1
|
Improved Antithrombotic Activity and Diminished Bleeding Side Effect of a PEGylated α IIbβ 3 Antagonist, Disintegrin. Toxins (Basel) 2020; 12:toxins12070426. [PMID: 32605221 PMCID: PMC7404706 DOI: 10.3390/toxins12070426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/28/2023] Open
Abstract
Polymer polyethylene glycol (PEG), or PEGylation of polypeptides improves protein drug stability by decreasing degradation and reducing renal clearance. To produce a pharmaceutical disintegrin derivative, the N-terminal PEGylation technique was used to modify the disintegrin derivative [KGDRR]trimucrin for favorable safety, pharmacokinetic profiles, and antithrombotic efficacy. We compared intact [KGDRR]trimucrin (RR) and PEGylated KGDRR (PEG-RR) by in vitro and in vivo systems for their antithrombotic activities. The activity of platelet aggregation inhibition and the bleeding tendency side effect were also investigated. PEG-RR exhibited optimal potency in inhibiting platelet aggregation of human/mouse platelet-rich plasma activated by collagen or ADP with a lower IC50 than the intact derivative RR. In the illumination-induced mesenteric venous thrombosis model, RR and PEG-RR efficaciously prevented occlusive thrombosis in a dose-dependent manner. In rotational thromboelastometry assay, PEG-RR did not induce hypocoagulation in human whole blood even given at a higher concentration (30 μg/mL), while RR slightly prolonged clotting time. However, RR and PEG-RR were not associated with severe thrombocytopenia or bleeding in FcγRIIa-transgenic mice at equally efficacious antithrombotic dosages. We also found the in vivo half-life of PEGylation was longer than RR (RR: 15.65 h vs. PEG-RR: 20.45 h). In conclusion, injectable PEG-RR with prolonged half-life and decreased bleeding risk is a safer anti-thrombotic agent for long-acting treatment of thrombus diseases.
Collapse
|
2
|
A Novel α IIbβ 3 Antagonist from Snake Venom Prevents Thrombosis without Causing Bleeding. Toxins (Basel) 2019; 12:toxins12010011. [PMID: 31877725 PMCID: PMC7020592 DOI: 10.3390/toxins12010011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/29/2022] Open
Abstract
Life-threatening thrombocytopenia and bleeding, common side effects of clinically available αIIbβ3 antagonists, are associated with the induction of ligand-induced integrin conformational changes and exposure of ligand-induced binding sites (LIBSs). To address this issue, we examined intrinsic mechanisms and structure–activity relationships of purified disintegrins, from Protobothrops flavoviridis venom (i.e., Trimeresurus flavoviridis), TFV-1 and TFV-3 with distinctly different pro-hemorrhagic tendencies. TFV-1 with a different αIIbβ3 binding epitope from that of TFV-3 and chimeric 7E3 Fab, i.e., Abciximab, decelerates αIIbβ3 ligation without causing a conformational change in αIIbβ3, as determined with the LIBS antibody, AP5, and the mimetic, drug-dependent antibody (DDAb), AP2, an inhibitory monoclonal antibody raised against αIIbβ3. Consistent with their different binding epitopes, a combination of TFV-1 and AP2 did not induce FcγRIIa-mediated activation of the ITAM–Syk–PLCγ2 pathway and platelet aggregation, in contrast to the clinical antithrombotics, abciximab, eptifibatide, and disintegrin TFV-3. Furthermore, TFV-1 selectively inhibits Gα13-mediated platelet aggregation without affecting talin-driven clot firmness, which is responsible for physiological hemostatic processes. At equally efficacious antithrombotic dosages, TFV-1 caused neither severe thrombocytopenia nor bleeding in FcγRIIa-transgenic mice. Likewise, it did not induce hypocoagulation in human whole blood in the rotational thromboelastometry (ROTEM) assay used in perioperative situations. In contrast, TFV-3 and eptifibatide exhibited all of these hemostatic effects. Thus, the αIIbβ3 antagonist, TFV-1, efficaciously prevents arterial thrombosis without adversely affecting hemostasis.
Collapse
|
3
|
Kuo YJ, Chung CH, Huang TF. From Discovery of Snake Venom Disintegrins to A Safer Therapeutic Antithrombotic Agent. Toxins (Basel) 2019; 11:toxins11070372. [PMID: 31247995 PMCID: PMC6669693 DOI: 10.3390/toxins11070372] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 12/31/2022] Open
Abstract
Snake venoms affect blood coagulation and platelet function in diverse ways. Some venom components inhibit platelet function, while other components induce platelet aggregation. Among the platelet aggregation inhibitors, disintegrins have been recognized as unique and potentially valuable tools for examining cell–matrix and cell–cell interactions and for the development of antithrombotic and antiangiogenic agents according to their anti-adhesive and anti-migration effect on tumor cells and antiangiogenesis activities. Disintegrins represent a family of low molecular weight, cysteine-rich, Arg-Gly-Asp(RGD)/Lys-Gly-Asp(KGD)-containing polypeptides, which inhibit fibrinogen binding to integrin αIIbβ3 (i.e., platelet glycoprotein IIb/IIIa), as well as ligand binding to integrins αvβ3, and α5β1 expressed on cells (i.e., fibroblasts, tumor cells, and endothelial cells). This review focuses on the current efforts attained from studies using disintegrins as a tool in the field of arterial thrombosis, angiogenesis, inflammation, and tumor metastasis, and briefly describes their potential therapeutic applications and side effects in integrin-related diseases. Additionally, novel R(K)GD-containing disintegrin TMV-7 mutants are being designed as safer antithrombotics without causing thrombocytopenia and bleeding.
Collapse
Affiliation(s)
- Yu-Ju Kuo
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Ching-Hu Chung
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Tur-Fu Huang
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan.
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| |
Collapse
|
4
|
Chatterjee D, Kaur G, Muradia S, Singh B, Agrewala JN. ImmtorLig_DB: repertoire of virtually screened small molecules against immune receptors to bolster host immunity. Sci Rep 2019; 9:3092. [PMID: 30816123 PMCID: PMC6395627 DOI: 10.1038/s41598-018-36179-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/15/2018] [Indexed: 10/31/2022] Open
Abstract
Host directed therapies to boost immunity against infection are gaining considerable impetus following the observation that use of antibiotics has become a continuous source for the emergence of drug resistant strains of pathogens. Receptors expressed by the cells of immune system play a cardinal role in initiating sequence of events necessary to ameliorate many morbid conditions. Although, ligands for the immune receptors are available; but their use is limited due to complex structure, synthesis and cost-effectiveness. Virtual screening (VS) is an integral part of chemoinformatics and computer-aided drug design (CADD) and aims to streamline the process of drug discovery. ImmtorLig_DB is a repertoire of 5000 novel small molecules, screened from ZINC database and ranked using structure based virtual screening (SBVS) against 25 immune receptors which play a pivotal role in defending and initiating the activation of immune system. Consequently, in the current study, small molecules were screened by docking on the essential domains present on the receptors expressed by cells of immune system. The screened molecules exhibited efficacious binding to immune receptors, and indicated a possibility of discovering novel small molecules. Other features of ImmtorLig_DB include information about availability, clustering analysis, and estimation of absorption, distribution, metabolism, and excretion (ADME) properties of the screened small molecules. Structural comparisons indicate that predicted small molecules may be considered novel. Further, this repertoire is available via a searchable graphical user interface (GUI) through http://bioinfo.imtech.res.in/bvs/immtor/ .
Collapse
Affiliation(s)
| | - Gurkirat Kaur
- CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Shilpa Muradia
- CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Balvinder Singh
- CSIR-Institute of Microbial Technology, Chandigarh, 160036, India.
| | | |
Collapse
|
5
|
Morphometric analysis of spread platelets identifies integrin α IIbβ 3-specific contractile phenotype. Sci Rep 2018; 8:5428. [PMID: 29615672 PMCID: PMC5882949 DOI: 10.1038/s41598-018-23684-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/13/2018] [Indexed: 11/17/2022] Open
Abstract
Haemostatic platelet function is intimately linked to cellular mechanics and cytoskeletal morphology. How cytoskeletal reorganizations give rise to a highly contractile phenotype that is necessary for clot contraction remains poorly understood. To elucidate this process in vitro, we developed a morphometric screen to quantify the spatial organization of actin fibres and vinculin adhesion sites in single spread platelets. Platelets from healthy donors predominantly adopted a bipolar morphology on fibrinogen and fibronectin, whereas distinguishable, more isotropic phenotypes on collagen type I or laminin. Specific integrin αIIbβ3 inhibitors induced an isotropic cytoskeletal organization in a dose-dependent manner. The same trend was observed with decreasing matrix stiffness. Circular F-actin arrangements in platelets from a patient with type II Glanzmann thrombasthenia (GT) were consistent with the residual activity of a small number of αIIbβ3 integrins. Cytoskeletal morphologies in vitro thus inform about platelet adhesion receptor identity and functionality, and integrin αIIbβ3 mechanotransduction fundamentally determines the adoption of a bipolar phenotype associated with contraction. Super-resolution microscopy and electron microscopies further confirmed the stress fibre-like contractile actin architecture. For the first time, our assay allows the unbiased and quantitative assessment of platelet morphologies and could help to identify defective platelet behaviour contributing to elusive bleeding phenotypes.
Collapse
|
6
|
Design, synthesis and evaluation of 1,4-benzodioxine derivatives as novel platelet aggregation inhibitors. Future Med Chem 2018; 10:367-378. [PMID: 29380625 DOI: 10.4155/fmc-2017-0161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AIM To find novel platelet aggregation inhibitors, two new series of 1,4-benzodioxine derivatives were synthesized and screened for the ability to inhibit platelet aggregation. MATERIALS & METHODS The synthesized compounds were evaluated for antiplatelet aggregation activity using human blood platelet and GPIIb/IIIa antagonistic activity. RESULTS Compound 9-2p showed significant antiplatelet activity with the IC50 values of 41.7 and 22.2 μM induced by ADP and thrombin, respectively, more potent than that of LX2421. Compound 9-2p exhibited GPIIb/IIIa antagonistic activity with the IC50 value of 2.3 μM, as potent as RGDs. In vivo study showed that 9-2p displayed remarkable antithrombotic activity, more effective than LX2421, but less effective than tirofiban. CONCLUSION Compound 9-2p showed moderate antiplatelet activity and antithrombotic activity, which could be further optimized based on the target of GPIIb/IIIa.
Collapse
|
7
|
Meanwell NA. Drug-target interactions that involve the replacement or displacement of magnesium ions. Bioorg Med Chem Lett 2017; 27:5355-5372. [DOI: 10.1016/j.bmcl.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 01/11/2023]
|
8
|
Kuo YJ, Chen YR, Hsu CC, Peng HC, Huang TF. An α IIb β 3 antagonist prevents thrombosis without causing Fc receptor γ-chain IIa-mediated thrombocytopenia. J Thromb Haemost 2017; 15:2230-2244. [PMID: 28815933 DOI: 10.1111/jth.13803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Indexed: 12/26/2022]
Abstract
Essentials FcγRIIa-mediated thrombocytopenia is associated with drug-dependent antibodies (DDAbs). We investigated the correlation between αIIb β3 binding epitopes and induction of DDAbs. An FcγRIIa-transgenic mouse model was used to evaluate thrombocytopenia among anti-thrombotics. An antithrombotic with binding motif toward αIIb β-propeller domain has less bleeding tendency. SUMMARY Background Thrombocytopenia, a common side effect of Arg-Gly-Asp-mimetic antiplatelet drugs, is associated with drug-dependent antibodies (DDAbs) that recognize conformation-altered integrin αIIb β3 . Objective To explore the correlation between αIIb β3 binding epitopes and induction of DDAb binding to conformation-altered αIIb β3 , we examined whether two purified disintegrins, TMV-2 and TMV-7, with distinct binding motifs have different effects on induction of αIIb β3 conformational change and platelet aggregation in the presence of AP2, an IgG1 inhibitory mAb raised against αIIb β3 . Methods We investigated the possible mechanisms of intrinsic platelet activation of TMV-2 and TMV-7 in the presence of AP2 by examining the signal cascade, tail bleeding time and immune thrombocytopenia in Fc receptor γ-chain IIa (FcγRIIa) transgenic mice. Results TMV-7 has a binding motif that recognizes the αIIb β-propeller domain of αIIb β3 , unlike that of TMV-2. TMV-7 neither primed the platelets to bind ligand, nor caused a conformational change of αIIb β3 as identified with the ligand-induced binding site mAb AP5. In contrast to eptifibatide and TMV-2, cotreatment of TMV-7 with AP2 did not induce FcγRIIa-mediated platelet aggregation and the downstream activation cascade. Both TMV-2 and TMV-7 efficaciously prevented occlusive thrombosis in vivo. Notably, both eptifibatide and TMV-2 caused severe thrombocytopenia mediated by FcγRIIa, prolonged tail bleeding time in vivo, and repressed human whole blood coagulation indexes, whereas TMV-7 did not impair hemostatic capacity. Conclusions TMV-7 shows antiplatelet and antithrombotic activities resulting from a mechanism different from that of all other tested αIIb β3 antagonists, and may offer advantages as a therapeutic agent with a better safety profile.
Collapse
Affiliation(s)
- Y-J Kuo
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Y-R Chen
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - C-C Hsu
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - H-C Peng
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - T-F Huang
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Miller LM, Pritchard JM, Macdonald SJF, Jamieson C, Watson AJB. Emergence of Small-Molecule Non-RGD-Mimetic Inhibitors for RGD Integrins. J Med Chem 2017; 60:3241-3251. [DOI: 10.1021/acs.jmedchem.6b01711] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lisa M. Miller
- WestCHEM,
Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, U.K
| | - John M. Pritchard
- Fibrosis Discovery
Performance Unit, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Simon J. F. Macdonald
- Fibrosis Discovery
Performance Unit, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Craig Jamieson
- WestCHEM,
Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, U.K
| | - Allan J. B. Watson
- WestCHEM,
Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, U.K
| |
Collapse
|
10
|
Xie Z, Oscar B, Zhao L, Ding X, Cao C, Feng S, Li H, Pan C, Bian Z, Li Y, Wang W, Kong Y, Li Z. Design, synthesis and evaluation of novel 2-amino-3-(naphth-2-yl)propanoic acid derivatives as potent inhibitors of platelet aggregation. Eur J Med Chem 2017; 125:197-209. [DOI: 10.1016/j.ejmech.2016.09.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/04/2016] [Accepted: 09/09/2016] [Indexed: 01/04/2023]
|
11
|
Abstract
Arginine-glycine-aspartate (RGD)-binding integrins, including αvβ1, αvβ3, αvβ5, αvβ6, αvβ8, α5β1, αIIbβ3, and α8β1, recognize the tripeptide motif RGD in their ligands. RGD-binding integrins are involved in various cell functions, including cell proliferation, survival, differentiation, and motility that are critically important to both health and disease. The diagnostic and therapeutic value of some RGD-binding integrin inhibitors are either clinically proven or at different stages of development. In this review, we first summarized the structure and signaling characteristics of RGD-binding integrins. We then discussed the functions of RGD-binding integrins and their association with human disease. Finally, we recapitulated the research efforts and clinical trials of targeting RGD-binding integrins for the diagnosis and treatment of human disease. This comprehensive review of the current advances in RGD-binding integrins could assist scientists and clinicians in gaining a complete understanding of this group of molecules. It can also contribute to the design of new projects to further advance this field of research and to better apply the research results to benefit patients in clinical practice.
Collapse
|
12
|
Polishchuk PG, Samoylenko GV, Khristova TM, Krysko OL, Kabanova TA, Kabanov VM, Kornylov AY, Klimchuk O, Langer T, Andronati SA, Kuz'min VE, Krysko AA, Varnek A. Design, Virtual Screening, and Synthesis of Antagonists of αIIbβ3 as Antiplatelet Agents. J Med Chem 2015; 58:7681-94. [PMID: 26367138 DOI: 10.1021/acs.jmedchem.5b00865] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This article describes design, virtual screening, synthesis, and biological tests of novel αIIbβ3 antagonists, which inhibit platelet aggregation. Two types of αIIbβ3 antagonists were developed: those binding either closed or open form of the protein. At the first step, available experimental data were used to build QSAR models and ligand- and structure-based pharmacophore models and to select the most appropriate tool for ligand-to-protein docking. Virtual screening of publicly available databases (BioinfoDB, ZINC, Enamine data sets) with developed models resulted in no hits. Therefore, small focused libraries for two types of ligands were prepared on the basis of pharmacophore models. Their screening resulted in four potential ligands for open form of αIIbβ3 and four ligands for its closed form followed by their synthesis and in vitro tests. Experimental measurements of affinity for αIIbβ3 and ability to inhibit ADP-induced platelet aggregation (IC50) showed that two designed ligands for the open form 4c and 4d (IC50 = 6.2 nM and 25 nM, respectively) and one for the closed form 12b (IC50 = 11 nM) were more potent than commercial antithrombotic Tirofiban (IC50 = 32 nM).
Collapse
Affiliation(s)
- Pavel G Polishchuk
- A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine , Lustdorfskaya doroga 86, Odessa 65080, Ukraine
| | - Georgiy V Samoylenko
- A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine , Lustdorfskaya doroga 86, Odessa 65080, Ukraine
| | - Tetiana M Khristova
- A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine , Lustdorfskaya doroga 86, Odessa 65080, Ukraine.,Laboratory of Chemoinformatics (UMR 7140 CNRS/UniStra), University of Strasbourg , 1, rue B. Pascal, Strasbourg 67000, France
| | - Olga L Krysko
- A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine , Lustdorfskaya doroga 86, Odessa 65080, Ukraine
| | - Tatyana A Kabanova
- A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine , Lustdorfskaya doroga 86, Odessa 65080, Ukraine
| | - Vladimir M Kabanov
- A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine , Lustdorfskaya doroga 86, Odessa 65080, Ukraine
| | - Alexander Yu Kornylov
- A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine , Lustdorfskaya doroga 86, Odessa 65080, Ukraine
| | - Olga Klimchuk
- Laboratory of Chemoinformatics (UMR 7140 CNRS/UniStra), University of Strasbourg , 1, rue B. Pascal, Strasbourg 67000, France
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna , Althanstraße 14, 1090 Vienna, Austria
| | - Sergei A Andronati
- A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine , Lustdorfskaya doroga 86, Odessa 65080, Ukraine
| | - Victor E Kuz'min
- A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine , Lustdorfskaya doroga 86, Odessa 65080, Ukraine
| | - Andrei A Krysko
- A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine , Lustdorfskaya doroga 86, Odessa 65080, Ukraine
| | - Alexandre Varnek
- Laboratory of Chemoinformatics (UMR 7140 CNRS/UniStra), University of Strasbourg , 1, rue B. Pascal, Strasbourg 67000, France
| |
Collapse
|
13
|
Xie Z, Feng S, Wang Y, Cao C, Huang J, Chen Y, Kong Y, Li Z. Design, synthesis of novel tryptophan derivatives for antiplatelet aggregation activity based on tripeptide pENW (pGlu-Asn-Trp). Eur J Med Chem 2015; 102:363-74. [PMID: 26298494 DOI: 10.1016/j.ejmech.2015.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 12/19/2022]
Abstract
pENW, a three mer peptide derived from Agkistrodon acutus Guenther venom, has been found to be an antagonist of the GPIIb/IIIa receptor and shows antiplatelet aggregation activity. Based on pENW and a GPIIb/IIIa inhibitor Tirofiban, a series of tryptophan derivatives were designed, synthesized and evaluated for their antiplatelet aggregation activity induced by ADP. The most potent compound 87 was also tested for the bleeding time and antithrombotic activity in vivo in comparison with Tirofiban. The results indicated that 87 shows similar antiplatelet aggregation activity as Tirofiban to the aggregation of platelet induced by all of the four agonists, but has lower bleeding risk than Tirofiban, representing a promising lead compound for further study.
Collapse
Affiliation(s)
- Zhouling Xie
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 21009, PR China
| | - Sen Feng
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 21009, PR China
| | - Ying Wang
- School of Life Science & Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Chen Cao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 21009, PR China
| | - Jing Huang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 21009, PR China
| | - Yahui Chen
- School of Life Science & Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Yi Kong
- School of Life Science & Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 21009, PR China.
| |
Collapse
|
14
|
Abstract
This review covers the recent advances in the development of small RGD (Arg-Gly-Asp sequence) containing peptides and their mimetics as potential antithrombotic agents. Glycoprotein IIb/IIIa (GPIIb/IIIa) antagonists include monoclonal antibodies, RGD peptides, peptide hybrids and nonpeptide mimetics. The current trend in the development of nonpeptide mimetics is clearly directed toward orally active and safe antithrombotic drug candidates. But several nonpeptide mimetics, being evaluated for their oral activity in human clinical trials, are currently not approved for clinical use due to poor safety profile. It is expected that newer and more effective nonpeptide mimetics will be developed in the near future.
Collapse
|
15
|
Buitrago L, Rendon A, Liang Y, Simeoni I, Negri A, Filizola M, Ouwehand WH, Coller BS. αIIbβ3 variants defined by next-generation sequencing: predicting variants likely to cause Glanzmann thrombasthenia. Proc Natl Acad Sci U S A 2015; 112:E1898-907. [PMID: 25827233 PMCID: PMC4403182 DOI: 10.1073/pnas.1422238112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Next-generation sequencing is transforming our understanding of human genetic variation but assessing the functional impact of novel variants presents challenges. We analyzed missense variants in the integrin αIIbβ3 receptor subunit genes ITGA2B and ITGB3 identified by whole-exome or -genome sequencing in the ThromboGenomics project, comprising ∼32,000 alleles from 16,108 individuals. We analyzed the results in comparison with 111 missense variants in these genes previously reported as being associated with Glanzmann thrombasthenia (GT), 20 associated with alloimmune thrombocytopenia, and 5 associated with aniso/macrothrombocytopenia. We identified 114 novel missense variants in ITGA2B (affecting ∼11% of the amino acids) and 68 novel missense variants in ITGB3 (affecting ∼9% of the amino acids). Of the variants, 96% had minor allele frequencies (MAF) < 0.1%, indicating their rarity. Based on sequence conservation, MAF, and location on a complete model of αIIbβ3, we selected three novel variants that affect amino acids previously associated with GT for expression in HEK293 cells. αIIb P176H and β3 C547G severely reduced αIIbβ3 expression, whereas αIIb P943A partially reduced αIIbβ3 expression and had no effect on fibrinogen binding. We used receiver operating characteristic curves of combined annotation-dependent depletion, Polyphen 2-HDIV, and sorting intolerant from tolerant to estimate the percentage of novel variants likely to be deleterious. At optimal cut-off values, which had 69-98% sensitivity in detecting GT mutations, between 27% and 71% of the novel αIIb or β3 missense variants were predicted to be deleterious. Our data have implications for understanding the evolutionary pressure on αIIbβ3 and highlight the challenges in predicting the clinical significance of novel missense variants.
Collapse
Affiliation(s)
- Lorena Buitrago
- Allen and Frances Adler Laboratory of Blood and Vascular Biology and
| | - Augusto Rendon
- Department of Haematology, University of Cambridge, Cambridge CB2 0PT, United Kingdom; Medical Research Council Biostatistics Unit, Cambridge Biomedical Campus, Cambridge Institute of Public Health, Cambridge, United Kingdom; National Health Service Blood & Transplant, Cambridge, United Kingdom
| | - Yupu Liang
- Research Bioinformatics, The Rockefeller University, New York, NY 10065
| | - Ilenia Simeoni
- Department of Haematology, University of Cambridge, Cambridge CB2 0PT, United Kingdom; National Health Service Blood & Transplant, Cambridge, United Kingdom
| | - Ana Negri
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and
| | - Marta Filizola
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge, Cambridge CB2 0PT, United Kingdom; National Health Service Blood & Transplant, Cambridge, United Kingdom; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Barry S Coller
- Allen and Frances Adler Laboratory of Blood and Vascular Biology and
| |
Collapse
|
16
|
Wang Y, Zhao Y, Sun R, Kong W, Wang B, Yang G, Li Y. Discovery of novel antagonists of glycoprotein IIb/IIIa-mediated platelet aggregation through virtual screening. Bioorg Med Chem Lett 2015; 25:1249-53. [PMID: 25677660 DOI: 10.1016/j.bmcl.2015.01.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/19/2015] [Accepted: 01/22/2015] [Indexed: 11/26/2022]
Abstract
The glycoprotein IIb/IIIa receptor is the final common pathway of platelet aggregation, regardless of the agonist, and thus represents an ideal therapeutic target for blocking thrombus formation. RUC-2 is a novel glycoprotein IIb/IIIa inhibitor of adenosine-5'-diphosphate (ADP)-induced platelet aggregation, importantly which exhibits a unique mode of binding with respect to classical Arg-Gly-Asp (RGD)-based glycoprotein IIb/IIIa antagonists. To identify new chemotypes that inhibit glycoprotein IIb/IIIa-mediated platelet aggregation like RUC-2, we performed a combination of structure-based pharmacophore screening and structure-based virtual screening approach to screen over 7.3 million small molecules based on the RUC-2-glycoprotein IIb/IIIa crystal structure. Three of the eleven hit compounds identified by virtual screening showed promising activity with IC50 values between 16.9 and 90.6μmolL(-1) in a human platelet aggregation assay induced by ADP and thrombin. The binding conformations of these three were analyzed to provide a rationalization of their activity profile. These compounds may serve as potential novel scaffolds for further development of glycoprotein IIb/IIIa antagonists.
Collapse
Affiliation(s)
- Yawen Wang
- First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Yang Zhao
- School of Pharmacy, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an 710061, PR China
| | - Rui Sun
- School of Pharmacy, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an 710061, PR China
| | - Wanjun Kong
- School of Pharmacy, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an 710061, PR China
| | - Bing Wang
- College of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Guangde Yang
- School of Pharmacy, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an 710061, PR China
| | - Yiping Li
- School of Pharmacy, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an 710061, PR China.
| |
Collapse
|
17
|
Abstract
From the initial description of platelets in 1882, their propensity to aggregate and to contribute to thrombosis was apparent. Indeed, excessive platelet aggregation is associated with myocardial infarction and other thrombotic diseases whereas Glanzmann thrombasthenia, in which platelet aggregation is reduced, is a bleeding syndrome. Over the last half of the 20th century, many investigators have provided insights into the cellular and molecular basis for platelet aggregation. The major membrane protein on platelets, integrin αIIbβ3, mediates this response by rapidly transiting from its resting to an activated state in which it serves as a receptor for ligands that can bridge platelets together. Monoclonal antibodies, natural products, and small peptides were all shown to inhibit αIIbβ3 dependent platelet aggregation, and these inhibitors became the forerunners of antagonists that proceeded through preclinical testing and into large patient trials to treat acute coronary syndromes, particularly in the context of percutaneous coronary interventions. Three such αIIbβ3 antagonists, abciximab, eptifibatide, and tirofiban, received Food and Drug Administration approval. Over the past 15 years, millions of patients have been treated with these αIIbβ3 antagonists and many lives have been saved by their administration. With the side effect of increased bleeding and the development of new antithrombotic drugs, the use of αIIbβ3 antagonists is waning. Nevertheless, they are still widely used for the prevention of periprocedural thrombosis during percutaneous coronary interventions. This review focuses on the biology of αIIbβ3, the development of its antagonists, and some of the triumphs and shortcomings of αIIbβ3 antagonism.
Collapse
Affiliation(s)
- Kamila Bledzka
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | |
Collapse
|
18
|
Negri A, Rives ML, Caspers MJ, Prisinzano TE, Javitch JA, Filizola M. Discovery of a novel selective kappa-opioid receptor agonist using crystal structure-based virtual screening. J Chem Inf Model 2013; 53:521-6. [PMID: 23461591 DOI: 10.1021/ci400019t] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Kappa-opioid (KOP) receptor agonists exhibit analgesic effects without activating reward pathways. In the search for nonaddictive opioid therapeutics and novel chemical tools to study physiological functions regulated by the KOP receptor, we screened in silico its recently released inactive crystal structure. A selective novel KOP receptor agonist emerged as a notable result and is proposed as a new chemotype for the study of the KOP receptor in the etiology of drug addiction, depression, and/or pain.
Collapse
Affiliation(s)
- Ana Negri
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | | | | | | | | | | |
Collapse
|