1
|
Nguyen TQT, Lund FW, Zanjani AAH, Khandelia H. Magic mushroom extracts in lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183957. [PMID: 35561790 DOI: 10.1016/j.bbamem.2022.183957] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The active hallucinogen of magic mushrooms, psilocin, is being repurposed to treat nicotine addiction and treatment-resistant depression. Psilocin belongs to the tryptamine class of psychedelic compounds which include the hormone serotonin. It is believed that psilocin exerts its effect by binding to the serotonin 5-HT2A receptor. However, recent in-vivo evidence suggests that psilocin may employ a different mechanism to exert its effects. Membrane-mediated receptor desensitization of neurotransmitter receptors is one such mechanism. We compare the impact of the neutral and charged versions of psilocin and serotonin on the properties of zwitterionic and anionic lipid membranes using molecular dynamics simulations and calorimetry. Both compounds partition to the lipid interface and induce membrane thinning. The tertiary amine in psilocin, as opposed to the primary amine in serotonin, limits psilocin's impact on the membrane although more psilocin partitions into the membrane than serotonin. Calorimetry corroborates that both compounds induce a classical melting point depression like anesthetics do. Our results also lend support to a membrane-mediated receptor-binding mechanism for both psilocin and serotonin and provide physical insights into subtle chemical changes that can alter the membrane-binding of psychedelic compounds.
Collapse
Affiliation(s)
- Teresa Quynh Tram Nguyen
- Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Frederik Wendelboe Lund
- Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ali Asghar Hakami Zanjani
- Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | - Himanshu Khandelia
- Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| |
Collapse
|
2
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
3
|
Yang H, Zhou M, Li H, Liu L, Zhou Y, Long X. Collective absorption of 2,4,6-trinitrotoluene into lipid membranes and its effects on bilayer properties. A computational study. RSC Adv 2019; 9:39046-39054. [PMID: 35540671 PMCID: PMC9075975 DOI: 10.1039/c9ra08408h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/22/2019] [Indexed: 11/21/2022] Open
Abstract
The widely used explosive, 2,4,6-trinitrotoluene (TNT), is a highly toxic chemical, which can cause hepatitis, cataracts, jaundice and so on, in humans. The interaction between TNT and biological membranes is crucial for understanding its toxic effects. Here, we mainly focused on molecular-level mechanisms for the collective adsorption of TNT into lipid membranes and the corresponding effects on bilayer properties by all-atom molecular dynamics simulations. We revealed that TNT can readily form an aggregate in the aqueous phase and quickly approach the surface of the membrane. At low concentrations of TNT (7 mol%), the aggregate is unstable and breaks up after several nanoseconds, and then the dispersed TNT molecules enter the membrane alone. At high concentrations (14 mol%), the aggregate is adsorbed as a whole and remains stable inside the membrane. After some of the TNT is absorbed by the membrane, the remaining TNT across the membrane would have greater permeability, i.e., the calculated permeability coefficient (P) is increased from 1.7 × 10-2 to 18.3 cm s-1. Correspondingly, a higher bioconcentration factor (BCF) was also observed. The increased level is more pronounced in the presence of TNT aggregates (i.e., high concentrations). This phenomenon is closely related to the strong interaction between TNT molecules. The results suggested that TNT molecules that have entered into the membrane can facilitate the membrane uptake, permeation and bioaccumulation of subsequent TNT molecules, exhibiting a synergistic effect. This work has a certain significance for understanding the toxicity of TNT.
Collapse
Affiliation(s)
- Hong Yang
- School of Material Science and Engineering, Tsinghua University Beijing 100084 China.,Institute of Chemical Materials, China Academy of Engineering and Physics Mianyang 621900 China
| | - Mi Zhou
- Institute of Chemical Materials, China Academy of Engineering and Physics Mianyang 621900 China
| | - Huarong Li
- Institute of Chemical Materials, China Academy of Engineering and Physics Mianyang 621900 China
| | - Liu Liu
- Institute of Chemical Materials, China Academy of Engineering and Physics Mianyang 621900 China
| | - Yang Zhou
- Institute of Chemical Materials, China Academy of Engineering and Physics Mianyang 621900 China
| | - Xinping Long
- Institute of Chemical Materials, China Academy of Engineering and Physics Mianyang 621900 China
| |
Collapse
|
4
|
Penetration enhancement of menthol on quercetin through skin: insights from atomistic simulation. J Mol Model 2019; 25:235. [DOI: 10.1007/s00894-019-4135-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 07/11/2019] [Indexed: 12/20/2022]
|
5
|
Yang H, Li H, Liu L, Zhou Y, Long X. Molecular Simulation Studies on the Interactions of 2,4,6-Trinitrotoluene and Its Metabolites with Lipid Membranes. J Phys Chem B 2019; 123:6481-6491. [DOI: 10.1021/acs.jpcb.9b03033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Hong Yang
- School of Material Science and Engineering, Tsinghua University, Beijing 100084, China
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Huarong Li
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Liu Liu
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Yang Zhou
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Xinping Long
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| |
Collapse
|
6
|
Pezeshkian W, Khandelia H, Marsh D. Lipid Configurations from Molecular Dynamics Simulations. Biophys J 2018; 114:1895-1907. [PMID: 29694867 PMCID: PMC5937052 DOI: 10.1016/j.bpj.2018.02.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 01/10/2023] Open
Abstract
The extent to which current force fields faithfully reproduce conformational properties of lipids in bilayer membranes, and whether these reflect the structural principles established for phospholipids in bilayer crystals, are central to biomembrane simulations. We determine the distribution of dihedral angles in palmitoyl-oleoyl phosphatidylcholine from molecular dynamics simulations of hydrated fluid bilayer membranes. We compare results from the widely used lipid force field of Berger et al. with those from the most recent C36 release of the CHARMM force field for lipids. Only the CHARMM force field produces the chain inequivalence with sn-1 as leading chain that is characteristic of glycerolipid packing in fluid bilayers. The exposure and high partial charge of the backbone carbonyls in Berger lipids leads to artifactual binding of Na+ ions reported in the literature. Both force fields predict coupled, near-symmetrical distributions of headgroup dihedral angles, which is compatible with models of interconverting mirror-image conformations used originally to interpret NMR order parameters. The Berger force field produces rotamer populations that correspond to the headgroup conformation found in a phosphatidylcholine lipid bilayer crystal, whereas CHARMM36 rotamer populations are closer to the more relaxed crystal conformations of phosphatidylethanolamine and glycerophosphocholine. CHARMM36 alone predicts the correct relative signs of the time-average headgroup order parameters, and reasonably reproduces the full range of NMR data from the phosphate diester to the choline methyls. There is strong motivation to seek further experimental criteria for verifying predicted conformational distributions in the choline headgroup, including the 31P chemical shift anisotropy and 14N and CD3 NMR quadrupole splittings.
Collapse
Affiliation(s)
- Weria Pezeshkian
- MEMPHYS-Centre for Biomembrane Physics, University of Southern Denmark, Odense M, Denmark
| | - Himanshu Khandelia
- MEMPHYS-Centre for Biomembrane Physics, University of Southern Denmark, Odense M, Denmark
| | - Derek Marsh
- MEMPHYS-Centre for Biomembrane Physics, University of Southern Denmark, Odense M, Denmark; Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany.
| |
Collapse
|
7
|
Skrobecki P, Chmielińska A, Bonarek P, Stepien P, Wisniewska-Becker A, Dziedzicka-Wasylewska M, Polit A. Sulpiride, Amisulpride, Thioridazine, and Olanzapine: Interaction with Model Membranes. Thermodynamic and Structural Aspects. ACS Chem Neurosci 2017; 8:1543-1553. [PMID: 28375612 DOI: 10.1021/acschemneuro.7b00057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neuroleptic drugs are widely applied in effective treatment of schizophrenia and related disorders. The lipophilic character of neuroleptics means that they tend to accumulate in the lipid membranes, impacting their functioning and processing. In this paper, the effect of four drugs, namely, thioridazine, olanzapine, sulpiride, and amisulpride, on neutral and negatively charged lipid bilayers was examined. The interaction of neuroleptics with lipids and the subsequent changes in the membrane physical properties was assessed using several complementary biophysical approaches (isothermal titration calorimetry, electron paramagnetic resonance spectroscopy, dynamic light scattering, and ζ potential measurements). We have determined the thermodynamic parameters, that is, the enthalpy of interaction and the binding constant, to describe the interactions of the investigated drugs with model membranes. Unlike thioridazine and olanzapine, which bind to both neutral and negatively charged membranes, amisulpride interacts with only the negatively charged one, while sulpiride does not bind to any of them. The mechanism of olanzapine and thioridazine insertion into the bilayer membrane cannot be described merely by a simple molecule partition between two different phases (the aqueous and the lipid phase). We have estimated the number of protons transferred in the course of drug binding to determine which of its forms, ionized or neutral, binds more strongly to the membrane. Finally, electron paramagnetic resonance results indicated that the drugs are localized near the water-membrane interface of the bilayer and presence of a negative charge promotes their burying deeper into the membrane.
Collapse
Affiliation(s)
- Piotr Skrobecki
- Department
of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland
| | - Anna Chmielińska
- Faculty of Biochemistry,
Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Piotr Bonarek
- Faculty of Biochemistry,
Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Piotr Stepien
- Faculty of Biochemistry,
Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Anna Wisniewska-Becker
- Faculty of Biochemistry,
Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Marta Dziedzicka-Wasylewska
- Faculty of Biochemistry,
Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
- Department
of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland
| | - Agnieszka Polit
- Faculty of Biochemistry,
Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
8
|
Lopes D, Jakobtorweihen S, Nunes C, Sarmento B, Reis S. Shedding light on the puzzle of drug-membrane interactions: Experimental techniques and molecular dynamics simulations. Prog Lipid Res 2017; 65:24-44. [DOI: 10.1016/j.plipres.2016.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 11/30/2016] [Accepted: 12/03/2016] [Indexed: 12/20/2022]
|
9
|
Bunker A, Magarkar A, Viitala T. Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2334-2352. [DOI: 10.1016/j.bbamem.2016.02.025] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/22/2023]
|
10
|
de Keijzer J, Mulder A, de Haas PEW, de Ru AH, Heerkens EM, Amaral L, van Soolingen D, van Veelen PA. Thioridazine Alters the Cell-Envelope Permeability of Mycobacterium tuberculosis. J Proteome Res 2016; 15:1776-86. [PMID: 27068340 DOI: 10.1021/acs.jproteome.5b01037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The increasing occurrence of multidrug resistant tuberculosis exerts a major burden on treatment of this infectious disease. Thioridazine, previously used as a neuroleptic, is active against extensively drug resistant tuberculosis when added to other second- and third-line antibiotics. By quantitatively studying the proteome of thioridazine-treated Mycobacterium tuberculosis, we discovered the differential abundance of several proteins that are involved in the maintenance of the cell-envelope permeability barrier. By assessing the accumulation of fluorescent dyes in mycobacterial cells over time, we demonstrate that long-term drug exposure of M. tuberculosis indeed increased the cell-envelope permeability. The results of the current study demonstrate that thioridazine induced an increase in cell-envelope permeability and thereby the enhanced uptake of compounds. These results serve as a novel explanation to the previously reported synergistic effects between thioridazine and other antituberculosis drugs. This new insight in the working mechanism of this antituberculosis compound could open novel perspectives of future drug-administration regimens in combinational therapy.
Collapse
Affiliation(s)
- Jeroen de Keijzer
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre (LUMC) , Leiden, 2300 RC The Netherlands
| | | | | | - Arnoud H de Ru
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre (LUMC) , Leiden, 2300 RC The Netherlands
| | | | - Leonard Amaral
- Travel Medicine of the CMDT, Institute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa , Lisboa, 1349-008 Portugal
| | - Dick van Soolingen
- Departments of Pulmonary Diseases and Medical Microbiology, Radboud University Medical Centre , Nijmegen, 6500 HB The Netherlands
| | - Peter A van Veelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre (LUMC) , Leiden, 2300 RC The Netherlands
| |
Collapse
|
11
|
Pöyry S, Vattulainen I. Role of charged lipids in membrane structures - Insight given by simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2322-2333. [PMID: 27003126 DOI: 10.1016/j.bbamem.2016.03.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 01/28/2023]
Abstract
Lipids and proteins are the main components of cell membranes. It is becoming increasingly clear that lipids, in addition to providing an environment for proteins to work in, are in many cases also able to modulate the structure and function of those proteins. Particularly charged lipids such as phosphatidylinositols and phosphatidylserines are involved in several examples of such effects. Molecular dynamics simulations have proved an invaluable tool in exploring these aspects. This so-called computational microscope can provide both complementing explanations for the experimental results and guide experiments to fruitful directions. In this paper, we review studies that have utilized molecular dynamics simulations to unravel the roles of charged lipids in membrane structures. We focus on lipids as active constituents of the membranes, affecting both general membrane properties as well as non-lipid membrane components, mainly proteins. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Sanja Pöyry
- Department of Physics, Tampere University of Technology, POB 692, FI-33101 Tampere, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, POB 692, FI-33101 Tampere, Finland; MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark; Department of Physics, University of Helsinki, POB 64, FI-00014 Helsinki, Finland.
| |
Collapse
|
12
|
Keyzer H, Fey SJ, Thornton B, Kristiansen JE. Molar ratios of therapeutic water-soluble phenothiazine·water-insoluble phospholipid adducts reveal a Fibonacci correlation and a putative link for structure–activity relationships. RSC Adv 2015. [DOI: 10.1039/c4ra16551a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The fact that non-antibiotics can sensitise microorganisms for antibiotic treatment suggests that these molecules have valuable potential to treat multiple drug resistance.
Collapse
Affiliation(s)
- Hendrik Keyzer
- Department of Chemistry and Biochemistry
- California State University
- Los Angeles
- USA
| | - Stephen J. Fey
- Department of Biochemistry and Molecular Biology
- University of Southern Denmark
- DK-5230 Odense
- Denmark
| | - Barry Thornton
- University of Technology
- School of Mathematical Sciences
- School of Physics
- University of Sydney
- Sydney
| | - Jette E. Kristiansen
- MEMPHYS
- Department for Physics
- Chemistry and Pharmacy
- University of Southern Denmark
- DK-5230 Odense
| |
Collapse
|
13
|
Róg T, Vattulainen I. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes? Chem Phys Lipids 2014; 184:82-104. [PMID: 25444976 DOI: 10.1016/j.chemphyslip.2014.10.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/24/2014] [Accepted: 10/25/2014] [Indexed: 12/14/2022]
Abstract
Lipids rafts are considered to be functional nanoscale membrane domains enriched in cholesterol and sphingolipids, characteristic in particular of the external leaflet of cell membranes. Lipids, together with membrane-associated proteins, are therefore considered to form nanoscale units with potential specific functions. Although the understanding of the structure of rafts in living cells is quite limited, the possible functions of rafts are widely discussed in the literature, highlighting their importance in cellular functions. In this review, we discuss the understanding of rafts that has emerged based on recent atomistic and coarse-grained molecular dynamics simulation studies on the key lipid raft components, which include cholesterol, sphingolipids, glycolipids, and the proteins interacting with these classes of lipids. The simulation results are compared to experiments when possible.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, Tampere, Finland; MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
14
|
Kang M, Loverde SM. Molecular Simulation of the Concentration-Dependent Interaction of Hydrophobic Drugs with Model Cellular Membranes. J Phys Chem B 2014; 118:11965-72. [DOI: 10.1021/jp5047613] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Myungshim Kang
- Department of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New York 10314, United States
| | - Sharon M. Loverde
- Department of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New York 10314, United States
| |
Collapse
|