1
|
Farhat S, Shuaib A, Bukhari SMS, Shah FA, Naseeb IK, Ahmad S, Alamoudi MK, Shah M. Ghrelin's modulation of growth hormone secretagogue receptors in primary glioblastoma and meningioma: A comprehensive in-vitro study. Biochem Biophys Res Commun 2025; 751:151397. [PMID: 39914147 DOI: 10.1016/j.bbrc.2025.151397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/17/2025]
Abstract
Growth hormone secretagogue receptors (GHSR), which bind peptide hormone ghrelin, are found in numerous malignancies and healthy tissues including the brain. The objective of this study was to investigate if ghrelin has a proliferative or anti-proliferative effect on primary cell lines isolated from brain tumors. METHODS Following craniotomy, tumor tissue samples were promptly collected, tumor cell lines were generated, and a range of concentration-dependent effects of ghrelin were assessed using immunofluorescence, flow cytometry, growth assays, and scratch assays. The expression of the Ki-67 protein was assessed using a Ki-67 monoclonal antibody, while the GHSR1 antibody was employed to quantify the GHSR in tumor cells. RESULTS An increase in cell proliferation was observed at 20 nano Molar (nM) ghrelin concentration, while a concentration surpassing 20 nM exhibited antiproliferative effects. Tumor cell migration and proliferation were enhanced when ghrelin at a concentration of 20 nM was applied to a 6-well plate; induced gaps were filled within three days following the scratch assay. Immunofluorescence assay revealed that cells treated with 20 nM ghrelin had high Ki-67 expression, low GHSR expression, and decreased apoptosis compared to control cells. Conversely, cells treated with 50 nM ghrelin had higher levels of GHSR expression and decreased Ki-67 expression, while overall increased apoptosis. CONCLUSIONS We conclude that ghrelin exhibited a proliferative effect on tumor cells in low concentrations (up to 20 nM), whereas a higher concentration of 50 nM and above showed an anti-proliferative effect. Therefore, we suggest that, for therapeutic purposes, caution should be taken while deciding the dose of ghrelin.
Collapse
Affiliation(s)
- Sahar Farhat
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Ambar Shuaib
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | | | - Fawad Ali Shah
- Department of Pharmacology and Toxicology, College of Pharmacy Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ishaq Khan Naseeb
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Shahab Ahmad
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Mariam K Alamoudi
- Department of Pharmacology and Toxicology, College of Pharmacy Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohsin Shah
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan.
| |
Collapse
|
2
|
Luan J, Feng X, Du Y, Yang D, Geng C. Medium-chain fatty acid triglycerides improve feed intake and oxidative stress of finishing bulls by regulating ghrelin concentration and gastrointestinal tract microorganisms and rumen metabolites. MICROBIOME 2024; 12:230. [PMID: 39511583 PMCID: PMC11542207 DOI: 10.1186/s40168-024-01946-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND As a feed additive, medium-chain fatty acids (MCFAs)/medium-chain fatty acid triglycerides (MCTs) have been used in ruminant production, but mostly added in the form of mixed esters. Studies have shown that MCTs may have a positive effect on feed intake or oxidative stress in animals, but it is unclear which MCT could play a role, and the mechanism has not been elucidated. In this study, the effects of individual MCT on growth performance, serum intake-related hormones, and oxidative stress indices in finishing bulls were investigated and further studied the effects of MCT supplementation on gastrointestinal tract bacteria and rumen fluid metabolomics. RESULTS Four ruminally fistulated Yanbian cattle (bulls) were selected in 4 × 4 Latin square designs and allocated to four treatment groups: a control group (CON) fed a basal diet (total mixed ration, TMR), three groups fed a basal diet supplemented with 60 g/bull/day glycerol monocaprylin (GMC, C8), glycerol monodecanoate (GMD, C10), and glycerol monolaurate (GML, C12), respectively. Compared with the CON group, GMD tended to increase the dry matter intake (DMI) of finishing bulls (P = 0.069). Compared with the CON group, GMD significantly increased the concentration of ghrelin O-acyl transferase (GOAT), total ghrelin (TG), acylated ghrelin (AG), and orexins (P < 0.05) and significantly decreased the concentrations of hydrogen peroxide (H2O2), malondialdehyde, reactive oxygen species (ROS), and lipopolysaccharides (LPS) in the serum of finishing bulls (P < 0.05). Compared with the CON group, GMD and GML significantly increased the concentrations of total antioxidant capacity (T-AOC), catalase, glutathione peroxidase (GSH-PX), glutathione reductase (GR), and nitric oxide (NO) in the serum of finishing bulls (P < 0.05). Compared with the CON group, there were 5, 14, and 6 significantly different bacteria in the rumen digesta in the C8, C10, and C12 groups, respectively; there were 3, 10, and 5 significantly different bacteria in the rumen fluid in the C8, C10, and C12 groups, respectively; and only one differential bacteria (genus level) in the feces among the four treatment groups. Compared with the CON group, there were 3, 14, and 15 significantly differential metabolites identified under positive ionization mode in the C8, C10, and C12 groups, respectively, while under negative ionization mode were 3, 11 and 14, respectively. Correlation analysis showed that there was a significant correlation between DMI, GOAT, AG, GSH-PX, LPS, gastrointestinal tract bacteria, and rumen fluid metabolites. CONCLUSIONS Our findings revealed that different types of MCTs have different application effects in ruminants. Among them, GMD may improve the feed intake of finishing bulls by stimulating the secretion of AG. GMD and GML may change gastrointestinal tract microorganisms and produce specific rumen metabolites to improve the oxidative stress of finishing bulls, and ghrelin may also be involved. This study enlightens the potential mechanisms by which MCT improves feed intake and oxidative stress in finishing bulls. Video Abstract.
Collapse
Affiliation(s)
- Jiaming Luan
- Agricultural College, Yanbian University, Yanji, 133002, China
| | - Xin Feng
- Agricultural College, Yanbian University, Yanji, 133002, China
| | - Yunlong Du
- Agricultural College, Yanbian University, Yanji, 133002, China
| | - Dongxu Yang
- Agricultural College, Yanbian University, Yanji, 133002, China
| | - Chunyin Geng
- Agricultural College, Yanbian University, Yanji, 133002, China.
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
3
|
George BT, Jhancy M, Dube R, Kar SS, Annamma LM. The Molecular Basis of Male Infertility in Obesity: A Literature Review. Int J Mol Sci 2023; 25:179. [PMID: 38203349 PMCID: PMC10779000 DOI: 10.3390/ijms25010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The rising incidence of obesity has coincided with rising levels of poor reproductive outcomes. The molecular basis for the association of infertility in obese males is now being explained through various mechanisms. Insulin resistance, hyperglycemia, and changes in serum and gonadal concentrations of adipokines, like leptin, adiponectin, resistin, and ghrelin have been implicated as causes of male infertility in obese males. The effects of obesity and hypogonadism form a vicious cycle whereby dysregulation of the hypothalamic-pituitary-testicular axis-due to the effect of the release of multiple mediators, thus decreasing GnRH release from the hypothalamus-causes decreases in LH and FSH levels. This leads to lower levels of testosterone, which further increases adiposity because of increased lipogenesis. Cytokines such as TNF-α and interleukins, sirtuins, and other inflammatory mediators like reactive oxygen species are known to affect fertility in obese male adults. There is evidence that parental obesity can be transferred through subsequent generations to offspring through epigenetic marks. Thus, negative expressions like obesity and infertility have been linked to epigenetic marks being altered in previous generations. The interesting aspect is that these epigenetic expressions can be reverted by removing the triggering factors. These positive modifications are also transmitted to subsequent generations.
Collapse
Affiliation(s)
- Biji Thomas George
- Department of Surgery, RAK College of Medical Sciences, RAKMHSU, Ras al Khaimah P.O. Box 11172, United Arab Emirates
| | - Malay Jhancy
- Department of Pediatrics, RAK College of Medical Sciences, RAKMHSU, Ras al Khaimah P.O. Box 11172, United Arab Emirates; (M.J.); (S.S.K.)
| | - Rajani Dube
- Department of Obstetrics and Gynecology, RAK College of Medical Sciences, RAKMHSU, Ras al Khaimah P.O. Box 11172, United Arab Emirates;
| | - Subhranshu Sekhar Kar
- Department of Pediatrics, RAK College of Medical Sciences, RAKMHSU, Ras al Khaimah P.O. Box 11172, United Arab Emirates; (M.J.); (S.S.K.)
| | - Lovely Muthiah Annamma
- Department of Clinical Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| |
Collapse
|
4
|
Adegoke EO, Rahman MS, Amjad S, Pang WK, Ryu DY, Park YJ, Pang MG. Environmentally relevant doses of endocrine disrupting chemicals affect male fertility by interfering with sertoli cell glucose metabolism in mice. CHEMOSPHERE 2023; 337:139277. [PMID: 37364641 DOI: 10.1016/j.chemosphere.2023.139277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/02/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
The growing global deterioration in several aspects of human health has been partly attributed to hazardous effects of endocrine-disrupting chemicals (EDCs) exposure. Therefore, experts and government regulatory agencies have consistently advocated for studies on the combined effects of EDCs that model human exposure to multiple environmental chemicals in real life. Here, we investigated how low concentrations of bisphenol A (BPA), and phthalates compounds affect the Sertoli cell glucose uptake/lactate production in the testis and male fertility. An EDC mixture containing a detected amount of each chemical compound in humans, called daily exposure (DE), and DE increased in magnitude by 25 (DE25), 250 (DE250), and 2500 (DE2500), and corn oil (control) were administered for six weeks to male mice. We found that DE activated estrogen receptor beta (Erβ) and glucose-regulated protein 78 (Grp 78) and disrupted the estradiol (E2) balance. In addition, DE25, DE250, and DE2500 doses of the EDC mixture via binding with Sertoli cells' estrogen receptors (ERs) inhibited the glucose uptake and lactate production processes by downregulating glucose transporters (GLUTs) and glycolytic enzymes. As a result, endoplasmic reticulum stress (ERS), marked by unfolded protein response (UPR) activation, was induced. The accompanying upregulation of activating transcription factor 4 (ATF4), inositol requiring enzyme-1 (IRE1), C/EBP homologous protein (CHOP), and mitogen-activated protein kinase (MAPK) signaling promoted antioxidant depletion, testicular cell apoptosis, abnormal regulation of the blood-testis barrier, and decreased sperm count. Therefore, these findings suggest that human and wildlife exposure to multiple environmental chemicals can produce a wide range of reproductive health complications in male mammals.
Collapse
Affiliation(s)
- Elikanah Olusayo Adegoke
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Shehreen Amjad
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Mung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
5
|
Ma Y, Zhang H, Guo W, Yu L. Potential role of ghrelin in the regulation of inflammation. FASEB J 2022; 36:e22508. [PMID: 35983825 DOI: 10.1096/fj.202200634r] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 11/11/2022]
Abstract
Several diseases are caused or progress due to inflammation. In the past few years, accumulating evidence suggests that ghrelin, a gastric hormone of 28-amino acid residue length, exerts protective effects against inflammation by modulating the related pathways. This review focuses on ghrelin's anti-inflammatory and potential therapeutic effects in neurological, cardiovascular, respiratory, hepatic, gastrointestinal, and kidney disorders. Ghrelin significantly alleviates excessive inflammation and reduces damage to different target organs mainly by reducing the secretion of inflammatory cytokines, including interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), and inhibiting the nuclear factor kappa-B (NF-κB) and NLRP3 inflammasome signaling pathways. Ghrelin also regulates inflammation and apoptosis through the p38 MAPK/c-Jun N-terminal kinase (JNK) signaling pathway; restores cerebral microvascular integrity, and attenuates vascular leakage. Ghrelin activates the phosphoInositide-3 kinase (PI3K)/protein kinase B (Akt) pathway and inhibits inflammatory responses in cardiovascular diseases and acute kidney injury. Some studies show that ghrelin exacerbates colonic and intestinal manifestations of colitis. Interestingly, some inflammatory states, such as non-alcoholic steatohepatitis, inflammatory bowel diseases, and chronic kidney disease, are often associated with high ghrelin levels. Thus, ghrelin may be a potential new therapeutic target for inflammation-related diseases.
Collapse
Affiliation(s)
- Yunxiao Ma
- Department of Endocrinology and Department of Interventional Therapy of First Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Haifeng Zhang
- Department of Endocrinology and Department of Interventional Therapy of First Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Weiying Guo
- Department of Endocrinology and Department of Interventional Therapy of First Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lu Yu
- Department of Endocrinology and Department of Interventional Therapy of First Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
6
|
Peng Y, Li J, Lin H, Tian S, Liu S, Pu F, Zhao L, Ma K, Qing X, Shao Z. Endogenous repair theory enriches construction strategies for orthopaedic biomaterials: a narrative review. BIOMATERIALS TRANSLATIONAL 2021; 2:343-360. [PMID: 35837417 PMCID: PMC9255795 DOI: 10.12336/biomatertransl.2021.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/19/2021] [Indexed: 02/06/2023]
Abstract
The development of tissue engineering has led to new strategies for mitigating clinical problems; however, the design of the tissue engineering materials remains a challenge. The limited sources and inadequate function, potential risk of microbial or pathogen contamination, and high cost of cell expansion impair the efficacy and limit the application of exogenous cells in tissue engineering. However, endogenous cells in native tissues have been reported to be capable of spontaneous repair of the damaged tissue. These cells exhibit remarkable plasticity, and thus can differentiate or be reprogrammed to alter their phenotype and function after stimulation. After a comprehensive review, we found that the plasticity of these cells plays a major role in establishing the cell source in the mechanism involved in tissue regeneration. Tissue engineering materials that focus on assisting and promoting the natural self-repair function of endogenous cells may break through the limitations of exogenous seed cells and further expand the applications of tissue engineering materials in tissue repair. This review discusses the effects of endogenous cells, especially stem cells, on injured tissue repairing, and highlights the potential utilisation of endogenous repair in orthopaedic biomaterial constructions for bone, cartilage, and intervertebral disc regeneration.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jinye Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kaige Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
7
|
Zheng Y, Zhang J, Huang W, Zhong LLD, Wang N, Wang S, Yang B, Wang X, Pan B, Situ H, Lin Y, Liu X, Shi Y, Wang Z. Sini San Inhibits Chronic Psychological Stress-Induced Breast Cancer Stemness by Suppressing Cortisol-Mediated GRP78 Activation. Front Pharmacol 2021; 12:714163. [PMID: 34912211 PMCID: PMC8667778 DOI: 10.3389/fphar.2021.714163] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic psychological stress is closely correlated with breast cancer growth and metastasis. Sini San (SNS) formula is a classical prescription for relieving depression-related symptoms in traditional Chinese medicine (TCM). Current researches have suggested that chronic psychological stress is closely correlated with cancer stem cells (CSCs) and endoplasmic reticulum (ER) stress. This study aimed to investigate the effects of chronic psychological stress on ER stress-mediated breast cancer stemness and the therapeutic implication of SNS. Chronic psychological stress promoted lung metastasis in 4T1 breast tumor-bearing mice and increased the stem cell-like populations and stemness-related gene expression. Meanwhile, GRP78, a marker of ER stress, was significantly increased in the breast tumors and lung metastases under chronic psychological stress. As a biochemical hallmark of chronic psychological stress, cortisol dramatically enhanced the stem cell-like populations and mammospheres formation by activating GRP78 transcriptionally. However, GRP78 inhibitors or shRNA attenuated the stemness enhancement mediated by cortisol. Similarly, SNS inhibited chronic psychological stress-induced lung metastasis and stemness of breast cancer cells, as well as reversed cortisol-induced stem cell-like populations and mammospheres formation by attenuating GRP78 expression. Co-localization and co-immunoprecipitation experiments showed that SNS interrupted the interaction between GRP78 and LRP5 on the cell surface, thus inhibiting the Wnt/β-catenin signaling of breast CSCs. Altogether, this study not only uncovers the biological influence and molecular mechanism of chronic psychological stress on breast CSCs but also highlights SNS as a promising strategy for relieving GRP78-induced breast cancer stemness via inhibiting GRP78 activation.
Collapse
Affiliation(s)
- Yifeng Zheng
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Juping Zhang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanqing Huang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linda L D Zhong
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,School of Chinese Medicine, Hong Kong Baptist University, Kowloon, China
| | - Neng Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengqi Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Bowen Yang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuan Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Pan
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglin Situ
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Lin
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Liu
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yafei Shi
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiyu Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Yu R, Chen X, Zhu X, He B, Lu C, Liu Y, Xu X, Wu X. ATF6 deficiency damages the development of spermatogenesis in male Atf6 knockout mice. Andrologia 2021; 54:e14350. [PMID: 34904262 DOI: 10.1111/and.14350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/29/2021] [Accepted: 11/24/2021] [Indexed: 12/29/2022] Open
Abstract
Activating transcription factor 6 (ATF6), also known as ACHM7, ATF6A, encodes a transcription factor that activates target genes for the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress. It functions as nuclear transcription factor via a cis-acting ER stress response element (ERSE) that is presented in the promoters of genes encoding ER chaperones. Studies have shown that endoplasmic reticulum stress (ERS) can cause damage to spermatozoa and testes, leading to male sterility. And we find that the expression of ATF6 in spermatozoa of some infertile patients is significantly reduced. Then, we construct the Atf6 knockout mice model and interestingly find a decline in male fertility. The downstream gene testis-specific serine/threonine-protein kinase 4 (Tssk4) is screened based on transcriptome sequencing. We use Western blot and real-time PCR to confirm this result in both 293T cells and Atf6 knockout mice. TSSK4 is essential in male germ cell genesis and sperm maturation. Our results suggest that the expression of TSSK4 may be regulated by ATF6. The effect of Atf6 knockout on the reproductive development of male mice may be related to the low expression of TSSK4, which further verify that there may be some relationship between ERS and male reproduction.
Collapse
Affiliation(s)
- Ru Yu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xihua Chen
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, China
| | - Xilin Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bin He
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, China
| | - Cong Lu
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, China
| | - Ying Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiangbo Xu
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, China
| | - Xiaopan Wu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Ghrelin Alleviates Endoplasmic Reticulum Stress in MC3T3E1 Cells by Inhibiting AMPK Phosphorylation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9940355. [PMID: 34671436 PMCID: PMC8523291 DOI: 10.1155/2021/9940355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022]
Abstract
Ghrelin is a gastric endocrine peptide that has been found to be involved in the process of energy homeostasis and bone physiology in recent years. To explore the effects of ghrelin on endoplasmic reticulum stress (ERS) in MC3T3E1 cells and its possible mechanism, an ERS model was induced by tunicamycin (TM) in the osteoblast line MC3T3E1. TM at 1.5 μg/mL was selected as the experimental concentration found by CCK8 assay. Through the determination of apoptosis, reactive oxygen species production, and endoplasmic reticulum stress-related gene expression, we found that ERS induced by TM can be relieved by ghrelin in a concentration-dependent manner (P < 0.001). Compared with the TM group, ghrelin reduced the expression of ERS-related marker genes induced by TM. Compared with the GSK621 + TM group without ghrelin pretreatment, the mRNA expression of genes in the ghrelin pretreatment group decreased significantly (P < 0.001). The results of protein analysis showed that the levels of BIP, p-AMPK, and cleaved-caspase3 in the TM group increased significantly, while the levels decreased after ghrelin pretreatment. In group GSK621 + TM compared with group GSK621 + ghrelin+TM, ghrelin pretreatment significantly reduced the level of p-AMPK, which is consistent with the trend of the ERS-related proteins BIP and cleaved-caspase3. In conclusion, ghrelin alleviates the ERS induced by TM in a concentration-dependent manner and may or at least partly alleviate the apoptosis induced by ERS in MC3T3E1 cells by inhibiting the phosphorylation of AMPK.
Collapse
|
10
|
The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021; 22:11059. [PMID: 34681721 PMCID: PMC8539660 DOI: 10.3390/ijms222011059&set/a 934136356+984013925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus-pituitary-gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
|
11
|
Schalla MA, Stengel A. The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021; 22:ijms222011059. [PMID: 34681721 PMCID: PMC8539660 DOI: 10.3390/ijms222011059] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus–pituitary–gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
Affiliation(s)
- Martha A. Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
12
|
Fan BW, Liu YL, Zhu GX, Wu B, Zhang MM, Deng Q, Wang JL, Chen JX, Han RW, Wei J. The active fragments of ghrelin cross the blood-brain barrier and enter the brain to produce antinociceptive effects after systemic administration. Can J Physiol Pharmacol 2021; 99:1057-1068. [PMID: 34492212 DOI: 10.1139/cjpp-2020-0668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
G (1-5)-NH2, G (1-7)-NH2, and G (1-9) are the active fragments of ghrelin. The aim of this study was to investigate the antinociceptive effects, their ability to cross the blood-brain barrier, and the receptor mechanism(s) of these fragments using the tail withdrawal test in male Kunming mice. The antinociceptive effects of these fragments (2, 6, 20, and 60 nmol/mouse) were tested at 5, 10, 20, 30, 40, 50, and 60 min after intravenous (i.v.) injection. These fragments induced dose- and time-related antinociceptive effects relative to saline. Using the near infrared fluorescence imaging experiments, our results showed that these fragments could cross the brain-blood barrier and enter the brain. The antinociceptive effects of these fragments were completely antagonized by naloxone (intracerebroventricular, i.c.v.); however, naloxone methiodide (intraperitoneal, i.p.), which is the peripheral restricted opioid receptor antagonist, did not antagonize these antinociceptive effects. Furthermore, the GHS-R1α antagonist [D-Lys3]-GHRP-6 (i.c.v.) completely antagonized these antinociceptive effects, too. These results suggested that these fragments induced antinociceptive effects through central opioid receptors and GHS-R1α. In conclusion, our studies indicated that these active fragments of ghrelin could cross the brain-blood barrier and enter the brain and induce antinociceptive effects through central opioid receptors and GHS-R1α after intravenous injection.
Collapse
Affiliation(s)
- Bao-Wei Fan
- Department of Physiology, Medical College of Nanchang University, Bayi Road 461, Nanchang, Jiangxi, 330006, China
| | - Yong-Ling Liu
- Department of Physiology, Medical College of Nanchang University, Bayi Road 461, Nanchang, Jiangxi, 330006, China
| | - Gui-Xian Zhu
- Department of Physiology, Medical College of Nanchang University, Bayi Road 461, Nanchang, Jiangxi, 330006, China
| | - Bing Wu
- Department of Physiology, Medical College of Nanchang University, Bayi Road 461, Nanchang, Jiangxi, 330006, China
| | - Min-Min Zhang
- Department of Physiology, Medical College of Nanchang University, Bayi Road 461, Nanchang, Jiangxi, 330006, China
| | - Qing Deng
- Department of Physiology, Medical College of Nanchang University, Bayi Road 461, Nanchang, Jiangxi, 330006, China
| | - Jing-Lei Wang
- Department of Physiology, Medical College of Nanchang University, Bayi Road 461, Nanchang, Jiangxi, 330006, China
| | - Jia-Xiang Chen
- Department of Physiology, Medical College of Nanchang University, Bayi Road 461, Nanchang, Jiangxi, 330006, China
| | - Ren-Wen Han
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, China
| | - Jie Wei
- Department of Physiology, Medical College of Nanchang University, Bayi Road 461, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
13
|
Wang J, Wang R, Li J, Yao Z. Rutin alleviates cardiomyocyte injury induced by high glucose through inhibiting apoptosis and endoplasmic reticulum stress. Exp Ther Med 2021; 22:944. [PMID: 34306208 PMCID: PMC8281503 DOI: 10.3892/etm.2021.10376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetic cardiomyopathy is a common complication of diabetes, in which endoplasmic reticulum stress (ERS) serves an important role. Rutin can treat the myocardial dysfunction of diabetic rats. However, to the best of our knowledge, studies on the effects of Rutin on myocardial injury caused by diabetes from the perspective of ERS have not previously been reported. In the present study, the role of rutin in the regulation of ERS in myocardial injury was assessed. Different high glucose concentrations were used to treat H9C2 myoblast cells to establish a myocardial damage model. A cell counting kit-8 assay was used to determine cell viability. A lactate dehydrogenase kit was used to detect cytotoxicity. Apoptosis levels were determined using a TUNEL assay. Western blotting was used to determine the expression levels of apoptosis-related proteins and ERS-related proteins, including heat shock protein A family member 5, inositol-requiring enzyme-1α, X-box binding protein 1, activating transcription factor 6, C/EBP-homologous protein (CHOP), cleaved caspase-12 and caspase-12. The anti-apoptotic and anti-ERS effects of Rutin on H9C2 cardiac cells induced by high glucose were examined after the administration of the ERS activator thapsigargin (TG). The results indicated that rutin could dose-dependently inhibit the level of apoptosis and ERS induced by high glucose in H9C2 cells. After administration of the ERS activator TG, it was demonstrated that TG could reverse the anti-apoptotic and anti-ERS effects of rutin on H9C2 cells stimulated with high glucose. Collectively, the present results suggested that rutin may alleviate cardiomyocyte model cell injury induced by high glucose through the inhibition of apoptosis and ERS.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cardiology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Ru Wang
- Department of Cardiology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Jiali Li
- Department of Cardiology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Zhuhua Yao
- Department of Cardiology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| |
Collapse
|
14
|
Yang Y, Feng Y, Huang H, Cui L, Li F. PM2.5 exposure induces reproductive injury through IRE1/JNK/autophagy signaling in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111924. [PMID: 33486381 DOI: 10.1016/j.ecoenv.2021.111924] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/03/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Fine particulate matter (PM2.5) constitutes the most significant air pollutant that causes health risks. However, the mechanism(s) underlying PM2.5-induced male reproductive injury has not been clarified. In the present study we explored whether PM2.5 activated the inositol-requiring enzyme 1 (IRE1)/c-Jun NH 2-terminal kinase (JNK)/autophagy-signaling pathway, and whether this pathway mediated reproductive injury in male rats. We established a male Sprague-Dawley rat model of PM2.5 (1.5 mg/kg) exposure-induced reproductive injury, and observed the intervention effects of STF083010 (an IRE1 inhibitor, 1 mg/kg). After 4 weeks of exposure, reproductive injury-related indicators and IRE1-cascade protein expression were analyzed. Our results showed that sperm quality and serum testosterone level significantly decreased and apoptotic index increased after exposure to PM2.5. After STF083010 intervention, sperm quality and serum testosterone level were significantly improved, while the apoptotic index was reduced. Under light microscopy, we observed that the structure of spermatogenic cells in the PM2.5 group was loose, and that the numbers of spermatogenic cells and mature spermatozoa were reduced. After STF083010 intervention, the structural damage to spermatogenic cells was improved, and the number of cells shed was reduced. Western blotting analysis showed that the expression of IRE1, phosphorylated JNK (p-JNK), beclin-1, and microtubule-associated protein 1 light chain 3(LC3)II/LC3I proteins was significantly upregulated, and that the expression of p62 protein was significantly downregulated in the PM2.5 group. The concomitant administration of STF083010 significantly antagonized the aforementioned adverse effects. STF083010 exerted specific protective effects on reproductive injury-related effects in male rats exposed to PM2.5, with effects mediated via IRE1/JNK/autophagy signaling.
Collapse
Affiliation(s)
- Yang Yang
- Department of Nosocomial Infection Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Yajing Feng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Liuxin Cui
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fuqin Li
- Department of Nosocomial Infection Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
15
|
Yu Y, Xu Z, Ou C, Wang Q, Zhang Y, Guo F, Gao P, Ma J. The effect of ghrelin on the fibrosis of chicken bursa of fabricius infected with infectious bursal disease virus. Gen Comp Endocrinol 2021; 303:113705. [PMID: 33359665 DOI: 10.1016/j.ygcen.2020.113705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/09/2020] [Accepted: 12/20/2020] [Indexed: 01/09/2023]
Abstract
The present study aimed to investigate the effect of ghrelin on the degree of bursa of Fabricius (BF) fibrosis in infectious bursal disease virus-infected chickens. Specific pathogen free (SPF) chicks were divided into four groups. One group was used as the control ("C"). The other three groups were inoculated with IBDV on the 19th day, of which two were injected intraperitoneally with 0.5 nmol ("LG") or 1.0 nmol ("HG") ghrelin/100 g weight from the 18th day to the 22nd day, and one was injected intraperitoneally with PBS ("I"). Hematoxylin-eosin staining, Masson's staining, and quantitative real-time PCR were used to determine the effects of ghrelin on the degree of inflammatory cell infiltration, the bursal fibrosis degree, and the expression of TGF-β and MMP-9 mRNA in IBDV-infected SPF chicks. The results showed that ghrelin administration reduced the number of infiltrated inflammatory cells in BF from 5 dpi and significantly attenuated the degree of fibrosis induced by IBDV from 2 dpi to 7 dpi (P < 0.05). Moreover, the TGF-β expression in the LG and HG groups were significantly or highly significantly lower (P < 0.05 or P < 0.01) than those of I group from 2 dpi to 5 dpi. In addition, ghrelin administration downregulated MMP-9 expression evoked by IBDV from 2 dpi to 7 dpi (P < 0.05 or P < 0.01). These results suggested that ghrelin attenuated the bursal fibrosis degree of IBDV-infected SPF chicks by reducing the number of inflammatory cells and by decreasing the expression of TGF-β and MMP-9, which shortened the process of bursa recovery.
Collapse
Affiliation(s)
- Yan Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhiyong Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Changbo Ou
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Qiuxia Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yanhong Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Feng Guo
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Pei Gao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jinyou Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
16
|
Karna KK, Soni KK, You JH, Choi NY, Kim HK, Kim CY, Lee SW, Shin YS, Park JK. MOTILIPERM Ameliorates Immobilization Stress-Induced Testicular Dysfunction via Inhibition of Oxidative Stress and Modulation of the Nrf2/HO-1 Pathway in SD Rats. Int J Mol Sci 2020; 21:ijms21134750. [PMID: 32635386 PMCID: PMC7370033 DOI: 10.3390/ijms21134750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
It is well established that physiological stress has an adverse effect on the male reproductive system. Experimental studies have demonstrated the promising effects of MOTILIPERM in male infertility. MOTILIPERM extract is composed of three crude medicinal herbs: Morinda officinalis How (Rubiaceae) roots, Allium cepa L. (Liliaceae) outer scales, and Cuscuta chinensis Lamark (convolvulaceae) seeds. The present study aimed to investigate the possible mechanisms responsible for the effects of MOTILIPERM on testicular dysfunction induced by immobilization stress. Fifty male Sprague Dawley rats were divided into five groups (10 rats each): a normal control group (CTR), a control group administered MOTILIPERM 200 mg/kg (M 200), an immobilization-induced stress control group (S), an immobilization-induced stress group administered MOTILIPERM 100 mg/kg (S + M 100), and MOTILIPERM 200 mg/kg (S + M 200). Stressed rats (n = 30) were subjected to stress by immobilization for 6 h by placing them in a Perspex restraint cage, while controls (n = 20) were maintained without disturbance. Rats were administrated 100 or 200 mg/kg MOTILIPERM once daily for 30 days 1 h prior to immobilization. At the end of the treatment period, we measured body and reproductive organ weight; sperm parameters; histopathological damage; reproductive hormone levels; steroidogenic acute regulatory protein (StAR); biomarkers of oxidative stress; and apoptosis markers. MOTILIPERM treatment improved testicular dysfunction by up-regulating (p < 0.05) sperm count, sperm motility, serum testosterone level, StAR protein level, Johnsen score, and spermatogenic cell density in stressed rats. MOTILIPERM decreased oxidative stress by increasing (p < 0.05) testicular superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione peroxidase-4 (GPx 4), catalase, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase 1 (HO-1) levels and decreasing (p < 0.05) malondialdehyde (MDA) and reactive oxygen species/reactive nitrogen species (ROS/RNS) levels. Furthermore, MOTILIPERM down-regulated (p < 0.05) cleaved caspase 3 and BCL2 associated X protein (Bax) levels; increased pro caspase-3 and B-cell lymphoma 2 (Bcl-2) levels; and upregulated testicular germ cell proliferation in stressed rats. The number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells and serum luteinizing hormone (LH) and follicle stimulating hormone (FSH) levels also significantly (p < 0.05) decreased after pretreatment with MOTILIPERM in stressed rats. Collectively, our results suggest that, in immobilization-mediated stress-induced testicular dysfunction, MOTILIPERM sustains normal spermatogenesis via antioxidant and anti-apoptotic activities by activating the NRF/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Keshab Kumar Karna
- Department of Urology and Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute and Clinical Trial Center for Medical Device, Jeonbuk National University Hospital, Jeonju 54907, Korea; (K.K.K.); (J.H.Y.); (N.Y.C.)
| | - Kiran Kumar Soni
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA;
| | - Jae Hyung You
- Department of Urology and Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute and Clinical Trial Center for Medical Device, Jeonbuk National University Hospital, Jeonju 54907, Korea; (K.K.K.); (J.H.Y.); (N.Y.C.)
| | - Na Young Choi
- Department of Urology and Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute and Clinical Trial Center for Medical Device, Jeonbuk National University Hospital, Jeonju 54907, Korea; (K.K.K.); (J.H.Y.); (N.Y.C.)
| | - Hye Kyung Kim
- College of Pharmacy, Kyungsung University, Busan 48434, Korea;
| | - Chul Young Kim
- College of Pharmacy, Hanyang University, Ansan 426791, Korea;
| | - Sung Won Lee
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Yu Seob Shin
- Department of Urology and Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute and Clinical Trial Center for Medical Device, Jeonbuk National University Hospital, Jeonju 54907, Korea; (K.K.K.); (J.H.Y.); (N.Y.C.)
- Correspondence: (Y.S.S.); (J.K.P.); Tel.: +82-63-250-1565 (Y.S.S.); +82-63-250-1510 (J.K.P.); Fax: +82-63-250-1564 (Y.S.S. & J.K.P.)
| | - Jong Kwan Park
- Department of Urology and Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute and Clinical Trial Center for Medical Device, Jeonbuk National University Hospital, Jeonju 54907, Korea; (K.K.K.); (J.H.Y.); (N.Y.C.)
- Correspondence: (Y.S.S.); (J.K.P.); Tel.: +82-63-250-1565 (Y.S.S.); +82-63-250-1510 (J.K.P.); Fax: +82-63-250-1564 (Y.S.S. & J.K.P.)
| |
Collapse
|
17
|
Cheng Y, Chen B, Xie W, Chen Z, Yang G, Cai Y, Shang H, Zhao W. Ghrelin attenuates secondary brain injury following intracerebral hemorrhage by inhibiting NLRP3 inflammasome activation and promoting Nrf2/ARE signaling pathway in mice. Int Immunopharmacol 2020; 79:106180. [PMID: 31926478 DOI: 10.1016/j.intimp.2019.106180] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/16/2019] [Accepted: 12/31/2019] [Indexed: 02/08/2023]
Abstract
Ghrelin, a brain-gut peptide, has been proven to exert neuroprotection in different kinds of neurological diseases; however, its role and the potential molecular mechanisms in secondary brain injury (SBI) after intracerebral hemorrhage (ICH) are still unknown. In this study, we investigate whether treatment with ghrelin may attenuate SBI in a murine ICH model, and if so, whether the neuroprotective effects are due to the inhibition of nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome activation and promotion of nuclear factor-E2-related factor 2 (Nrf2)/antioxidative response element (ARE) signaling pathway. Stereotactically intrastriatal infusion of autologous blood was performed to mimic ICH. Ghrelin was given intraperitoneally immediately following ICH and again 1 h later. Results showed that ghrelin attenuated neurobehavioral deficits, brain edema, hematoma volume, and perihematomal cell death post-ICH. Ghrelin inhibited the NLRP3 inflammasome activation and subsequently suppressed the neuroinflammatory response as evidenced by reduced microglia activation, neutrophil infiltration, and pro-inflammatory mediators release after ICH. Additionally, ghrelin alleviated ICH-induced oxidative stress according to the chemiluminescence of luminol and lucigenin, malondialdehyde (MDA) content, and total superoxide dismutase (SOD) activity assays. These changes were accompanied by upregulation of Nrf2 expression, Nrf2 nuclear accumulation, and enhanced Nrf2 DNA binding activity, as well as by increased expressions of Nrf2 downstream target antioxidative genes, including NAD(P)H quinine oxidoreductase-1 (NQO1), glutathione cysteine ligase regulatory subunit (GCLC), and glutathione cysteine ligase modulatory subunit (GCLM). Together, our data suggested that ghrelin protected against ICH-induced SBI by inhibiting NLRP3 inflammasome activation and promoting Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Yijun Cheng
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Bin Chen
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Wanqun Xie
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Zhenghong Chen
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Guoyuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, PR China; Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yu Cai
- Department of Neurosurgery, North Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hanbing Shang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Weiguo Zhao
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|