1
|
Fan Z, Dong Z, Zhang B, Li H. Research progress on non covalent interaction dissolution characterization of insoluble wheat protein based on swelling. Int J Biol Macromol 2025; 284:138154. [PMID: 39613078 DOI: 10.1016/j.ijbiomac.2024.138154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/16/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
The non covalent interactions of proteins are usually characterized by solubility, which is based on the principle that specific solvents can disrupt non covalent interactions and promote protein dissolution. However, this method is generally applicable to highly soluble protein materials. The solubility of wheat protein is poor. When using this method to characterize non covalent interactions, there is always a portion of protein aggregates that can only reach a swollen state and cannot be completely dissolved. At present, there are no research reports on the role of non covalent interactions in swelling. In view of this, this article first reviews the swelling and dissolution processes of insoluble proteins such as wheat protein in solvents, focusing on the characterization mechanisms and influencing factors of three non covalent interactions using solubility characterization. At the same time, this article also explores the potential of swelling in characterizing non covalent interactions, aiming to improve the characterization methods of non covalent interactions between wheat proteins and provide methodological support for analyzing processing differences from the hierarchical analysis of wheat protein interactions in the future.
Collapse
Affiliation(s)
- Zhen Fan
- School of Food Science and Technology, Hebei Agricultural University, Hebei Baoding 071000, China; Institute of Food Science and Technology CAAS / Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ziyan Dong
- Institute of Food Science and Technology CAAS / Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Bo Zhang
- Institute of Food Science and Technology CAAS / Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Huijing Li
- School of Food Science and Technology, Hebei Agricultural University, Hebei Baoding 071000, China.
| |
Collapse
|
2
|
Negi I, Jangra R, Gharu A, Trant JF, Sharma P. Guanidinium–amino acid hydrogen-bonding interactions in protein crystal structures: implications for guanidinium-induced protein denaturation. Phys Chem Chem Phys 2023; 25:857-869. [DOI: 10.1039/d2cp04943k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Structural analysis of guanidinium–amino acid interaction pairs in protein crystal structures is coupled with an effective scheme for classifying the optimized pairs, to gain understanding of the guanidinium:protein hydrogen bonding modes.
Collapse
Affiliation(s)
- Indu Negi
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Raman Jangra
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Amit Gharu
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - John F. Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave. Windsor ON, N9B 3P4, Canada
- Binary Star Research Services, LaSalle, ON, N9J 3 X 8, Canada
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave. Windsor ON, N9B 3P4, Canada
| |
Collapse
|
3
|
Haris L, Biehl R, Dulle M, Radulescu A, Holderer O, Hoffmann I, Stadler AM. Variation of Structural and Dynamical Flexibility of Myelin Basic Protein in Response to Guanidinium Chloride. Int J Mol Sci 2022; 23:6969. [PMID: 35805997 PMCID: PMC9266411 DOI: 10.3390/ijms23136969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Myelin basic protein (MBP) is intrinsically disordered in solution and is considered as a conformationally flexible biomacromolecule. Here, we present a study on perturbation of MBP structure and dynamics by the denaturant guanidinium chloride (GndCl) using small-angle scattering and neutron spin-echo spectroscopy (NSE). A concentration of 0.2 M GndCl causes charge screening in MBP resulting in a compact, but still disordered protein conformation, while GndCl concentrations above 1 M lead to structural expansion and swelling of MBP. NSE data of MBP were analyzed using the Zimm model with internal friction (ZIF) and normal mode (NM) analysis. A significant contribution of internal friction was found in compact states of MBP that approaches a non-vanishing internal friction relaxation time of approximately 40 ns at high GndCl concentrations. NM analysis demonstrates that the relaxation rates of internal modes of MBP remain unaffected by GndCl, while structural expansion due to GndCl results in increased amplitudes of internal motions. Within the model of the Brownian oscillator our observations can be rationalized by a loss of friction within the protein due to structural expansion. Our study highlights the intimate coupling of structural and dynamical plasticity of MBP, and its fundamental difference to the behavior of ideal polymers in solution.
Collapse
Affiliation(s)
- Luman Haris
- Jülich Centre for Neutron Science (JCNS-1) and Institute of Biological Information Processing (IBI-8), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (L.H.); (R.B.); (M.D.)
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Ralf Biehl
- Jülich Centre for Neutron Science (JCNS-1) and Institute of Biological Information Processing (IBI-8), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (L.H.); (R.B.); (M.D.)
| | - Martin Dulle
- Jülich Centre for Neutron Science (JCNS-1) and Institute of Biological Information Processing (IBI-8), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (L.H.); (R.B.); (M.D.)
| | - Aurel Radulescu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungzentrum Jülich GmbH, 85747 Garching, Germany; (A.R.); (O.H.)
| | - Olaf Holderer
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungzentrum Jülich GmbH, 85747 Garching, Germany; (A.R.); (O.H.)
| | - Ingo Hoffmann
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, CEDEX 9, 38042 Grenoble, France;
| | - Andreas M. Stadler
- Jülich Centre for Neutron Science (JCNS-1) and Institute of Biological Information Processing (IBI-8), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (L.H.); (R.B.); (M.D.)
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| |
Collapse
|
4
|
Mollahosseini A, Abdelrasoul A. Novel Insights in Hemodialysis: Most Recent Theories on the Membrane Hemocompatibility Improvement. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
5
|
Mojtabavi S, Jafari M, Samadi N, Mehrnejad F, Ali Faramarzi M. Insights into the Molecular-Level details of betaine interactions with Laccase under various thermal conditions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Vincent MP, Bobbala S, Karabin NB, Frey M, Liu Y, Navidzadeh JO, Stack T, Scott EA. Surface chemistry-mediated modulation of adsorbed albumin folding state specifies nanocarrier clearance by distinct macrophage subsets. Nat Commun 2021; 12:648. [PMID: 33510170 PMCID: PMC7844416 DOI: 10.1038/s41467-020-20886-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023] Open
Abstract
Controlling nanocarrier interactions with the immune system requires a thorough understanding of the surface properties that modulate protein adsorption in biological fluids, since the resulting protein corona redefines cellular interactions with nanocarrier surfaces. Albumin is initially one of the dominant proteins to adsorb to nanocarrier surfaces, a process that is considered benign or beneficial by minimizing opsonization or inflammation. Here, we demonstrate the surface chemistry of a model nanocarrier can be engineered to stabilize or denature the three-dimensional conformation of adsorbed albumin, which respectively promotes evasion or non-specific clearance in vivo. Interestingly, certain common chemistries that have long been considered to convey stealth properties denature albumin to promote nanocarrier recognition by macrophage class A1 scavenger receptors, providing a means for their eventual removal from systemic circulation. We establish that the surface chemistry of nanocarriers can be specified to modulate adsorbed albumin structure and thereby tune clearance by macrophage scavenger receptors.
Collapse
Affiliation(s)
- Michael P Vincent
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Sharan Bobbala
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Nicholas B Karabin
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Molly Frey
- Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL, 60208, USA
| | - Yugang Liu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Justin O Navidzadeh
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Trevor Stack
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
7
|
Kumari A, Somvanshi P, Grover A. Ameliorating amyloid aggregation through osmolytes as a probable therapeutic molecule against Alzheimer's disease and type 2 diabetes. RSC Adv 2020; 10:12166-12182. [PMID: 35497581 PMCID: PMC9050657 DOI: 10.1039/d0ra00429d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/16/2020] [Indexed: 01/31/2023] Open
Abstract
Large numbers of neurological and metabolic disorders occurring in humans are induced by the aberrant growth of aggregated or misfolded proteins.
Collapse
Affiliation(s)
- Anchala Kumari
- Department of Biotechnology
- Teri School of Advanced Studies
- New Delhi-110070
- India
- School of Biotechnology
| | - Pallavi Somvanshi
- Department of Biotechnology
- Teri School of Advanced Studies
- New Delhi-110070
- India
| | - Abhinav Grover
- School of Biotechnology
- Jawaharlal Nehru University
- New Delhi-110067
- India
| |
Collapse
|
8
|
Jafari M, Doustdar F, Mehrnejad F. Molecular Self-Assembly Strategy for Encapsulation of an Amphipathic α-Helical Antimicrobial Peptide into the Different Polymeric and Copolymeric Nanoparticles. J Chem Inf Model 2018; 59:550-563. [PMID: 30475620 DOI: 10.1021/acs.jcim.8b00641] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Encapsulation of peptide and protein-based drugs in polymeric nanoparticles is one of the fundamental fields in controlled-release drug delivery systems. The molecular mechanisms of absorption of peptides to the polymeric nanoparticles are still unknown, and there is no precise molecular data on the encapsulation process of peptide and protein-based drugs. Herein, the self-assembly of different polymers and block copolymers with combinations of the various molecular weight of blocks and the effects of resultant polymer and copolymer nanomicelles on the stability of magainin2, an α-helical antimicrobial peptide, were investigated by means of all-atom molecular dynamics (MD) simulation. The micelle forming, morphology of micellar aggregations and changes in the first hydration shell of the micelles during micelles formation were explored as well. The results showed that the peptide binds to the polymer and copolymer micelles and never detaches during the MD simulation time. In general, all polymers and copolymers simultaneously encapsulated the peptide during micelles formation and had the ability to maintain the helical structure of the peptide, whereas the first hydration shell of the peptide remained unchanged. Among the micelles, the polyethylene glycol (PEG) micelles completely encapsulated magainin2 and, surprisingly, the NMR structure of the peptide was perfectly kept during the encapsulation process. The MD results also indicated that the aromatic and basic residues of the peptide strongly interact with polymers/copolymers and play important roles in the encapsulation mechanism. This research will provide a good opportunity in the design of polymer surfaces for drug delivery applications such as controlled-release peptide delivery systems.
Collapse
Affiliation(s)
- Majid Jafari
- Infectious Diseases and Tropical Medicine Research Center , Shahid Beheshti University of Medical Sciences , P.O. Box 1985717443, Tehran , Iran.,Department of Life Science Engineering, Faculty of New Sciences and Technologies , University of Tehran , P.O. Box 14395-1561, Tehran , Iran
| | - Farahnoosh Doustdar
- Infectious Diseases and Tropical Medicine Research Center , Shahid Beheshti University of Medical Sciences , P.O. Box 1985717443, Tehran , Iran.,Department of Microbiology, Faculty of Medicine , Shahid Beheshti University of Medical Sciences , P.O. Box 19839-63113 Tehran , Iran
| | - Faramarz Mehrnejad
- Department of Life Science Engineering, Faculty of New Sciences and Technologies , University of Tehran , P.O. Box 14395-1561, Tehran , Iran
| |
Collapse
|
9
|
Syed SB, Khan FI, Khan SH, Srivastava S, Hasan GM, Lobb KA, Islam A, Ahmad F, Hassan MI. Mechanistic insights into the urea-induced denaturation of kinase domain of human integrin linked kinase. Int J Biol Macromol 2018; 111:208-218. [DOI: 10.1016/j.ijbiomac.2017.12.164] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 01/01/2023]
|
10
|
Jafari M, Mehrnejad F. Molecular Insight into Human Lysozyme and Its Ability to Form Amyloid Fibrils in High Concentrations of Sodium Dodecyl Sulfate: A View from Molecular Dynamics Simulations. PLoS One 2016; 11:e0165213. [PMID: 27768744 PMCID: PMC5074503 DOI: 10.1371/journal.pone.0165213] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 10/07/2016] [Indexed: 11/18/2022] Open
Abstract
Changes in the tertiary structure of proteins and the resultant fibrillary aggregation could result in fatal heredity diseases, such as lysozyme systemic amyloidosis. Human lysozyme is a globular protein with antimicrobial properties with tendencies to fibrillate and hence is known as a fibril-forming protein. Therefore, its behavior under different ambient conditions is of great importance. In this study, we conducted two 500000 ps molecular dynamics (MD) simulations of human lysozyme in sodium dodecyl sulfate (SDS) at two ambient temperatures. To achieve comparative results, we also performed two 500000 ps human lysozyme MD simulations in pure water as controls. The aim of this study was to provide further molecular insight into all interactions in the lysozyme-SDS complexes and to provide a perspective on the ability of human lysozyme to form amyloid fibrils in the presence of SDS surfactant molecules. SDS, which is an anionic detergent, contains a hydrophobic tail with 12 carbon atoms and a negatively charged head group. The SDS surfactant is known to be a stabilizer for helical structures above the critical micelle concentration (CMC) [1]. During the 500000 ps MD simulations, the helical structures were maintained by the SDS surfactant above its CMC at 300 K, while at 370 K, human lysozyme lost most of its helices and gained β-sheets. Therefore, we suggest that future studies investigate the β-amyloid formation of human lysozyme at SDS concentrations above the CMC and at high temperatures.
Collapse
Affiliation(s)
- Majid Jafari
- Department of Life Sciences Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Faramarz Mehrnejad
- Department of Life Sciences Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
- * E-mail:
| |
Collapse
|
11
|
Schaller A, Connors NK, Dwyer MD, Oelmeier SA, Hubbuch J, Middelberg APJ. Computational study of elements of stability of a four-helix bundle protein biosurfactant. J Comput Aided Mol Des 2014; 29:47-58. [PMID: 25323391 DOI: 10.1007/s10822-014-9803-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
Biosurfactants are surface-active molecules produced principally by microorganisms. They are a sustainable alternative to chemically-synthesized surfactants, having the advantages of being non-toxic, highly functional, eco-friendly and biodegradable. However they are currently only used in a few industrial products due to costs associated with production and purification, which exceed those for commodity chemical surfactants. DAMP4, a member of a four-helix bundle biosurfactant protein family, can be produced in soluble form and at high yield in Escherichia coli, and can be recovered using a facile thermal phase-separation approach. As such, it encompasses an interesting synergy of biomolecular and chemical engineering with prospects for low-cost production even for industrial sectors. DAMP4 is highly functional, and due to its extraordinary thermal stability it can be purified in a simple two-step process, in which the combination of high temperature and salt leads to denaturation of all contaminants, whereas DAMP4 stays stable in solution and can be recovered by filtration. This study aimed to characterize and understand the fundamental drivers of DAMP4 stability to guide further process and surfactant design studies. The complementary use of experiments and molecular dynamics simulation revealed a broad pH and temperature tolerance for DAMP4, with a melting point of 122.4 °C, suggesting the hydrophobic core as the major contributor to thermal stability. Simulation of systematically created in silico variants of DAMP4 showed an influence of number and location of hydrophilic mutations in the hydrophobic core on stability, demonstrating a tolerance of up to three mutations before a strong loss in stability occurred. The results suggest a consideration of a balance of stability, functionality and kinetics for new designs according to their application, aiming for maximal functionality but at adequate stability to allow for cost-efficient production using thermal phase separation approaches.
Collapse
Affiliation(s)
- Andrea Schaller
- Centre for Biomolecular Engineering, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | | | | | | | | | |
Collapse
|
12
|
Macdonald RD, Khajehpour M. Effects of the protein denaturant guanidinium chloride on aqueous hydrophobic contact-pair interactions. Biophys Chem 2014; 196:25-32. [PMID: 25268875 DOI: 10.1016/j.bpc.2014.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 11/19/2022]
Abstract
Guanidinium chloride (GdmCl) is one of the most common protein denaturants. Although GdmCl is well known in the field of protein folding, the mechanism by which it denatures proteins is not well understood. In fact, there are few studies looking at its effects on hydrophobic interactions. In this work the effect of GdmCl on hydrophobic interactions has been studied by observing how the denaturant influences model systems of phenyl and alkyl hydrophobic contact pairs. Contact pair formation is monitored through the use of fluorescence spectroscopy, i.e., measuring the intrinsic phenol fluorescence being quenched by carboxylate ions. Hydrophobic interactions are isolated from other interactions through a previously developed methodology. The results show that GdmCl does not significantly affect hydrophobic interactions between small moieties such as methyl groups and phenol; while on the other hand, the interaction of larger hydrophobes such as hexyl and heptyl groups with phenol is significantly destabilized.
Collapse
Affiliation(s)
- Ryan D Macdonald
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Mazdak Khajehpour
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
13
|
Shao Q. Methanol Concentration Dependent Protein Denaturing Ability of Guanidinium/Methanol Mixed Solution. J Phys Chem B 2014; 118:6175-85. [DOI: 10.1021/jp500280v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Qiang Shao
- Drug Discovery and Design
Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
14
|
Shao Q. The addition of 2,2,2-trifluoroethanol prevents the aggregation of guanidinium around protein and impairs its denaturation ability: A molecular dynamics simulation study. Proteins 2013; 82:944-53. [DOI: 10.1002/prot.24468] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/29/2013] [Accepted: 10/29/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Qiang Shao
- Drug Discovery and Design Center; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai 201203 China
| |
Collapse
|
15
|
Xie W, Liu C, Yang L, Gao Y. On the molecular mechanism of ion specific Hofmeister series. Sci China Chem 2013. [DOI: 10.1007/s11426-013-5019-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Mandal M, Mukhopadhyay C. Concentration-dependent like-charge pairing of guanidinium ions and effect of guanidinium chloride on the structure and dynamics of water from all-atom molecular dynamics simulation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:052708. [PMID: 24329297 DOI: 10.1103/physreve.88.052708] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/05/2013] [Indexed: 06/03/2023]
Abstract
An all-atom molecular dynamics simulation shows concentration-dependent like-charge ion pairing of the guanidinium ion in an aqueous solution of guanidinium chloride. We have observed two types of like-charge ion pairing for guanidinium ions, namely, stacked ion pairs and solvent-separated ion pairs. Interestingly, both of these like-charge ion-pair formations are dependent on the concentration of guanidinium chloride in water. The probability of stacked like-charge ion-pair formation decreases, whereas, the probability of solvent-separated like-charge pairing increases as the concentration of guanidinium chloride increases, which is shown from radial distribution functions and is confirmed from the energy calculations. Besides like-charge ion-pair formation, we also investigated guanidinium chloride induced changes in water structure. Hydrogen-bond analysis indicates that guanidinium chloride does not alter the strict-hydrogen-bonding patterns of water, whereas, it breaks the bend-hydrogen bond and the non-hydrogen-bonding patterns. Tetrahedral order, nearest neighbor orientation, and distance distribution of water molecules around a probe water molecule show the extent of water structure distortion.
Collapse
Affiliation(s)
- Manoj Mandal
- Department of Chemistry, University of Calcutta 92, A.P.C. Road, Kolkata-700 009, India
| | - Chaitali Mukhopadhyay
- Department of Chemistry, University of Calcutta 92, A.P.C. Road, Kolkata-700 009, India
| |
Collapse
|
17
|
Koishi T, Yasuoka K, Willow SY, Fujikawa S, Zeng XC. Molecular Insight into Different Denaturing Efficiency of Urea, Guanidinium, and Methanol: A Comparative Simulation Study. J Chem Theory Comput 2013; 9:2540-51. [PMID: 26583851 DOI: 10.1021/ct3010968] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have designed various nanoslit systems, whose opposing surfaces can be either hydrophobic, hydrophilic, or simply a water-vapor interface, for the molecular dynamics simulation of confined water with three different protein denaturants, i.e., urea, guanidinium chloride (GdmCl), and methanol, respectively. Particular attention is placed on the preferential adsorption of the denaturant molecules onto the opposing surfaces and associated resident time in the vicinal layer next to the surfaces, as well as their implication in the denaturing efficiency of different denaturant molecules. Our simulation results show that among the three denaturants, the occupancy of methanol in the vicinal layer is the highest while the residence time of Gdm is the longest. Although the occupancy and the residence time of urea in the vicinal layer is less than those of the other two denaturant molecules, urea entails "all-around" properties for being a highly effective denaturant. The distinct characteristics of three denaturants may suggest a different molecular mechanism for the protein denaturation. This comparative simulation by design allows us to gain additional insights, on the molecular level, into the denaturation effect and related hydrophobic effect.
Collapse
Affiliation(s)
- Takahiro Koishi
- Department of Applied Physics, University of Fukui, 3-9-1 Bunkyo,Fukui 910-8507, Japan
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan
| | - Soohaeng Yoo Willow
- Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, Pohang 790-784, South Korea
| | - Shigenori Fujikawa
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Xiao Cheng Zeng
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| |
Collapse
|
18
|
DeCoursey TE. Voltage-gated proton channels: molecular biology, physiology, and pathophysiology of the H(V) family. Physiol Rev 2013; 93:599-652. [PMID: 23589829 PMCID: PMC3677779 DOI: 10.1152/physrev.00011.2012] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Voltage-gated proton channels (H(V)) are unique, in part because the ion they conduct is unique. H(V) channels are perfectly selective for protons and have a very small unitary conductance, both arguably manifestations of the extremely low H(+) concentration in physiological solutions. They open with membrane depolarization, but their voltage dependence is strongly regulated by the pH gradient across the membrane (ΔpH), with the result that in most species they normally conduct only outward current. The H(V) channel protein is strikingly similar to the voltage-sensing domain (VSD, the first four membrane-spanning segments) of voltage-gated K(+) and Na(+) channels. In higher species, H(V) channels exist as dimers in which each protomer has its own conduction pathway, yet gating is cooperative. H(V) channels are phylogenetically diverse, distributed from humans to unicellular marine life, and perhaps even plants. Correspondingly, H(V) functions vary widely as well, from promoting calcification in coccolithophores and triggering bioluminescent flashes in dinoflagellates to facilitating killing bacteria, airway pH regulation, basophil histamine release, sperm maturation, and B lymphocyte responses in humans. Recent evidence that hH(V)1 may exacerbate breast cancer metastasis and cerebral damage from ischemic stroke highlights the rapidly expanding recognition of the clinical importance of hH(V)1.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Dept. of Molecular Biophysics and Physiology, Rush University Medical Center HOS-036, 1750 West Harrison, Chicago, IL 60612, USA.
| |
Collapse
|
19
|
Shao Q, Gao YQ. Water plays an important role in osmolyte-induced hairpin structure change: A molecular dynamics simulation study. J Chem Phys 2012; 137:145101. [DOI: 10.1063/1.4757419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Shao Q, Fan Y, Yang L, Gao YQ. Counterion Effects on the Denaturing Activity of Guanidinium Cation to Protein. J Chem Theory Comput 2012; 8:4364-73. [DOI: 10.1021/ct3002267] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Qiang Shao
- Institute of Theoretical and
Computational Chemistry, College of Chemistry and Molecular Engineering,
Beijing National Laboratory of Molecular Sciences, Peking University, Beijing 100871, China
- Drug Discovery and Design Center,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203,
China
| | - Yubo Fan
- Bioinformatics and
Bioengineering
Program, The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, Texas 77030, United
States
| | - Lijiang Yang
- Institute of Theoretical and
Computational Chemistry, College of Chemistry and Molecular Engineering,
Beijing National Laboratory of Molecular Sciences, Peking University, Beijing 100871, China
| | - Yi Qin Gao
- Institute of Theoretical and
Computational Chemistry, College of Chemistry and Molecular Engineering,
Beijing National Laboratory of Molecular Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Mehrnejad F, Ghahremanpour MM, Khadem-Maaref M, Doustdar F. Effects of osmolytes on the helical conformation of model peptide: Molecular dynamics simulation. J Chem Phys 2011; 134:035104. [DOI: 10.1063/1.3530072] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
|