasia and the potential decrease in oocyte development induced by fluoride in female mice.
Collapse
Affiliation(s)
- Wen-Peng Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, PR China.
| | - Hong-Wei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, PR China.
| | - Jing Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, PR China.
| | - Zi-Hao Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, PR China.
| | - Shi-Quan Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, PR China.
| | - Bian-Hua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, PR China.
| |
Collapse
|