1
|
Chialva U, González Boscá V, Rotstein HG. Low-dimensional models of single neurons: a review. BIOLOGICAL CYBERNETICS 2023; 117:163-183. [PMID: 37060453 DOI: 10.1007/s00422-023-00960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/05/2023] [Indexed: 06/13/2023]
Abstract
The classical Hodgkin-Huxley (HH) point-neuron model of action potential generation is four-dimensional. It consists of four ordinary differential equations describing the dynamics of the membrane potential and three gating variables associated to a transient sodium and a delayed-rectifier potassium ionic currents. Conductance-based models of HH type are higher-dimensional extensions of the classical HH model. They include a number of supplementary state variables associated with other ionic current types, and are able to describe additional phenomena such as subthreshold oscillations, mixed-mode oscillations (subthreshold oscillations interspersed with spikes), clustering and bursting. In this manuscript we discuss biophysically plausible and phenomenological reduced models that preserve the biophysical and/or dynamic description of models of HH type and the ability to produce complex phenomena, but the number of effective dimensions (state variables) is lower. We describe several representative models. We also describe systematic and heuristic methods of deriving reduced models from models of HH type.
Collapse
Affiliation(s)
- Ulises Chialva
- Departamento de Matemática, Universidad Nacional del Sur and CONICET, Bahía Blanca, Buenos Aires, Argentina
| | | | - Horacio G Rotstein
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, New Jersey, USA.
- Behavioral Neurosciences Program, Rutgers University, Newark, NJ, USA.
- Corresponding Investigators Group, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Pena RFO, Rotstein HG. The voltage and spiking responses of subthreshold resonant neurons to structured and fluctuating inputs: persistence and loss of resonance and variability. BIOLOGICAL CYBERNETICS 2022; 116:163-190. [PMID: 35038010 DOI: 10.1007/s00422-021-00919-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
We systematically investigate the response of neurons to oscillatory currents and synaptic-like inputs and we extend our investigation to non-structured synaptic-like spiking inputs with more realistic distributions of presynaptic spike times. We use two types of chirp-like inputs consisting of (i) a sequence of cycles with discretely increasing frequencies over time, and (ii) a sequence having the same cycles arranged in an arbitrary order. We develop and use a number of frequency-dependent voltage response metrics to capture the different aspects of the voltage response, including the standard impedance (Z) and the peak-to-trough amplitude envelope ([Formula: see text]) profiles. We show that Z-resonant cells (cells that exhibit subthreshold resonance in response to sinusoidal inputs) also show [Formula: see text]-resonance in response to sinusoidal inputs, but generally do not (or do it very mildly) in response to square-wave and synaptic-like inputs. In the latter cases the resonant response using Z is not predictive of the preferred frequencies at which the neurons spike when the input amplitude is increased above subthreshold levels. We also show that responses to conductance-based synaptic-like inputs are attenuated as compared to the response to current-based synaptic-like inputs, thus providing an explanation to previous experimental results. These response patterns were strongly dependent on the intrinsic properties of the participating neurons, in particular whether the unperturbed Z-resonant cells had a stable node or a focus. In addition, we show that variability emerges in response to chirp-like inputs with arbitrarily ordered patterns where all signals (trials) in a given protocol have the same frequency content and the only source of uncertainty is the subset of all possible permutations of cycles chosen for a given protocol. This variability is the result of the multiple different ways in which the autonomous transient dynamics is activated across cycles in each signal (different cycle orderings) and across trials. We extend our results to include high-rate Poisson distributed current- and conductance-based synaptic inputs and compare them with similar results using additive Gaussian white noise. We show that the responses to both Poisson-distributed synaptic inputs are attenuated with respect to the responses to Gaussian white noise. For cells that exhibit oscillatory responses to Gaussian white noise (band-pass filters), the response to conductance-based synaptic inputs are low-pass filters, while the response to current-based synaptic inputs may remain band-pass filters, consistent with experimental findings. Our results shed light on the mechanisms of communication of oscillatory activity among neurons in a network via subthreshold oscillations and resonance and the generation of network resonance.
Collapse
Affiliation(s)
- Rodrigo F O Pena
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, USA
| | - Horacio G Rotstein
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, USA.
- Corresponding Investigator, CONICET, Buenos Aires, Argentina.
- Graduate Faculty, Behavioral Neurosciences Program, Rutgers University, Newark, USA.
| |
Collapse
|
3
|
Pal K, Ray DS. Antiresonance and Stabilization in Spatio‐Temporal Dynamics of a Periodically Driven Gray‐Scott Reaction‐Diffusion System. ChemistrySelect 2020. [DOI: 10.1002/slct.202002810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Krishnendu Pal
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, West Bengal India
| | - Deb Shankar Ray
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, West Bengal India
| |
Collapse
|
4
|
Pal K, Paul S, Ray DS. Spatiotemporal antiresonance in coupled reaction-diffusion systems. Phys Rev E 2020; 101:052203. [PMID: 32575285 DOI: 10.1103/physreve.101.052203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/17/2020] [Indexed: 11/07/2022]
Abstract
We present a theoretical study of the spatiotemporal antiresonance in a system of two diffusively coupled chemical reactions, one of which is driven by an external periodic forcing. Although antiresonance is well known in various physical systems, the phenomenon in coupled chemical reactions has largely been overlooked. Based on the linearized dynamics around the steady state of the two-component coupled reaction-diffusion systems we have derived the general analytical expressions for the amplitude-frequency response functions of the driven and undriven components of the system. Our theoretical analysis is well corroborated by detailed numerical simulations on coupled Gray-Scott reaction-diffusion systems exhibiting antiresonance dip in the amplitude-frequency response curve as a result of destructive interference between the coupling and the periodic external forcing imparting differential stability of the two subsystems. This leads to the emergence of spatiotemporal patterns in an undriven subsystem, while the driven one settles down to a homogeneously stable steady state.
Collapse
Affiliation(s)
- Krishnendu Pal
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Shibashis Paul
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Deb Shankar Ray
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
5
|
Rotstein HG, Nadim F. Frequency-dependent responses of neuronal models to oscillatory inputs in current versus voltage clamp. BIOLOGICAL CYBERNETICS 2019; 113:373-395. [PMID: 31286211 PMCID: PMC6689413 DOI: 10.1007/s00422-019-00802-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
Action potential generation in neurons depends on a membrane potential threshold and therefore on how subthreshold inputs influence this voltage. In oscillatory networks, for example, many neuron types have been shown to produce membrane potential ([Formula: see text]) resonance: a maximum subthreshold response to oscillatory inputs at a nonzero frequency. Resonance is usually measured by recording [Formula: see text] in response to a sinusoidal current ([Formula: see text]), applied at different frequencies (f), an experimental setting known as current clamp (I-clamp). Several recent studies, however, use the voltage clamp (V-clamp) method to control [Formula: see text] with a sinusoidal input at different frequencies [[Formula: see text]] and measure the total membrane current ([Formula: see text]). The two methods obey systems of differential equations of different dimensionality, and while I-clamp provides a measure of electrical impedance [[Formula: see text]], V-clamp measures admittance [[Formula: see text]]. We analyze the relationship between these two measurement techniques. We show that, despite different dimensionality, in linear systems the two measures are equivalent: [Formula: see text]. However, nonlinear model neurons produce different values for Z and [Formula: see text]. In particular, nonlinearities in the voltage equation produce a much larger difference between these two quantities than those in equations of recovery variables that describe activation and inactivation kinetics. Neurons are inherently nonlinear, and notably, with ionic currents that amplify resonance, the voltage clamp technique severely underestimates the current clamp response. We demonstrate this difference experimentally using the PD neurons in the crab stomatogastric ganglion. These findings are instructive for researchers who explore cellular mechanisms of neuronal oscillations.
Collapse
Affiliation(s)
- Horacio G Rotstein
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, NJ, 07102, USA
- Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ, 07102, USA
- Behavioral and Neural Systems, Rutgers University, Newark, NJ, USA
- CONICET, Buenos Aires, Argentina
| | - Farzan Nadim
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, NJ, 07102, USA.
- Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
6
|
Dewell RB, Gabbiani F. Active membrane conductances and morphology of a collision detection neuron broaden its impedance profile and improve discrimination of input synchrony. J Neurophysiol 2019; 122:691-706. [PMID: 31268830 DOI: 10.1152/jn.00048.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
How neurons filter and integrate their complex patterns of synaptic inputs is central to their role in neural information processing. Synaptic filtering and integration are shaped by the frequency-dependent neuronal membrane impedance. Using single and dual dendritic recordings in vivo, pharmacology, and computational modeling, we characterized the membrane impedance of a collision detection neuron in the grasshopper Schistocerca americana. This neuron, the lobula giant movement detector (LGMD), exhibits consistent impedance properties across frequencies and membrane potentials. Two common active conductances gH and gM, mediated respectively by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and by muscarine-sensitive M-type K+ channels, promote broadband integration with high temporal precision over the LGMD's natural range of membrane potentials and synaptic input frequencies. Additionally, we found that a model based on the LGMD's branching morphology increased the gain and decreased the delay associated with the mapping of synaptic input currents to membrane potential. More generally, this was true for a wide range of model neuron morphologies, including those of neocortical pyramidal neurons and cerebellar Purkinje cells. These findings show the unexpected role played by two widespread active conductances and by dendritic morphology in shaping synaptic integration.NEW & NOTEWORTHY Neuronal filtering and integration of synaptic input patterns depend on the electrochemical properties of dendrites. We used an identified collision detection neuron in grasshoppers to examine how its morphology and two conductances affect its membrane impedance in relation to the computations it performs. The neuronal properties examined are ubiquitous and therefore promote a general understanding of neuronal computations, including those in the human brain.
Collapse
Affiliation(s)
- Richard B Dewell
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Fabrizio Gabbiani
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas.,Department of Electrical and Computer Engineering, Rice University, Houston, Texas
| |
Collapse
|
7
|
Sarkar P, Ray DS. Vibrational antiresonance in nonlinear coupled systems. Phys Rev E 2019; 99:052221. [PMID: 31212415 DOI: 10.1103/physreve.99.052221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Indexed: 06/09/2023]
Abstract
We examine the response of a system of coupled nonlinear oscillators driven by a rapidly varying field, to a low frequency weak periodic excitation of one of the oscillators. The response amplitude of the weak field-driven oscillator at an optimal strength of the rapidly varying field exhibits a strong suppression accompanied by a large negative shift in its oscillation phase. The minimum can be identified as vibrational antiresonance in between the two maxima corresponding to vibrational resonance. This vibrational antiresonance can be observed only in nonlinear coupled systems and not in linearly coupled systems or in a single nonlinear oscillator, under similar physical condition. We discuss the underlying dynamical mechanism, the role of nonlinearity and high frequency in characterizing this counter-resonance effect. Our theoretical analysis is corroborated by detailed numerical simulations.
Collapse
Affiliation(s)
- Prasun Sarkar
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Deb Shankar Ray
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
8
|
Membrane potential resonance in non-oscillatory neurons interacts with synaptic connectivity to produce network oscillations. J Comput Neurosci 2019; 46:169-195. [PMID: 30895410 DOI: 10.1007/s10827-019-00710-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 01/05/2023]
Abstract
Several neuron types have been shown to exhibit (subthreshold) membrane potential resonance (MPR), defined as the occurrence of a peak in their voltage amplitude response to oscillatory input currents at a preferred (resonant) frequency. MPR has been investigated both experimentally and theoretically. However, whether MPR is simply an epiphenomenon or it plays a functional role for the generation of neuronal network oscillations and how the latent time scales present in individual, non-oscillatory cells affect the properties of the oscillatory networks in which they are embedded are open questions. We address these issues by investigating a minimal network model consisting of (i) a non-oscillatory linear resonator (band-pass filter) with 2D dynamics, (ii) a passive cell (low-pass filter) with 1D linear dynamics, and (iii) nonlinear graded synaptic connections (excitatory or inhibitory) with instantaneous dynamics. We demonstrate that (i) the network oscillations crucially depend on the presence of MPR in the resonator, (ii) they are amplified by the network connectivity, (iii) they develop relaxation oscillations for high enough levels of mutual inhibition/excitation, and (iv) the network frequency monotonically depends on the resonators resonant frequency. We explain these phenomena using a reduced adapted version of the classical phase-plane analysis that helps uncovering the type of effective network nonlinearities that contribute to the generation of network oscillations. We extend our results to networks having cells with 2D dynamics. Our results have direct implications for network models of firing rate type and other biological oscillatory networks (e.g, biochemical, genetic).
Collapse
|
9
|
Rotstein HG. Spiking resonances in models with the same slow resonant and fast amplifying currents but different subthreshold dynamic properties. J Comput Neurosci 2017; 43:243-271. [PMID: 29064059 DOI: 10.1007/s10827-017-0661-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/09/2017] [Accepted: 09/18/2017] [Indexed: 01/20/2023]
Abstract
The generation of spiking resonances in neurons (preferred spiking responses to oscillatory inputs) requires the interplay of the intrinsic ionic currents that operate at the subthreshold voltage level and the spiking mechanisms. Combinations of the same types of ionic currents in different parameter regimes may give rise to different types of nonlinearities in the voltage equation (e.g., parabolic- and cubic-like), generating subthreshold (membrane potential) oscillations patterns with different properties. These nonlinearities are not apparent in the model equations, but can be uncovered by plotting the voltage nullclines in the phase-plane diagram. We investigate the spiking resonant properties of conductance-based models that are biophysically equivalent at the subthreshold level (same ionic currents), but dynamically different (parabolic- and cubic-like voltage nullclines). As a case study we consider a model having a persistent sodium and a hyperpolarization-activated (h-) currents, which exhibits subthreshold resonance in the theta frequency band. We unfold the concept of spiking resonance into evoked and output spiking resonance. The former focuses on the input frequencies that are able to generate spikes, while the latter focuses on the output spiking frequencies regardless of the input frequency that generated these spikes. A cell can exhibit one or both types of resonances. We also measure spiking phasonance, which is an extension of subthreshold phasonance (zero-phase-shift response to oscillatory inputs) to the spiking regime. The subthreshold resonant properties of both types of models are communicated to the spiking regime for low enough input amplitudes as the voltage response for the subthreshold resonant frequency band raises above threshold. For higher input amplitudes evoked spiking resonance is no longer present in these models, but output spiking resonance is present primarily in the parabolic-like model due to a cycle skipping mechanism (involving mixed-mode oscillations), while the cubic-like model shows a better 1:1 entrainment. We use dynamical systems tools to explain the underlying mechanisms and the mechanistic differences between the resonance types. Our results demonstrate that the effective time scales that operate at the subthreshold regime to generate intrinsic subthreshold oscillations, mixed-mode oscillations and subthreshold resonance do not necessarily determine the existence of a preferred spiking response to oscillatory inputs in the same frequency band. The results discussed in this paper highlight both the complexity of the suprathreshold responses to oscillatory inputs in neurons having resonant and amplifying currents with different time scales and the fact that the identity of the participating ionic currents is not enough to predict the resulting patterns, but additional dynamic information, captured by the geometric properties of the phase-space diagram, is needed.
Collapse
Affiliation(s)
- Horacio G Rotstein
- Federated Department of Biological Sciences, Rutgers University and New Jersey Institute of Technology, Newark, NJ, 07102, USA. .,Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
10
|
Mechanisms of generation of membrane potential resonance in a neuron with multiple resonant ionic currents. PLoS Comput Biol 2017; 13:e1005565. [PMID: 28582395 PMCID: PMC5476304 DOI: 10.1371/journal.pcbi.1005565] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 06/19/2017] [Accepted: 05/10/2017] [Indexed: 11/19/2022] Open
Abstract
Neuronal membrane potential resonance (MPR) is associated with subthreshold and network oscillations. A number of voltage-gated ionic currents can contribute to the generation or amplification of MPR, but how the interaction of these currents with linear currents contributes to MPR is not well understood. We explored this in the pacemaker PD neurons of the crab pyloric network. The PD neuron MPR is sensitive to blockers of H- (IH) and calcium-currents (ICa). We used the impedance profile of the biological PD neuron, measured in voltage clamp, to constrain parameter values of a conductance-based model using a genetic algorithm and obtained many optimal parameter combinations. Unlike most cases of MPR, in these optimal models, the values of resonant- (fres) and phasonant- (fϕ = 0) frequencies were almost identical. Taking advantage of this fact, we linked the peak phase of ionic currents to their amplitude, in order to provide a mechanistic explanation the dependence of MPR on the ICa gating variable time constants. Additionally, we found that distinct pairwise correlations between ICa parameters contributed to the maintenance of fres and resonance power (QZ). Measurements of the PD neuron MPR at more hyperpolarized voltages resulted in a reduction of fres but no change in QZ. Constraining the optimal models using these data unmasked a positive correlation between the maximal conductances of IH and ICa. Thus, although IH is not necessary for MPR in this neuron type, it contributes indirectly by constraining the parameters of ICa. Many neuron types exhibit membrane potential resonance (MPR) in which the neuron produces the largest response to oscillatory input at some preferred (resonant) frequency and, in many systems, the network frequency is correlated with neuronal MPR. MPR is captured by a peak in the impedance vs. frequency curve (Z-profile), which is shaped by the dynamics of voltage-gated ionic currents. Although neuron types can express variable levels of ionic currents, they may have a stable resonant frequency. We used the PD neuron of the crab pyloric network to understand how MPR emerges from the interplay of the biophysical properties of multiple ionic currents, each capable of generating resonance. We show the contribution of an inactivating current at the resonant frequency in terms of interacting time constants. We measured the Z-profile of the PD neuron and explored possible combinations of model parameters that fit this experimentally measured profile. We found that the Z-profile constrains and defines correlations among parameters associated with ionic currents. Furthermore, the resonant frequency and amplitude are sensitive to different parameter sets and can be preserved by co-varying pairs of parameters along their correlation lines. Furthermore, although a resonant current may be present in a neuron, it may not directly contribute to MPR, but constrain the properties of other currents that generate MPR. Finally, constraining model parameters further to those that modify their MPR properties to changes in voltage range produces maximal conductance correlations.
Collapse
|