1
|
Cyclodextrin Inclusion Complexes with Antibiotics and Antibacterial Agents as Drug-Delivery Systems—A Pharmaceutical Perspective. Pharmaceutics 2022; 14:pharmaceutics14071389. [PMID: 35890285 PMCID: PMC9323747 DOI: 10.3390/pharmaceutics14071389] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Cyclodextrins (CDs) are a family of cyclic oligosaccharides, consisting of a macrocyclic ring of glucose subunits linked by α-1,4 glycosidic bonds. The shape of CD molecules is similar to a truncated cone with a hydrophobic inner cavity and a hydrophilic surface, which allows the formation of inclusion complexes with various molecules. This review article summarises over 200 reports published by the end of 2021 that discuss the complexation of CDs with antibiotics and antibacterial agents, including beta-lactams, tetracyclines, quinolones, macrolides, aminoglycosides, glycopeptides, polypeptides, nitroimidazoles, and oxazolidinones. The review focuses on drug-delivery applications such as improving solubility, modifying the drug-release profile, slowing down the degradation of the drug, improving biological membrane permeability, and enhancing antimicrobial activity. In addition to simple drug/CD combinations, ternary systems with additional auxiliary substances have been described, as well as more sophisticated drug-delivery systems including nanosponges, nanofibres, nanoparticles, microparticles, liposomes, hydrogels, and macromolecules. Depending on the desired properties of the drug product, an accelerated or prolonged dissolution profile can be achieved when combining CD with antibiotics or antimicrobial agents.
Collapse
|
2
|
Kasprzak A, Dabrowski B, Zuchowska A. A biocompatible poly(amidoamine) (PAMAM) dendrimer octa-substituted with α-cyclodextrin towards the controlled release of doxorubicin hydrochloride from its ferrocenyl prodrug. RSC Adv 2020; 10:23440-23445. [PMID: 35520312 PMCID: PMC9054735 DOI: 10.1039/d0ra03694c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/27/2020] [Indexed: 01/17/2023] Open
Abstract
Facile and efficient methods for the synthesis of the first poly(aminodamine) PAMAM G1.0 dendrimer octa-substituted with α-cyclodextrin and a novel ferrocenyl prodrug of doxorubicin hydrochloride are developed. This vector is non-toxic and can bind the designed ferrocenyl prodrug. It also shows a controlled drug release profile and high cytotoxicity against breast cancer cells (MCF-7), as elucidated by the in vitro biological studies performed with an innovative cell-on-a-chip microfluidic system.
Collapse
Affiliation(s)
- Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego Str. 3 00-664 Warsaw Poland
| | - Bartłomiej Dabrowski
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego Str. 3 00-664 Warsaw Poland
| | - Agnieszka Zuchowska
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego Str. 3 00-664 Warsaw Poland
| |
Collapse
|
3
|
On the conformational search of a βCD dendritic derivative: NMR and theoretical calculations working together reveal a donut-like amphiphilic structure. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Sivakumar PM, Peimanfard S, Zarrabi A, Khosravi A, Islami M. Cyclodextrin-Based Nanosystems as Drug Carriers for Cancer Therapy. Anticancer Agents Med Chem 2019; 20:1327-1339. [PMID: 31490765 DOI: 10.2174/1871520619666190906160359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/01/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVE Cyclodextrins have been of great interest as excellent candidates for fabricating versatile nano-drug delivery systems due to their commercial availability, easy functionalization, low immunogenicity, biocompatibility and safety. The possibility of reversible inclusion complex formation between cyclodextrins and various guest molecules in association with versatile exclusive properties of cyclodextrins offer a route towards the fabrication of highly sophisticated nanostructures with enormous potential for cancer treatment. METHODS AND RESULTS The current review discusses important recent advances in the fabrication and development of cyclodextrin-based nanostructures for cancer therapy. Firstly, the formation of inclusion complexes between cyclodextrin derivatives and anticancer compounds, as well as their application, are summarized. Secondly, the cyclodextrins -based nanosystems including cyclodextrin-containing polymers, cyclodextrin-based supramolecular necklaces, which consist of polyrotaxanes and polypseudorotaxanes and cyclodextrin based hydrogels accompanied by their applications in cancer treatment are highlighted. In the end, the future perspective of this field is discussed. CONCLUSION Numerous investigations in this area pave the way for the flourishing of the next generation of nano-therapeutics towards enhanced cancer therapy.
Collapse
Affiliation(s)
- Ponnurengam M Sivakumar
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam
| | - Shohreh Peimanfard
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research & Application Center (SUNUM), Orta Mh. Üniversite Cd. No: 27/1
- 34956 Tuzla, Istanbul, Turkey
| | - Arezoo Khosravi
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Isfahan, Iran
| | - Matin Islami
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| |
Collapse
|
5
|
Liu Z, Pang L, Li Q, Zhang S, Li J, Tong H, Xu Z, Yi CF. Hydrophilic porous polyimide/β-cyclodextrin composite membranes with enhanced gas separation performance and low dielectric constant. HIGH PERFORM POLYM 2017. [DOI: 10.1177/0954008317701548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A series of co-polyimide (PI)/modified β-cyclodextrin (β-CD) composites were successfully fabricated from anhydride-terminated PI and (3-aminopropyl)triethoxysilane-modified β-CD (β-ACD). Co-PI was prepared from 4,4′-oxydianiline, 4,4′-(hexafluoroisopropylidene) diphthalic anhydride, and 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride by chemical imidization. Different amounts of β-ACD (0, 1, 3, 5, and 7 wt%) were introduced into co-PI via strong covalent interactions between the terminal anhydride and amino groups. The structures and properties of the composites were characterized by means of Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermal gravimetric analysis, differential scanning calorimetry, dynamic thermomechanical analysis, mechanical properties tests, and contact angle tests. The results showed that β-ACD was successfully grafted on the PI segment. The composite films showed good thermal stability, glass transition temperatures between 244°C and 254°C, and 10% weight loss at temperatures of 514°C–545°C and 506°C–538°C in nitrogen and air atmosphere, respectively. They also exhibited excellent mechanical properties with tensile strength, tensile modulus, and elongation at break values of 78–111 MPa, 1.14–2.05 GPa, and 8–17%, respectively. All of these values were maximized at a β-ACD content of 1 wt%. The water uptake of the composites films was more than 1%, indicating that the addition of β-ACD can enhance the water absorption of PI films. All of these composite films are porous, and the contact angle indicated that the addition of β-ACD increased the hydrophilicity of the composite film. When the β-ACD doping content reached 7 wt%, the contact angle reached a minimum of 63°. All of the membranes were thermally annealed at 300°C for 1 h, after which gas adsorption tests showed that the composite films have enhanced CO2/CH4 selectivity, which can reach 12.7 (308 K).
Collapse
Affiliation(s)
- Zehan Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, China
- Faculty of Materials Science and Engineering, Hubei University, Wuhan, China
| | - Long Pang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, China
- Faculty of Materials Science and Engineering, Hubei University, Wuhan, China
| | - Qing Li
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, China
- Faculty of Materials Science and Engineering, Hubei University, Wuhan, China
| | - Shulai Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, China
- Faculty of Materials Science and Engineering, Hubei University, Wuhan, China
| | - Jing Li
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, China
- Faculty of Materials Science and Engineering, Hubei University, Wuhan, China
| | - Hao Tong
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, China
- Faculty of Materials Science and Engineering, Hubei University, Wuhan, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, China
- Faculty of Materials Science and Engineering, Hubei University, Wuhan, China
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan, China
| | - Chang-feng Yi
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, China
- Faculty of Materials Science and Engineering, Hubei University, Wuhan, China
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan, China
| |
Collapse
|
6
|
Yang L, Gong M, Jiang X, Chen Y, Han X, Song K, Sun X, Zhang Y, Zhao B. SERS investigation and detection of levofloxacin drug molecules on semiconductor TiO2: Charge transfer contribution. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.08.068] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Buczkowski A, Waliszewski D, Urbaniak P, Palecz B. Study of the interactions of PAMAM G3-NH 2 and G3-OH dendrimers with 5‐fluorouracil in aqueous solutions. Int J Pharm 2016; 505:1-13. [DOI: 10.1016/j.ijpharm.2016.03.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023]
|
8
|
Liu S, Rong M, Zhang H, Chen N, Pang F, Chen Z, Wang T, Yan J. In vivo Raman measurement of levofloxacin lactate in blood using a nanoparticle-coated optical fiber probe. BIOMEDICAL OPTICS EXPRESS 2016; 7:810-815. [PMID: 27231590 PMCID: PMC4866457 DOI: 10.1364/boe.7.000810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/23/2016] [Accepted: 02/03/2016] [Indexed: 06/05/2023]
Abstract
Monitoring drug concentrations in vivo is very useful for adjusting a drug dosage during treatment and for drug research. Specifically, cutting-edge "on-line" drug research relies on knowing how drugs are metabolized or how they interact with the blood in real-time. Thus, this study explored performing in vivo Raman measurements of the model drug levofloxacin lactate in the blood using a nanoparticle-coated optical fiber probe (optical fiber nano-probe). The results show that we were able to measure real-time changes in the blood concentration of levofloxacin lactate, suggesting that this technique could be helpful for performing drug analyses and drug monitoring in a clinical setting without repeatedly withdrawing blood from patients.
Collapse
Affiliation(s)
- Shupeng Liu
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information, Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China;
| | - Ming Rong
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information, Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Heng Zhang
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information, Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Na Chen
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information, Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China;
| | - Fufei Pang
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information, Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Zhenyi Chen
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information, Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Tingyun Wang
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information, Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jianshe Yan
- Shanghai Institute of Immunology, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China;
| |
Collapse
|
9
|
Arima H, Hayashi Y, Higashi T, Motoyama K. Recent advances in cyclodextrin delivery techniques. Expert Opin Drug Deliv 2015; 12:1425-41. [DOI: 10.1517/17425247.2015.1026893] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
10
|
Zhang J, Ma PX. Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev 2013; 65:1215-33. [PMID: 23673149 PMCID: PMC3885994 DOI: 10.1016/j.addr.2013.05.001] [Citation(s) in RCA: 569] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 04/28/2013] [Accepted: 05/03/2013] [Indexed: 12/25/2022]
Abstract
The excellent biocompatibility and unique inclusion capability as well as powerful functionalization capacity of cyclodextrins and their derivatives make them especially attractive for engineering novel functional materials for biomedical applications. There has been increasing interest recently to fabricate supramolecular systems for drug and gene delivery based on cyclodextrin materials. This review focuses on state of the art and recent advances in the construction of cyclodextrin-based assemblies and their applications for controlled drug delivery. First, we introduce cyclodextrin materials utilized for self-assembly. The fabrication technologies of supramolecular systems including nanoplatforms and hydrogels as well as their applications in nanomedicine and pharmaceutical sciences are then highlighted. At the end, the future directions of this field are discussed.
Collapse
Affiliation(s)
- Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Peter X Ma
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Li N, Lei XM. Adsorption of ponceau 4R from aqueous solutions by polyamidoamine–cyclodextrin crosslinked copolymer. J INCL PHENOM MACRO 2012. [DOI: 10.1007/s10847-011-0096-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|