1
|
Mannion J, Hong K, Lennon SJ, Kenny A, Galvin J, O’Brien J, Jauvert G, Keelan E, Boles U. Comparing Left Atrial Low Voltage Areas in Sinus Rhythm and Atrial Fibrillation Using Novel Automated Voltage Analysis: A Pilot Study. Cardiol Res 2023; 14:268-278. [PMID: 37559712 PMCID: PMC10409550 DOI: 10.14740/cr1503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/25/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Low voltage areas (LVAs) have been proposed as surrogate markers for left atrial (LA) scar. Correlation between voltages in sinus rhythm (SR) and atrial fibrillation (AF) have previously been measured via point-by-point analysis. We sought to compare LA voltage composition measured in SR to AF, utilizing a high-density automated voltage histogram analysis (VHA) tool in those undergoing pulmonary vein isolation (PVI) for persistent AF (PeAF). METHODS We retrospectively analyzed patients with PeAF undergoing de novo PVI. Maps required ≥ 1,000 voltage points in each rhythm and had a standardized procedure (mapped in AF then remapped in SR post-PVI). We created six anatomical segments (AS) from each map: anterior, posterior, roof, floor, septal and lateral AS. These were analyzed by VHA, categorizing atrial LVAs into 10 voltage aliquots 0 - 0.5 mV. Data were analyzed using SPSS v.26. RESULTS We acquired 58,342 voltage points (n = 10 patients, mean age: 67 ± 13 years, three females). LVA burdens of ≤ 0.2 mV, designated as "severe LVAs", were comparable between most AS (except on the posterior wall) with good correlation. Mapped voltages between the ranges of 0.21 and 0.5 mV were labeled as "diseased LA tissue", and these were found significantly more in AF than SR. Significant differences were seen on the roof, anterior, posterior, and lateral AS. CONCLUSIONS Diseased LA tissue (0.21 - 0.5 mV) burden is significantly higher in AF than SR, mainly in the anterior, roof, lateral, and posterior wall. LA "severe LVA" (≤ 0.2 mV) burden is comparable in both rhythms, except with respect to the posterior wall. Our findings suggest that mapping rhythm has less effect on the LA with voltages < 0.2 mV than 0.2 - 0.5 mV across all anatomical regions, excluding the posterior wall.
Collapse
Affiliation(s)
- James Mannion
- Atrial Fibrillation Institute (AFI) and Cardiovascular Research Institute (CVRI), Heart and Vascular Centre, Mater Private Hospital, Dublin, Ireland
| | - Kathryn Hong
- Atrial Fibrillation Institute (AFI) and Cardiovascular Research Institute (CVRI), Heart and Vascular Centre, Mater Private Hospital, Dublin, Ireland
- UCD School of Medicine, UCD Health Sciences Centre, University College Dublin, Bellfield, Dublin 4, Ireland
| | - Sarah-Jane Lennon
- Atrial Fibrillation Institute (AFI) and Cardiovascular Research Institute (CVRI), Heart and Vascular Centre, Mater Private Hospital, Dublin, Ireland
| | - Anthony Kenny
- Biosense Webster, Johnson & Johnson (Ireland) Limited, Tallaght, Dublin 24, Ireland
| | - Joseph Galvin
- Atrial Fibrillation Institute (AFI) and Cardiovascular Research Institute (CVRI), Heart and Vascular Centre, Mater Private Hospital, Dublin, Ireland
| | - Jim O’Brien
- Atrial Fibrillation Institute (AFI) and Cardiovascular Research Institute (CVRI), Heart and Vascular Centre, Mater Private Hospital, Dublin, Ireland
| | - Gael Jauvert
- Atrial Fibrillation Institute (AFI) and Cardiovascular Research Institute (CVRI), Heart and Vascular Centre, Mater Private Hospital, Dublin, Ireland
| | - Edward Keelan
- Atrial Fibrillation Institute (AFI) and Cardiovascular Research Institute (CVRI), Heart and Vascular Centre, Mater Private Hospital, Dublin, Ireland
| | - Usama Boles
- Atrial Fibrillation Institute (AFI) and Cardiovascular Research Institute (CVRI), Heart and Vascular Centre, Mater Private Hospital, Dublin, Ireland
- Department of Cardiology, Arrhythmia Service, Tipperary University Hospital, Clonmel, E91 VY40, Ireland
- Heart and Vascular Centre, Mater Private Hospital, Dublin 7, Ireland
| |
Collapse
|
2
|
Yorgun H, Çöteli C, Kılıç GS, Sezenöz B, Dural M, Ateş AH, Aytemir K. Functional substrate mapping characteristics during sinus rhythm predicts critical isthmus of reentrant atrial tachycardia. J Cardiovasc Electrophysiol 2023; 34:1539-1548. [PMID: 37269230 DOI: 10.1111/jce.15961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND Atrial tachycardia (AT) is a commonly encountered rhythm disorder in patients with underlying atrial scar. The role of atrial late activation mapping during sinus rhythm to predict the critical isthmus (CI) of AT has yet to be systematically evaluated. We aimed to investigate the relationship between the functional substrate mapping (FSM) characteristics and the CI of reentrant ATs in patients with underlying atrial low-voltage areas. METHODS Patients with history of left AT who underwent catheter ablation with 3D mapping using high-density mapping were enrolled. Voltage map and isochronal late activation mapping were created during sinus/paced rhythm to detect deceleration zones (DZ). Electrograms with continuous-fragmented morphology were also tagged. After induction of AT, activation mapping was performed to detect CI of the tachycardia. Atrial tachyarrhythmia (ATa) recurrence was defined as detection of atrial fibrillation or AT (≥30 s) during the follow-up. RESULTS Among 35 patients [mean age: 62 ± 9, gender: 25 (71.5%) female] with left AT, a total of 42 reentrant ATs induced. Voltage mapping during sinus rhythm revealed low-voltage area of 37.1 ± 23.8% of the left atrium. The mean value of bipolar voltage, EGM duration, and conduction velocity during sinus rhythm corresponding to CI of ATs were 0.18 ± 0.12 mV, 133 ± 47 ms, and 0.12 ± 0.09 m/s, respectively. Total number of DZs per chamber was 1.5 ± 0.6, which were located in the low-voltage zone (<0.5 mV) detected by high-density mapping. All CIs of reentry were colocalized with DZs detected during FSM. The positive predictive value of DZs to detect CI of inducible ATs is 80.4%. Freedom from ATa after the index procedure was 74.3% during a mean follow-up of 12.2 ± 7.5 months. CONCLUSION Our findings demonstrated the utility of FSM during sinus rhythm to predict the CI of AT. DZs displayed continuous-fragmented signal morphology with slow conduction which may guide to tailor ablation strategy in case of underlying atrial scar.
Collapse
Affiliation(s)
- Hikmet Yorgun
- Department of Cardiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Cem Çöteli
- Department of Cardiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gül Sinem Kılıç
- Department of Cardiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Burak Sezenöz
- Department of Cardiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Department of Cardiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Muhammet Dural
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Cardiology, Faculty of Medicine, Osmangazi University, Eskişehir, Turkey
| | - Ahmet Hakan Ateş
- Department of Cardiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Kudret Aytemir
- Department of Cardiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Wei F, Ren W, Zhang X, Wu P, Fan J. miR-425-5p is negatively associated with atrial fibrosis and promotes atrial remodeling by targeting CREB1 in atrial fibrillation. J Cardiol 2021; 79:202-210. [PMID: 34688515 DOI: 10.1016/j.jjcc.2021.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Progression of atrial fibrosis is vital for atrial remodeling in atrial fibrillation (AF). The main objective of the present study was to explore the association between miR-425-5p and atrial fibrosis as well as the resultant impact on atrial remodeling in AF. METHODS Firstly, miRNAs sequencing and quantitative real-time polymerase chain reaction was used to screen and verify the miRNAs expression level in plasma and atrial tissue in AF patients. The left atrial fibrosis was evaluated with the left atrial low voltage area by using left atrial voltage matrix mapping. Cell counting kit-8 was used to detect fibroblasts proliferation. The AF mouse model was established using acetylcholine-CaCl2 injection for 7 days. Target gene prediction software, luciferase assay, and western blotting were employed to confirm the direct targets of miR-425-5p. RESULTS Firstly, we demonstrated that miR-425-5p was downregulated in plasma and atrial tissue among the patients who suffered from AF. We then confirmed that the plasma's miR-425-5p level was negatively correlated with left atrial fibrosis in persistent AF, and catheter ablation could restore the decreased plasma miR-425-5p. Besides, receiver operating characteristic curve analysis revealed the miR-425-5p not only could differentiate AF from healthy control wit area under the curve (AUC) 0.921, but also discriminated persistent AF from paroxysmal AF with AUC 0.888. Furthermore, downregulation of miR-425-5p could promote atrial remodeling, and overexpression of miR-425-p could improve atrial remodeling and decrease susceptibility to atrial fibrillation. Finally, CREB1 was verified to be a direct target for miR-425-5p. CONCLUSIONS Our findings suggested that miR-425-5p could serve as novel atrial fibrosis biomarker and contributed to atrial remodeling in AF.
Collapse
Affiliation(s)
- Feiyu Wei
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, Yunnan, China; Department of Cardiology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, Yunnan 650032, China
| | - Wenjun Ren
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xi Zhang
- Department of Cardiology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, Yunnan 650032, China
| | - Peng Wu
- Department of Cardiology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, Yunnan 650032, China
| | - Jie Fan
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, Yunnan, China; Department of Cardiology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, Yunnan 650032, China.
| |
Collapse
|
4
|
Classification of Left Atrial Diseased Tissue Burden Determined by Automated Voltage Analysis Predicts Outcomes after Ablation for Atrial Fibrillation. DISEASE MARKERS 2021; 2021:5511267. [PMID: 34257744 PMCID: PMC8245248 DOI: 10.1155/2021/5511267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/30/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022]
Abstract
Background The burden and persistence of atrial fibrillation (AF) have been associated with the presence and extent of left atrial (LA) fibrosis. Recent reports have implicated an association between the extent of LA fibrosis and the outcome of pulmonary vein isolation (PVI). We aimed to analyse the value of an automated scar quantification method in the prediction of success following PVI. Methods One hundred and nine consecutive patients undergoing PVI for paroxysmal or persistent AF were included in our observational study with a 2-year follow-up. Prior to PVI, patients underwent high-definition LA electroanatomical mapping, and scar burden was quantified by automated software (Voltage Histogram Analysis, CARTO 3, Biosense Webster), then classified into 4 subgroups (Dublin Classes I-IV). Recurrence rates were analysed on and off antiarrhythmic drug therapy (AAD), respectively. Results The overall success rate was 74% and 67% off AAD at 1- and 2-year follow-up, respectively. Patients with Dublin Class IV had significantly lower success rates (p = 0.008, off AAD). Dublin Class IV (OR = 2.27, p = 0.022, off AAD) and the presence of arrhythmia in the blanking period (OR = 3.28, p = 0.001, off AAD) were the only significant predictors of recurrence. The use of AAD did not affect these results. Conclusions We propose a classification of low voltage areas based on automated quantification by software during 3D mapping prior to PVI. Patients with high burden of low voltage areas (>31% of <0.5 mV, Dublin Class IV) have a higher risk of recurrence following PVI. Information gathered during electroanatomical mapping may have important prognostic value.
Collapse
|
5
|
Williams SE, Roney CH, Connolly A, Sim I, Whitaker J, O’Hare D, Kotadia I, O’Neill L, Corrado C, Bishop M, Niederer SA, Wright M, O’Neill M, Linton NWF. OpenEP: A Cross-Platform Electroanatomic Mapping Data Format and Analysis Platform for Electrophysiology Research. Front Physiol 2021; 12:646023. [PMID: 33716795 PMCID: PMC7952326 DOI: 10.3389/fphys.2021.646023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/29/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Electroanatomic mapping systems are used to support electrophysiology research. Data exported from these systems is stored in proprietary formats which are challenging to access and storage-space inefficient. No previous work has made available an open-source platform for parsing and interrogating this data in a standardized format. We therefore sought to develop a standardized, open-source data structure and associated computer code to store electroanatomic mapping data in a space-efficient and easily accessible manner. METHODS A data structure was defined capturing the available anatomic and electrical data. OpenEP, implemented in MATLAB, was developed to parse and interrogate this data. Functions are provided for analysis of chamber geometry, activation mapping, conduction velocity mapping, voltage mapping, ablation sites, and electrograms as well as visualization and input/output functions. Performance benchmarking for data import and storage was performed. Data import and analysis validation was performed for chamber geometry, activation mapping, voltage mapping and ablation representation. Finally, systematic analysis of electrophysiology literature was performed to determine the suitability of OpenEP for contemporary electrophysiology research. RESULTS The average time to parse clinical datasets was 400 ± 162 s per patient. OpenEP data was two orders of magnitude smaller than compressed clinical data (OpenEP: 20.5 ± 8.7 Mb, vs clinical: 1.46 ± 0.77 Gb). OpenEP-derived geometry metrics were correlated with the same clinical metrics (Area: R 2 = 0.7726, P < 0.0001; Volume: R 2 = 0.5179, P < 0.0001). Investigating the cause of systematic bias in these correlations revealed OpenEP to outperform the clinical platform in recovering accurate values. Both activation and voltage mapping data created with OpenEP were correlated with clinical values (mean voltage R 2 = 0.8708, P < 0.001; local activation time R 2 = 0.8892, P < 0.0001). OpenEP provides the processing necessary for 87 of 92 qualitatively assessed analysis techniques (95%) and 119 of 136 quantitatively assessed analysis techniques (88%) in a contemporary cohort of mapping studies. CONCLUSIONS We present the OpenEP framework for evaluating electroanatomic mapping data. OpenEP provides the core functionality necessary to conduct electroanatomic mapping research. We demonstrate that OpenEP is both space-efficient and accurately representative of the original data. We show that OpenEP captures the majority of data required for contemporary electroanatomic mapping-based electrophysiology research and propose a roadmap for future development.
Collapse
Affiliation(s)
- Steven E. Williams
- King’s College London, London, United Kingdom
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom
| | | | - Adam Connolly
- King’s College London, London, United Kingdom
- Invicro, Ltd., London, United Kingdom
| | - Iain Sim
- King’s College London, London, United Kingdom
| | | | | | | | | | | | | | | | - Matt Wright
- King’s College London, London, United Kingdom
- Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Mark O’Neill
- King’s College London, London, United Kingdom
- Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | | |
Collapse
|
6
|
Mannion J, Galvin J, Boles U. Left atrial scar identification and quantification in sinus rhythm and atrial fibrillation. J Arrhythm 2020; 36:967-973. [PMID: 33335611 PMCID: PMC7733578 DOI: 10.1002/joa3.12421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/20/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022] Open
Abstract
Identification and quantification of low voltage areas (LVA) in atrial fibrillation (AF), identified by their bipolar voltages (BiV) via electro-anatomical voltage mapping is an area of interest to prognosis of AF free burden. LVAs have been linked to diseased left atrial (LA) tissue which results in pro-fibrillatory potentials. These LVAs are dominantly found within the pulmonary veins, however, as the disease progresses other areas of the LA show low voltage. The scar burden of the LA is linked to recurrence of the arrhythmia and can be a target of further modification. This burden is classically assessed once sinus rhythm (SR) is attained, but this is susceptible to operator variability with overestimated dense LA scar (<0.2 mV) and underestimated diseased LA tissue (<0.5 mV). The novel automated voltage histogram analysis (VHA) tool may increase accuracy, however, is yet to be fully validated. A recent study indicates that LVAs can be assessed just as reliably in AF as SR, but BiV is lower with linear correlation to SR values (0.24-0.5 mV respectively). In this paper, we review current data as well as review current methods of identifying, quantifying, and grading LA scar. We also compared AF vs SR voltages of a patient undergoing catheter ablation in our site using our VHA tool to compare the results. In keeping with the cited papers, we found lower voltages in our patient measured in AF. This area warrants further study to assess correlation in more patients, with view to developing prognostic and therapeutic grading systems.
Collapse
Affiliation(s)
- James Mannion
- Cardiology Department, Heart and Vascular CentreMater Private HospitalDublinIreland
| | - Joseph Galvin
- Cardiology Department, Heart and Vascular CentreMater Private HospitalDublinIreland
| | - Usama Boles
- Cardiology Department, Heart and Vascular CentreMater Private HospitalDublinIreland
| |
Collapse
|
7
|
Wang Z, Cheng L, Zhang J, Liang Z, Dong R, Hang F, Wang X, Wang Z, Wu Y, Du J. Serum-Soluble ST2 Is a Novel Biomarker for Evaluating Left Atrial Low-Voltage Zone in Paroxysmal Atrial Fibrillation. Med Sci Monit 2020; 26:e926221. [PMID: 32898129 PMCID: PMC7500126 DOI: 10.12659/msm.926221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Paroxysmal atrial fibrillation (pAF) recurrence after radiofrequency catheter ablation (RFCA) is linked to low-voltage zone (LVZ). This study explored whether serum soluble ST2 (sST2) levels can predict the size of LVZs in patients with pAF. MATERIAL AND METHODS A total of 177 patients with pAF treated with RFCA were consecutively enrolled in this study. One hundred twenty-five patients (70.6%) with <20% LVZ were assigned to Group A, and 52 patients (29.4%) with a LVZ >20% were assigned to Group B. Levels of soluble ST2 (sST2), growth and differentiation factor (GDF-15) and tissue inhibitor of MMP1 (TIMP-1) were measured. RESULTS The sST2 levels were higher in Group B than in Group A (23.9±3.3 vs. 30.9±5.0 ng/mL, P<0.000). In multivariable logistic regression analysis, sST2 was the only independent parameter for predicting left atrial LVZ (odds ratio, 1.611 [1.379-1.882]; P<0.001). The cut-off value of sST2 obtained by receiver operating characteristic (ROC) analysis was 26.65 ng/mL for prediction of LVZ (sensitivity: 86.5%, specificity: 84.8%). The under-curve area was 0.895 (0.842-0.948) (P<0.001). At 12-month follow-up, patients with sST2 <26.65 ng/mL had more patients free from atrial arrhythmias compared to patients with sST2 >26.65 ng/mL (88.6% vs. 69.8%, P<0.01). CONCLUSIONS We demonstrated that sST2 levels are higher in pAF patients with LVZ >20% compared to those with a smaller LVZ. Also increased sST2 levels can serve as a novel predictor of AF recurrence rate in patients who have undergone RFCA.
Collapse
Affiliation(s)
- Zefeng Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (mainland)
| | - Liting Cheng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (mainland)
| | - Junmeng Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (mainland)
| | - Zhuo Liang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (mainland)
| | - Ruiqing Dong
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Fei Hang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (mainland)
| | - Xinlu Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (mainland)
| | - Ziyu Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (mainland)
| | - Yongquan Wu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (mainland)
| | - Jie Du
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (mainland)
| |
Collapse
|
8
|
The Value of Voltage Histogram Analysis Derived Right Atrial Scar Burden in the Prediction of Left Atrial Scar Burden. Cardiol Res Pract 2020; 2020:3981684. [PMID: 32855820 PMCID: PMC7442993 DOI: 10.1155/2020/3981684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/03/2020] [Accepted: 07/21/2020] [Indexed: 11/24/2022] Open
Abstract
Introduction Growing evidence suggests that fibrotic changes can be observed in atrial fibrillation (AF) in both atria. Quantification of the scar burden during electroanatomical mapping might have important therapeutic and prognostic consequences. However, as the current invasive treatment of AF is focused on the left atrium (LA), the role of the right atrium (RA) is less well understood. We aimed to characterize the clinical determinates of the RA low-voltage burden and its relation to the LA scaring. Methods We have included 36 patients who underwent catheter ablation for AF in a prospective observational study. In addition to LA mapping and ablation, high-density RA bipolar voltage maps (HD-EAM) were also reconstructed. The extent of the diseased RA tissue (≤0.5 mV) was quantified using the voltage histogram analysis tool (CARTO®3, Biosense Webster). Results The percentage of RA diseased tissue burden was significantly higher in patients with a CHA2DS2-VASc score ≥ 2 (p = 0.0305), higher indexed LA volume on the CTA scan and on the HD‐EAM (p = 0.0223 and p = 0.0064, respectively), or higher indexed RA volume on the HD‐EAM (p = 0.0026). High RA diseased tissue burden predicted the presence of high LA diseased tissue burden (OR = 7.1, CI (95%): 1.3–38.9, p = 0.0145), and there was a significant correlation of the same (r = 0.6461, p < 0.0001). Conclusions Determining the extent of the right atrial low-voltage burden might give useful clinical information. According to our results, the diseased tissue burden correlates well between the two atria: the right atrium mirrors the left atrium.
Collapse
|