1
|
Tsedilin A, Schmidtke M, Monakhova N, Leneva I, Falynskova I, Khrenova M, Lane TR, Ekins S, Makarov V. Indole-core inhibitors of influenza a neuraminidase: iterative medicinal chemistry and molecular modeling. Eur J Med Chem 2024; 277:116768. [PMID: 39163780 DOI: 10.1016/j.ejmech.2024.116768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024]
Abstract
Influenza viruses that cause seasonal and pandemic flu are a permanent health threat. The surface glycoprotein, neuraminidase, is crucial for the infectivity of the virus and therefore an attractive target for flu drug discovery campaigns. We have designed and synthesized more than 40 3-indolinone derivatives. We mainly investigated the role of substituents at the 2 position of the core as well as the introduction of substituents or a nitrogen atom in the fused phenyl ring of the core for inhibition of influenza virus neuraminidase activity and replication in vitro and in vivo. After evaluating the compounds for their ability to inhibit the viral neuraminidase, six potent inhibitors 3c, 3e, 7c, 12o, 12v, 18d were progressed to evaluate for cytotoxicity and inhibition of influenza virus A/PR/8/34 replication in in MDCK cells. Two hit compounds 3e and 12o were tested in an animal model of influenza virus infection. Molecular mechanism of the 3-indolinone derivatives interactions with the neuraminidase was revealed in molecular dynamic simulations. Proposed inhibitors bind to the 430-cavity that is different from the conventional binding site of commercial compounds. The most promising 3-indolinone inhibitors demonstrate stronger interactions with the neuraminidase in molecular models that supports proposed binding site.
Collapse
Affiliation(s)
- Andrey Tsedilin
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Leninsky prospect, 33, build. 2, 119071, Moscow, Russia
| | - Michaela Schmidtke
- Institute of Medical Microbiology, Section of Experimental Virology, Jena University Hospital, Hans-Knöll-Straße 2, 07745, Jena, Germany
| | - Natalia Monakhova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Leninsky prospect, 33, build. 2, 119071, Moscow, Russia
| | - Irina Leneva
- Mechnikov Research Institute of Vaccines and Sera, Department of Virology, 105064, Moscow, Russia
| | - Irina Falynskova
- Mechnikov Research Institute of Vaccines and Sera, Department of Virology, 105064, Moscow, Russia
| | - Maria Khrenova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Leninsky prospect, 33, build. 2, 119071, Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC27606, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC27606, USA
| | - Vadim Makarov
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Leninsky prospect, 33, build. 2, 119071, Moscow, Russia.
| |
Collapse
|
2
|
Loop 422–437 in NanA from Streptococcus pneumoniae plays the role of an active site lid and is associated with allosteric regulation. Comput Biol Med 2022; 144:105290. [DOI: 10.1016/j.compbiomed.2022.105290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 11/03/2022]
|
3
|
Ghulam A, Lei X, Zhang Y, Wu Z. Human Drug-Pathway Association Prediction Based on Network Consistency Projection. Comput Biol Chem 2022; 97:107624. [DOI: 10.1016/j.compbiolchem.2022.107624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/24/2021] [Accepted: 01/05/2022] [Indexed: 11/26/2022]
|
4
|
Timonina D, Sharapova Y, Švedas V, Suplatov D. Bioinformatic analysis of subfamily-specific regions in 3D-structures of homologs to study functional diversity and conformational plasticity in protein superfamilies. Comput Struct Biotechnol J 2021; 19:1302-1311. [PMID: 33738079 PMCID: PMC7933735 DOI: 10.1016/j.csbj.2021.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Local 3D-structural differences in homologous proteins contribute to functional diversity observed in a superfamily, but so far received little attention as bioinformatic analysis was usually carried out at the level of amino acid sequences. We have developed Zebra3D - the first-of-its-kind bioinformatic software for systematic analysis of 3D-alignments of protein families using machine learning. The new tool identifies subfamily-specific regions (SSRs) - patterns of local 3D-structure (i.e. single residues, loops, or secondary structure fragments) that are spatially equivalent within families/subfamilies, but are different among them, and thus can be associated with functional diversity and function-related conformational plasticity. Bioinformatic analysis of protein superfamilies by Zebra3D can be used to study 3D-determinants of catalytic activity and specific accommodation of ligands, help to prepare focused libraries for directed evolution or assist development of chimeric enzymes with novel properties by exchange of equivalent regions between homologs, and to characterize plasticity in binding sites. A companion Mustguseal web-server is available to automatically construct a 3D-alignment of functionally diverse proteins, thus reducing the minimal input required to operate Zebra3D to a single PDB code. The Zebra3D + Mustguseal combined approach provides the opportunity to systematically explore the value of SSRs in superfamilies and to use this information for protein design and drug discovery. The software is available open-access at https://biokinet.belozersky.msu.ru/Zebra3D.
Collapse
Affiliation(s)
- Daria Timonina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Lenin Hills 1-73, Moscow 119234, Russia
| | - Yana Sharapova
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Lenin Hills 1-73, Moscow 119234, Russia
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Lenin Hills 1-73, Moscow 119234, Russia
| | - Vytas Švedas
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Lenin Hills 1-73, Moscow 119234, Russia
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Lenin Hills 1-73, Moscow 119234, Russia
| | - Dmitry Suplatov
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Lenin Hills 1-73, Moscow 119234, Russia
- Corresponding author.
| |
Collapse
|
5
|
Plasticity of the 340-Loop in Influenza Neuraminidase Offers New Insight for Antiviral Drug Development. Int J Mol Sci 2020; 21:ijms21165655. [PMID: 32781779 PMCID: PMC7460844 DOI: 10.3390/ijms21165655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 01/10/2023] Open
Abstract
The recently discovered 340-cavity in influenza neuraminidase (NA) N6 and N7 subtypes has introduced new possibilities for rational structure-based drug design. However, the plasticity of the 340-loop (residues 342–347) and the role of the 340-loop in NA activity and substrate binding have not been deeply exploited. Here, we investigate the mechanism of 340-cavity formation and demonstrate for the first time that seven of nine NA subtypes are able to adopt an open 340-cavity over 1.8 μs total molecular dynamics simulation time. The finding that the 340-loop plays a role in the sialic acid binding pathway suggests that the 340-cavity can function as a druggable pocket. Comparing the open and closed conformations of the 340-loop, the side chain orientation of residue 344 was found to govern the formation of the 340-cavity. Additionally, the conserved calcium ion was found to substantially influence the stability of the 340-loop. Our study provides dynamical evidence supporting the 340-cavity as a druggable hotspot at the atomic level and offers new structural insight in designing antiviral drugs.
Collapse
|
6
|
Thiamine and selected thiamine antivitamins - biological activity and methods of synthesis. Biosci Rep 2018; 38:BSR20171148. [PMID: 29208764 PMCID: PMC6435462 DOI: 10.1042/bsr20171148] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 12/22/2022] Open
Abstract
Thiamine plays a very important coenzymatic and non-coenzymatic role in the regulation of basic metabolism. Thiamine diphosphate is a coenzyme of many enzymes, most of which occur in prokaryotes. Pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes as well as transketolase are the examples of thiamine-dependent enzymes present in eukaryotes, including human. Therefore, thiamine is considered as drug or diet supplement which can support the treatment of many pathologies including neurodegenerative and vascular system diseases. On the other hand, thiamine antivitamins, which can interact with thiamine-dependent enzymes impeding their native functions, thiamine transport into the cells or a thiamine diphosphate synthesis, are good propose to drug design. The development of organic chemistry in the last century allowed the synthesis of various thiamine antimetabolites such as amprolium, pyrithiamine, oxythiamine, or 3-deazathiamine. Results of biochemical and theoretical chemistry research show that affinity to thiamine diphosphate-dependent enzymes of these synthetic molecules exceeds the affinity of native coenzyme. Therefore, some of them have already been used in the treatment of coccidiosis (amprolium), other are extensively studied as cytostatics in the treatment of cancer or fungal infections (oxythiamine and pyrithiamine). This review summarizes the current knowledge concerning the synthesis and mechanisms of action of selected thiamine antivitamins and indicates the potential of their practical use.
Collapse
|
7
|
Escalante DE, Aukema KG, Wackett LP, Aksan A. Simulation of the Bottleneck Controlling Access into a Rieske Active Site: Predicting Substrates of Naphthalene 1,2-Dioxygenase. J Chem Inf Model 2017; 57:550-561. [PMID: 28170277 DOI: 10.1021/acs.jcim.6b00469] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Naphthalene 1,2-dioxygenase (NDO) has been computationally understudied despite the extensive experimental knowledge obtained for this enzyme, including numerous crystal structures and over 100 demonstrated substrates. In this study, we have developed a substrate prediction model that moves away from the traditional active-site-centric approach to include the energetics of substrate entry into the active site. By comparison with experimental data, the accuracy of the model for predicting substrate oxidation is 92%, with a positive predictive value of 93% and a negative predictive value of 98%. Also, the present analysis has revealed that the amino acid residues that provided the largest energetic barrier for compounds entering the active site are residues F224, L227, P234, and L235. In addition, F224 is proposed to play a role in controlling ligand entrance via π-π stacking stabilization as well as providing stabilization via T-shaped π-π interactions once the ligand has reached the active-site cavity. Overall, we present a method capable of being scaled to computationally discover thousands of substrates of NDO, and we present parameters to be used for expanding the prediction method to other members of the Rieske non-heme iron oxygenase family.
Collapse
Affiliation(s)
- Diego E Escalante
- Department of Mechanical Engineering, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Kelly G Aukema
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota , Minneapolis, Minnesota 55455, United States.,BioTechnology Institute, University of Minnesota , St. Paul, Minnesota 55108, United States
| | - Lawrence P Wackett
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota , Minneapolis, Minnesota 55455, United States.,BioTechnology Institute, University of Minnesota , St. Paul, Minnesota 55108, United States
| | - Alptekin Aksan
- Department of Mechanical Engineering, University of Minnesota , Minneapolis, Minnesota 55455, United States.,BioTechnology Institute, University of Minnesota , St. Paul, Minnesota 55108, United States
| |
Collapse
|
8
|
Yusuf M, Mohamed N, Mohamad S, Janezic D, Damodaran KV, Wahab HA. H274Y’s Effect on Oseltamivir Resistance: What Happens Before the Drug Enters the Binding Site. J Chem Inf Model 2016; 56:82-100. [DOI: 10.1021/acs.jcim.5b00331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Muhammad Yusuf
- Pharmaceutical
Design and Simulation (PhDS) Laboratory, School of Pharmaceutical
Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Nornisah Mohamed
- Pharmaceutical
Design and Simulation (PhDS) Laboratory, School of Pharmaceutical
Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Suriyati Mohamad
- Pharmaceutical
Design and Simulation (PhDS) Laboratory, School of Pharmaceutical
Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
- School
of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Dusanka Janezic
- Faculty
of Mathematics, Natural Sciences and Information Technologies, University of Primorska, SI-6000 Koper, Slovenia
| | - K. V. Damodaran
- Pharmaceutical
Design and Simulation (PhDS) Laboratory, School of Pharmaceutical
Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Habibah A. Wahab
- Pharmaceutical
Design and Simulation (PhDS) Laboratory, School of Pharmaceutical
Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
- Malaysian
Institute of Pharmaceuticals and Nutraceuticals, Ministry of Science, Technology and Innovation, Halaman Bukit Gambir, 11900 Bayan Lepas, Pulau Pinang, Malaysia
| |
Collapse
|
9
|
Nguyen H, Tran T, Fukunishi Y, Higo J, Nakamura H, Le L. Computational Study of Drug Binding Affinity to Influenza A Neuraminidase Using Smooth Reaction Path Generation (SRPG) Method. J Chem Inf Model 2015; 55:1936-43. [DOI: 10.1021/acs.jcim.5b00319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hung Nguyen
- Life
Science Laboratory, Institute for Computational Science and Technology, Ho Chi
Minh City, Vietnam
| | - Tien Tran
- University of Technology, Ho Chi Minh City, Vietnam
| | - Yoshifumi Fukunishi
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Junichi Higo
- Institute
for Protein Research, Osaka University, Osaka, Japan
| | - Haruki Nakamura
- Institute
for Protein Research, Osaka University, Osaka, Japan
| | - Ly Le
- Life
Science Laboratory, Institute for Computational Science and Technology, Ho Chi
Minh City, Vietnam
- School
of Biotechnology, International University, Vietnam National University, Ho
Chi Minh City, Vietnam
| |
Collapse
|