1
|
Ye L, Furuishi T, Yamashita T, Yonemochi E. Characterization and Crystal Structural Analysis of Novel Carvedilol Adipate and Succinate Ethanol-Solvated Salts. Molecules 2024; 29:4704. [PMID: 39407632 PMCID: PMC11478148 DOI: 10.3390/molecules29194704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Two ethanol-solvated adipate and succinate salts of carvedilol (CVD), a Biopharmaceutics Classification System class 2 drug, were synthesized by crystallizing ethanol with adipic acid (ADP) and succinic acid (SUA). Proton transfer from ADP and SUA to CVD and the presence of ethanol in the two novel compounds were confirmed using powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and single-crystal X-ray diffraction measurements. The two novel ethanol-solvated salts exhibited enhanced solubility and dissolution rates compared with pure carvedilol in phosphate buffer (pH 6.8). Additionally, the morphologies and attachment energies of the two novel compounds and pure CVD were calculated based on their single-crystal structures, revealing a correlation between attachment energy and dissolution rate.
Collapse
Affiliation(s)
- Li Ye
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku 142-8501, Tokyo, Japan (T.Y.)
| | - Takayuki Furuishi
- Juntendo University Faculty of Pharmacy, 6-8-1 Hinode, Urayasu 279-0013, Chiba, Japan
| | - Takefumi Yamashita
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku 142-8501, Tokyo, Japan (T.Y.)
| | - Etsuo Yonemochi
- School of Pharmacy at Narita, International University of Health and Welfare, 4-3 Kozunomori, Narita 286-8686, Chiba, Japan
| |
Collapse
|
2
|
Shah S, Famta P, Vambhurkar G, Bagasariya D, Kumar KC, Srinivasarao DA, Begum N, Sharma A, Shahrukh S, Jain N, Khatri DK, Srivastava S. Sulfo-butyl ether β-cyclodextrin inclusion complexes of bosutinib: in silico, in vitro and in vivo evaluation in attenuating the fast-fed variability. Drug Deliv Transl Res 2024; 14:1218-1231. [PMID: 37903963 DOI: 10.1007/s13346-023-01453-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/01/2023]
Abstract
Bosutinib (BOS) is a BCS class IV drug that shows low oral bioavailability and high fast-fed variability. Various pharmaceutical formulations have been explored thus far in order to improve its bioavailability while avoiding fast-fed variability. In the present study, we explored cyclodextrin (CD) complexation strategy to overcome the aforementioned disadvantages associated with BOS. CD complexation is a simple, versatile and economic approach that enables formation of inclusion complexes, thereby improving aqueous solubility while nullifying pH-dependent solubility and fast-fed variability for poorly soluble drugs. Initially, we performed molecular dynamics and docking studies to select appropriate CD derivative. The results of in silico studies revealed that sulfo-butyl ether β-cyclodextrin (SBE-CD) offered superior binding affinity with BOS. Further, Job's plot revealed that 1:1 stoichiometry of BOS and CD resulted in enhancement of BOS solubility up to ~ 132.6-folds. In vitro release studies in bio-relevant media (fasted and fed state simulated gastric and intestinal fluids) revealed higher drug release while overcoming its pH-dependent solubility. In vitro studies on K562 cells demonstrated a 1.83-fold enhancement in cytotoxicity due to enhanced ROS production and G2/M phase arrest.In vivo pharmacokinetic studies in Sprague-Dawley rats revealed insignificant fast-fed variability with AUCfast/fed 0.9493 and Cmaxfast/fed 0.8291 being closer to 1 in comparison with BOS. Hence, we conclude that SBE-CD complexation could be a promising approach in diminishing fast-fed variability of BOS.
Collapse
Affiliation(s)
- Saurabh Shah
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Deepkumar Bagasariya
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kondasingh Charan Kumar
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Nusrat Begum
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Syed Shahrukh
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Naitik Jain
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
3
|
Sykuła A, Bodzioch A, Nowak A, Maniukiewicz W, Ścieszka S, Piekarska-Radzik L, Klewicka E, Batory D, Łodyga-Chruścińska E. Encapsulation and Biological Activity of Hesperetin Derivatives with HP-β-CD. Molecules 2023; 28:6893. [PMID: 37836736 PMCID: PMC10574185 DOI: 10.3390/molecules28196893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The encapsulation of insoluble compounds can help improve their solubility and activity. The effects of cyclodextrin encapsulation on hesperetin's derivatives (HHSB, HIN, and HTSC) and the physicochemical properties of the formed complexes were determined using various analytical techniques. The antioxidant (DPPH•, ABTS•+ scavenging, and Fe2+-chelating ability), cytotoxic, and antibacterial activities were also investigated. The inclusion systems were prepared using mechanical and co-evaporation methods using a molar ratio compound: HP-β-CD = 1:1. The identification of solid systems confirmed the formation of two inclusion complexes at hesperetin (CV) and HHSB (mech). The identification of systems of hesperetin and its derivatives with HP-β-CD in solutions at pHs 3.6, 6.5, and 8.5 and at various temperatures (25, 37 and 60 °C) confirmed the effect of cyclodextrin on their solubility. In the DPPH• and ABTS•+ assay, pure compounds were characterized by higher antioxidant activity than the complexes. In the FRAP study, all hesperetin and HHSB complexes and HTSC-HP-β-CD (mech) were characterized by higher values of antioxidant activity than pure compounds. The results obtained from cytotoxic activity tests show that for most of the systems tested, cytotoxicity increased with the concentration of the chemical, with the exception of HP-β-CD. All systems inhibited Escherichia coli and Staphylococcus aureus.
Collapse
Affiliation(s)
- Anna Sykuła
- Faculty of Biotechnology and Food Sciences, Institute of Natural Products and Cosmetics, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland;
| | - Agnieszka Bodzioch
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland;
| | - Adriana Nowak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-530 Lodz, Poland;
| | - Waldemar Maniukiewicz
- Faculty of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland;
| | - Sylwia Ścieszka
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland; (S.Ś.); (L.P.-R.); (E.K.)
| | - Lidia Piekarska-Radzik
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland; (S.Ś.); (L.P.-R.); (E.K.)
| | - Elżbieta Klewicka
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland; (S.Ś.); (L.P.-R.); (E.K.)
| | - Damian Batory
- Department of Vehicles and Fundamentals of Machine Design, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Elżbieta Łodyga-Chruścińska
- Faculty of Biotechnology and Food Sciences, Institute of Natural Products and Cosmetics, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland;
| |
Collapse
|
4
|
Villalobos E, Marco JF, Yáñez C. Reduced Graphene Oxide as a Platform for the Immobilization of Amino-Cyclodextrins. MICROMACHINES 2023; 14:746. [PMID: 37420979 PMCID: PMC10143922 DOI: 10.3390/mi14040746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 07/09/2023]
Abstract
In the present work, we reported on a method to combine amino β-cyclodextrins (CD1) with reduced graphene oxide (obtained by the electrochemical reduction of graphene oxide, erGO) to produce a glassy carbon electrode (GCE) modified with both CD1 and erGO (CD1-erGO/GCE). This procedure avoids the use of organic solvents such as hydrazine or long reaction times and high temperatures. The material combining both CD1 and erGO (CD1-erGO/GCE) was characterized by SEM, ATR-FTIR, Raman, XPS, and electrochemical techniques. As proof-of-concept, the determination of the pesticide carbendazim was carried out. The spectroscopic measurements, especially XPS, proved that CD1 was covalently attached to the surface of the erGO/GCE electrode. The attachment of cyclodextrin at the reduced graphene oxide produced an increase in the electrochemical behavior of the electrode. The cyclodextrin-functionalized reduced graphene oxide, CD1-erGO/GCE, showed a larger sensitivity (1.01 μA/μM) and a lower limit of detection for carbendazim (LOD = 0.50 μM) compared with the non-functionalized material, erGO/GCE, (sensitivity = 0.63 μA/μM and LOD = 4.32 μM, respectively). Overall, the results of the present work show that this simple method is suitable to attach cyclodextrins to graphene oxide, maintaining their inclusion abilities.
Collapse
Affiliation(s)
- Elias Villalobos
- Centro de Investigación de Procesos Redox, CIPRex, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago P.O. Box 233, Chile
| | - José F. Marco
- Instituto de Química Física “Rocasolano”, CSIC, C/Serrano, 119, 28006 Madrid, Spain;
| | - Claudia Yáñez
- Centro de Investigación de Procesos Redox, CIPRex, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago P.O. Box 233, Chile
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago P.O. Box 233, Chile
| |
Collapse
|
5
|
Liu M, Higashi K, Ueda K, Moribe K. Supersaturation maintenance of carvedilol and chlorthalidone by cyclodextrin derivatives: Pronounced crystallization inhibition ability of methylated cyclodextrin. Int J Pharm 2023; 637:122876. [PMID: 36963642 DOI: 10.1016/j.ijpharm.2023.122876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/21/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023]
Abstract
Cyclodextrin (CD) is used to solubilize poorly water-soluble drugs by inclusion complex formation. In this study, we investigated the effect of CD derivatives on stabilizing the supersaturation by inhibiting the crystallization of two poorly water-soluble drugs, carvedilol (CVD) and chlorthalidone (CLT). The phase solubility test showed that β-CD and γ-CD derivatives enhanced the solubility of CVD to a greater extent, whereas the solubility of CLT was enhanced more by β-CD derivatives. The solubilization efficacy of CD derivatives was dependent on the size fitness between the drug molecule and the CD cavity. In the drug crystallization induction time measurement, the same initial drug supersaturation ratio (S) was employed in all the CD solutions, and the methylated CD derivatives greatly outperformed unmethylated CD derivatives in stabilizing the supersaturation of both CVD and CLT. The crystallization inhibition strength of CD derivatives was strongly affected by the CD derivative substituent. Moreover, the calculated logarithm of octanol/water partition coefficients (log P) of CD derivatives showed a good correlation with drug crystallization inhibition ability. Thus, the high hydrophobicity of methylated CD plays an essential role in inhibiting crystallization. These findings can provide a valuable guide for selecting appropriate stabilizing agents for drug-supersaturation formulations.
Collapse
Affiliation(s)
- Mengyao Liu
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
6
|
Pittol V, Veras KS, Doneda E, Silva AD, Delagustin MG, Koester LS, Bassani VL. The challenge of flavonoid/cyclodextrin complexation in a complex matrix of the quercetin, luteolin, and 3- O-methylquercetin. Pharm Dev Technol 2022; 27:625-634. [PMID: 35796030 DOI: 10.1080/10837450.2022.2098326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The complexation of herbal constituents with cyclodextrin has been a useful tool to improve their aqueous solubility. However, the simultaneous complexation of these compounds still lacks detailed studies. The present study investigated the multicomplexation of quercetin (QCT), luteolin (LUT), and 3-O-methylquercetin (3OMQ) with (2-hydroxypropyl)-β-cyclodextrin (HPβCD), when they are simultaneously contained in a flavonoid-enriched fraction (FEF) of Achyrocline satureioides. The phase-solubility diagram revealed a linear correlation between the flavonoids solubility and the HPβCD concentration, demonstrating the formation of complexes with a 1:1 stoichiometric ratio, which was confirmed by ESI-MS. Negative ΔG0 values indicated that complexation was spontaneous. Flavonoids/HPβCD interactions were evidenced by FT-IR, DSC, SEM, and 1D and 2D NMR. The last one showed the formation of inclusion complexes by insertion of the B-ring of the flavonoids into the cavity of HPβCD. Unexpectedly, the FEF/HPβCD complex showed a radical scavenger potential lower than the FEF. The HPLC analysis revealed that the complex contained different flavonoid ratio than the fraction. Thus, the antioxidant capacity of the samples was demonstrated to be related to the ratio among the flavonoids, rather than to the total flavonoids. These new findings are very useful for developing herbal cyclodextrin-based products from A. satureioides or other herbal products.
Collapse
Affiliation(s)
- Vanessa Pittol
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kleyton Santos Veras
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduarda Doneda
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ariane Dorneles Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Gabriele Delagustin
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Letícia Scherer Koester
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Valquíria Linck Bassani
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Fahmy S, Nematallah KA, Mahdy NK, El-Askary HI, Meselhy MR, El-Said Azzazy HM. Enhanced Antioxidant, Antiviral, and Anticancer Activities of the Extract of Fermented Egyptian Rice Bran Complexed with Hydroxypropyl-β-cyclodextrin. ACS OMEGA 2022; 7:19545-19554. [PMID: 35721952 PMCID: PMC9202066 DOI: 10.1021/acsomega.2c01281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Egyptian rice bran was fermented with baker's yeast, and released phenolics were extracted with aqueous methanol to give fermented rice bran extract (FRBE). The analysis of the FRBE with ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry revealed 21 compounds, mainly phenolic acids and flavonoids. The FRBE was then complexed with (2-hydroxypropyl)-β-cyclodextrin (HPβCD) via noncovalent host-guest inclusion complexation using the thin-film hydration technique to improve the hydrophilicity and bioactivity of the FRBE. The formation of the inclusion complex was confirmed using HPLC, 1H NMR, FT-IR, and a phase solubility study. In addition, the biological activities of the complex were investigated. The FRBE/HPβCD inclusion complex had more pronounced antioxidant, antiviral, and anticancer activities compared to free FRBE. These findings warrant the future investigation of potential medical applications of FRBE.
Collapse
Affiliation(s)
- Sherif
Ashraf Fahmy
- Department
of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, PO. Box 74, New Cairo, Cairo 11835, Egypt
- School
of Life and Medical Sciences, University
of Hertfordshire, Global Academic Foundation, R5 New Garden City, New
Cairo, Cairo 11835, Egypt
| | - Khaled A. Nematallah
- Faculty
of Pharmacy, Department of Pharmacognosy and Microbiology, The British University in Egypt, El Sherouk, Cairo 11837, Egypt
| | - Noha Khalil Mahdy
- Department
of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, PO. Box 74, New Cairo, Cairo 11835, Egypt
| | - Hesham I. El-Askary
- Faculty
of Pharmacy, Department of Pharmacognosy, Cairo University, Giza, Giza 12613, Egypt
| | - Meselhy Ragab Meselhy
- Faculty
of Pharmacy, Department of Pharmacognosy, Cairo University, Giza, Giza 12613, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department
of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, PO. Box 74, New Cairo, Cairo 11835, Egypt
| |
Collapse
|
8
|
Ayoub AM, Gutberlet B, Preis E, Abdelsalam AM, Abu Dayyih A, Abdelkader A, Balash A, Schäfer J, Bakowsky U. Parietin Cyclodextrin-Inclusion Complex as an Effective Formulation for Bacterial Photoinactivation. Pharmaceutics 2022; 14:357. [PMID: 35214089 PMCID: PMC8875783 DOI: 10.3390/pharmaceutics14020357] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
Multidrug resistance in pathogenic bacteria has become a significant public health concern. As an alternative therapeutic option, antimicrobial photodynamic therapy (aPDT) can successfully eradicate antibiotic-resistant bacteria with a lower probability of developing resistance or systemic toxicity commonly associated with the standard antibiotic treatment. Parietin (PTN), also termed physcion, a natural anthraquinone, is a promising photosensitizer somewhat underrepresented in aPDT because of its poor water solubility and potential to aggregate in the biological environment. This study investigated whether the complexation of PTN with (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD) could increase its solubility, enhance its photophysical properties, and improve its phototoxicity against bacteria. At first, the solubilization behavior and complexation constant of the PTN/HP-β-CD inclusion complexes were evaluated by the phase solubility method. Then, the formation and physicochemical properties of PTN/HP-β-CD complexes were analyzed and confirmed in various ways. At the same time, the photodynamic activity was assessed by the uric acid method. The blue light-mediated photodegradation of PTN in its free and complexed forms were compared. Complexation of PTN increased the aqueous solubility 28-fold and the photostability compared to free PTN. PTN/HP-β-CD complexes reduce the bacterial viability of Staphylococcus saprophyticus and Escherichia coli by > 4.8 log and > 1.0 log after irradiation, respectively. Overall, the low solubility, aggregation potential, and photoinstability of PTN were overcome by its complexation in HP-β-CD, potentially opening up new opportunities for treating infections caused by multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Abdallah Mohamed Ayoub
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Bernd Gutberlet
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
| | - Ahmed Mohamed Abdelsalam
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Alice Abu Dayyih
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
| | - Ayat Abdelkader
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt
| | - Amir Balash
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 10, 35032 Marburg, Germany;
| | - Jens Schäfer
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
| |
Collapse
|
9
|
BaŞaran E, AykaÇ K, Yenİlmez E, BÜyÜkkÖroĞlu G, Tunali Y, Demİrel M. Formulation and Characterization Studies of Inclusion Complexes of Voriconazole for Possible Ocular Application. Pharm Dev Technol 2022; 27:228-241. [PMID: 35107405 DOI: 10.1080/10837450.2022.2037635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In our study Voriconazole (VOR) was selected as an active agent to be used for the treatment of ocular fungal infections. To overcome low aqueous solubility of VOR, inclusion complexes with α-cyclodextrin (α-CD), β-cyclodextrin (β-CD), γ-cyclodextrin (γ-CD), hydroxypropyl-cyclodextrin (HP-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD) hydroxypropyl-γ-cyclodextrin (HP-γ-CD), methyl-β-cyclodextrin (M-β-CD) and sulfabutylether-β-cyclodextrin (SBE-β-CD) were formulated. Characterization studies revealed that inclusion complexes were formulated successfully with lyophilization method. Aqueous solubility of VOR was enhanced up to 86 fold with the formation of the inclusion complexes. MTT analyses results revealed the safety of the complexes on 3T3 mouse fibroblast cell lines while Microbroth Dilution Method revealed the remarkable antifungal activities of the complexes. Analyses results revealed that inclusion complexes will overcome the poor ocular bioavailability of VOR resulting in efficient treatment of severe ocular fungal infections.
Collapse
Affiliation(s)
- Ebru BaŞaran
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Kadir AykaÇ
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Evrim Yenİlmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Gülay BÜyÜkkÖroĞlu
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Yağmur Tunali
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Müzeyyen Demİrel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
10
|
Rigaud S, Mathiron D, Moufawad T, Landy D, Djedaini-Pilard F, Marçon F. Cyclodextrin Complexation as a Way of Increasing the Aqueous Solubility and Stability of Carvedilol. Pharmaceutics 2021; 13:1746. [PMID: 34834163 PMCID: PMC8620534 DOI: 10.3390/pharmaceutics13111746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022] Open
Abstract
We studied the effect of several CDs on carvedilol's solubility and chemical stability in various aqueous media. Our present results show that it is possible to achieve a carvedilol concentration of 5 mg/mL (12.3 mM) in the presence of 5 eq of γCD or RAMEB in an aqueous medium with an acceptable acid pH (between 3.5 and 4.7). Carvedilol formed 1:1 inclusion complexes but those with RAMEB appear to be stronger (K = 317 M-1 at 298 K) than that with γCD (K = 225 M-1 at 298 K). The complexation of carvedilol by RAMEB significantly increased the drug's photochemical stability in aqueous solution. These results might constitute a first step towards the development of a novel oral formulation of carvedilol.
Collapse
Affiliation(s)
- Sébastien Rigaud
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources UMR 7378 CNRS, Université de Picardie Jules Verne, 33 Rue Saint-Leu, F-80039 Amiens, France;
| | - David Mathiron
- Plateforme-Analytique, Université de Picardie Jules Verne, 33 Rue Saint-Leu, F-80039 Amiens, France;
| | - Tarek Moufawad
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR 4492), ULCO, F-59140 Dunkerque, France; (T.M.); (D.L.)
| | - David Landy
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR 4492), ULCO, F-59140 Dunkerque, France; (T.M.); (D.L.)
| | - Florence Djedaini-Pilard
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources UMR 7378 CNRS, Université de Picardie Jules Verne, 33 Rue Saint-Leu, F-80039 Amiens, France;
| | - Frédéric Marçon
- Laboratoire AGIR UR4294, Université de Picardie Jules Verne, 1 Rue des Louvels, F-80039 Amiens, France;
- Pharmacie à Usage Intérieur, Centre Hospitalier Universitaire d’Amiens-Picardie, 1 Rue du Professeur Christian Cabrol, F-80054 Amiens, France
| |
Collapse
|
11
|
Singh SC, Khatri DK, Singh K, Kanchupalli VK, Madan J, Singh SB, Singh H. Molecular encapsulation of andrographolide in 2-hydroxypropyl- β-cyclodextrin cavity: synthesis, characterization, pharmacokinetic and in vitro antiviral activity analysis against SARS-CoV-2. Heliyon 2021; 7:e07741. [PMID: 34395929 PMCID: PMC8351079 DOI: 10.1016/j.heliyon.2021.e07741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/04/2021] [Accepted: 08/05/2021] [Indexed: 11/30/2022] Open
Abstract
In present investigation, AND-2-HyP-β-CYD (Andrographolide-2-Hydroxypropyl-β-cyclodextrin) complex was synthesized and characterized for antiviral and pharmacokinetic profile. The linear host-guest relation suggested synthesis of a 1:1 complex of AND with 2-HyP-β-CYD by inclusion mode. The Kc, stability constant of the two phase system of AND with 2-HyP-β-CYD computed to be 38.60 x 10−3M. 1H NMR spectrum of AND indicated the presence of triplet at 6.63-ppm which was up-fielded in AND-2-HyP-β-CYD complex at 6.60-ppm (doublet) confirmed the insertion of AND in cavity of 2-HyP-β-CYD through lactone ring. AND-2-HyP-β-CYD complex exhibited the IC50 of 0.1-μg.mL−1 (E gene) and 0.29-μg.mL−1 (N gene) against SARS-CoV-2 infected Vero6 cells. Moreover, a 1.5-fold increment in extent of absorption of AND was noticed post complexation. The bioavailability was estimated to be 15.87 ± 3.84% and 23.84 ± 5.46%, respectively for AND and AND-2-HyP-β-CYD complex. AND-2-HyP-β-CYD complex may be a prospective candidate for further studies to evolve as a clinically viable formulation against SARS-CoV-2.
Collapse
Affiliation(s)
- Shashi Chandrama Singh
- Research and Development Centre, Ambe Phytoextracts Private Limited, Pauri Garhwal, Uttarakhand, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Kulbhaskar Singh
- Research and Development Centre, Ambe Phytoextracts Private Limited, Pauri Garhwal, Uttarakhand, India
| | - Vinay Kumar Kanchupalli
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Harshpal Singh
- Research and Development Centre, Ambe Phytoextracts Private Limited, Pauri Garhwal, Uttarakhand, India
| |
Collapse
|
12
|
Erdoğar N, Akkın S, Varan G, Bilensoy E. Erlotinib complexation with randomly methylated β-cyclodextrin improves drug solubility, intestinal permeability, and therapeutic efficacy in non-small cell lung cancer. Pharm Dev Technol 2021; 26:797-806. [PMID: 34219578 DOI: 10.1080/10837450.2021.1946695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The purpose of this study was to investigate the impact of anticancer drug erlotinib-randomly methylated-β-cyclodextrin complex (ERL-RAMEB CD) on drug solubility and dissolution rate. Phase solubility study showed erlotinib displayed maximum solubility in RAMEB CD solution and the stability constant (Kc) was calculated to be 370 ± 16 M-1. The optimal formulation was obtained with ERL-RAMEB CD in a 1:1 molar ratio using the co-lyophilization technique. Differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM) verified the inclusion of complex formation. In vitro dissolution study confirmed ERL-RAMEB CD as a favorable approach to increase drug dissolution with a 1.5-fold increase than free ERL at 1 h. An improved dissolution with ∼88.4% drug release at 1 h was observed, in comparison with Erlotinib with ∼58.7% release in 45 min. The in vitro cytotoxicity results indicated that the ERL-RAMEB CD inclusion complex reduced cell viability than free erlotinib. Caco-2 cell uptake that is indicative of drug intestinal permeability resulted in a 5-fold higher uptake of ERL-RAMEB CD inclusion complex than the ERL solution. Hence, ERL-RAMEB CD complexation displays a strong potential to increase dissolution and permeability of erlotinib leading eventually to enhanced oral bioavailability.
Collapse
Affiliation(s)
- Nazlı Erdoğar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Safiye Akkın
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Gamze Varan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Erem Bilensoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
13
|
Narayanan V, Alam M, Ahmad N, Balakrishnan SB, Ganesan V, Shanmugasundaram E, Rajagopal B, Thambusamy S. Electrospun poly (vinyl alcohol) nanofibers incorporating caffeic acid/cyclodextrins through the supramolecular assembly for antibacterial activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119308. [PMID: 33360058 DOI: 10.1016/j.saa.2020.119308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Here, we prepared the solid inclusion complexes between Caffeic acid (CA) and Cyclodextrins (β- and γ-CDs) (CA/CDs) that were effectively embedded into Poly (vinyl alcohol) (PVA) electrospun nanofibers via electrospinning technique to enhanced solubility and antibacterial activity. In tested Cyclodextrins are β-and γ-CDs with CA in the ratio of 1:1 resulting in the formation of CA/CDs by co-precipitation method. The physical properties of CA/CDs were examined by FT-IR, UV, and Raman Spectroscopy. The phase solubility test showed a much higher solubility of CA due to inclusion complexes (ICs). Furthermore, CA/β-CD and CA/γ-CD perfected achieved 0.70:1 and 0.80:1 the molar ratio of ICs, confirmed by NMR studies. The fiber size distribution, average diameter, and morphology features were evaluated by SEM analysis. The dissolution profile of PVA/CA and PVA/CA/CDs were tested within 150 min, resulting in CA dissolved in PVA/CA/CDs slightly higher than PVA/CA nanofibers due to enhanced solubility of ICs. Moreover, PVA/CA/CDs exhibit high antibacterial activity against gram-positive bacteria of E-Coli and gram-negative bacteria of S. aureus. Finally, these results suggest that PVA/CA/CDs may be promising materials for active food packaging applications.
Collapse
Affiliation(s)
- Vimalasruthi Narayanan
- Department of Industrial Chemistry, Alagappa University, Karaikudi 630002, Tamil Nadu, India
| | - Manawwer Alam
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Vigneshkumar Ganesan
- Department of Industrial Chemistry, Alagappa University, Karaikudi 630002, Tamil Nadu, India
| | | | - Brindha Rajagopal
- Department of Industrial Chemistry, Alagappa University, Karaikudi 630002, Tamil Nadu, India
| | - Stalin Thambusamy
- Department of Industrial Chemistry, Alagappa University, Karaikudi 630002, Tamil Nadu, India.
| |
Collapse
|
14
|
Preparation, characterization and pharmacokinetic studies of sulfobutyl ether-β-cyclodextrin-toltrazuril inclusion complex. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.128969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Hot melt-extrusion improves the properties of cyclodextrin-based poly(pseudo)rotaxanes for transdermal formulation. Int J Pharm 2020; 586:119510. [DOI: 10.1016/j.ijpharm.2020.119510] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 01/24/2023]
|
16
|
|
17
|
Geng Q, Li T, Wang X, Chu W, Cai M, Xie J, Ni H. The mechanism of bensulfuron-methyl complexation with β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin and effect on soil adsorption and bio-activity. Sci Rep 2019; 9:1882. [PMID: 30760785 PMCID: PMC6374456 DOI: 10.1038/s41598-018-38234-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 12/20/2018] [Indexed: 01/19/2023] Open
Abstract
In this work, the inclusion complexes of hydrophobic herbicide bensulfuron-methyl (BSM) with β-cyclodextrin (β-CD) and (2-hydroxypropyl)-β-CD (2-HP-β-CD) were prepared and characterized. Phase solubility study showed that both β-CD and 2-HP-β-CD increased the solubility of BSM. Three-dimensional structures of the inclusion complexes were simulated by the molecular docking method. The docking results indicated that guest BSM could enter into the cavities of host CDs, folded, and centrally aligned inside the inclusion complexes. The benzene ring of the guest molecule was close to the wide rim of the host molecules; the pyrimidine ring and side chains of the guest molecule were oriented toward the narrow rim of the host molecule. The inclusion complexes were successfully prepared by the coprecipitation method. The physiochemical characterization data of 1H NMR, FT-IR, XRD, and DSC showed that the guest and host molecules were well included. BSM had lower soil adsorption and higher herbicidal activity in the complexation form with β-CD or 2-HP-β-CD than in the pure form. The present study provides an approach to develop a novel CDs-based formulation for hydrophobic herbicides.
Collapse
Affiliation(s)
- Qianqian Geng
- College of Plant Protection, China Agricultural University, Beijing, P. R. China
| | - Tian Li
- College of Plant Protection, China Agricultural University, Beijing, P. R. China
| | - Xin Wang
- College of Plant Protection, China Agricultural University, Beijing, P. R. China
| | - Weijing Chu
- College of Plant Protection, China Agricultural University, Beijing, P. R. China
| | - Mengling Cai
- College of Plant Protection, China Agricultural University, Beijing, P. R. China
| | - Jingchan Xie
- College of Plant Protection, China Agricultural University, Beijing, P. R. China
| | - Hanwen Ni
- College of Plant Protection, China Agricultural University, Beijing, P. R. China.
| |
Collapse
|
18
|
Geng Q, Xie J, Wang X, Cai M, Ma H, Ni H. Preparation and Characterization of Butachlor/(2-Hydroxypropyl)-β-cyclodextrin Inclusion Complex: Improve Soil Mobility and Herbicidal Activity and Decrease Fish Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12198-12205. [PMID: 30376318 DOI: 10.1021/acs.jafc.8b04812] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A water-soluble inclusion complex for butachlor was prepared by complexation with (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD). Phase solubility results indicated a 1:1 stoichiometric ratio with an apparent stability constant of 864.3 M-1 in the obtained solid complex. The formation of the complex was confirmed by 1H nuclear magnetic resonance, Fourier transform infrared, and differential scanning calorimetry spectra. Coupled with the molecular docking results, butachlor was considered to be completely included in HP-β-CD cavity. Butachlor complexation with HP-β-CD decreased its adsorption capacity and enhanced its mobility in soil. The inclusion complex displayed better herbicidal activities than free butachlor. The 96 h median lethal concentration values of the inclusion complex and free butachlor was 2.30 and 0.65 mg L-1, respectively, for zebrafish, indicating that the complexation could significantly reduce toxicity to fishes. The present study provides an approach to develop environment-friendly formulations using CDs for herbicides.
Collapse
Affiliation(s)
- Qianqian Geng
- College of Plant Protection , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , P.R. China
| | - Jingchan Xie
- College of Plant Protection , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , P.R. China
| | - Xin Wang
- College of Plant Protection , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , P.R. China
| | - Mengling Cai
- College of Plant Protection , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , P.R. China
| | - Hui Ma
- College of Plant Protection , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , P.R. China
| | - Hanwen Ni
- College of Plant Protection , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , P.R. China
| |
Collapse
|
19
|
Nikolic IL, Savic IM, Popsavin MM, Rakic SJ, Mihajilov-Krstev TM, Ristic IS, Eric SP, Savić-Gajic IM. Preparation, characterization and antimicrobial activity of inclusion complex of biochanin A with (2-hydroxypropyl)-β-cyclodextrin. J Pharm Pharmacol 2018; 70:1485-1493. [DOI: 10.1111/jphp.13003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/04/2018] [Indexed: 12/29/2022]
Abstract
Abstract
Objectives
An inclusion complex of biochanin A (BCA) with (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD) was prepared in the ethanol solution to improve its water solubility.
Methods
Using the FTIR, 1H-NMR, XRD, DSC and SEM methods, the structural characterization of the prepared complex was analysed.
Key findings
The phase-solubility study has shown that the solubility of BCA was increased twofold in 42% (v/v) ethanol solution after complexation with HP-β-CD. The complex between BCA and HP-β-CD was prepared in the molar ratio of 1 : 1. The antibacterial activity of the inclusion complex was investigated against the various bacteria, fungus and yeast using the microdilution method. The minimal inhibitory concentration values for the analysed strain of bacteria were in the range of 0.84–1.69 mg/cm3, whereby the prepared inclusion complex exhibited less effect on the reduction of the number of Escherichia coli and Klebsiella pneumoniae species compared to pure BCA. The inclusion complex of BCA was significantly more active against Candida albicans than pure BCA. Biochanin A and its inclusion complex has not expressed the activity against Aspergillus niger.
Conclusions
Based on the obtained results, it can be concluded that the antimicrobial activity of BCA was remained unchanged after complexation.
Collapse
Affiliation(s)
- Ivana Lj Nikolic
- Faculty of Technology, University of Nis, Leskovac, Republic of Serbia
| | - Ivan M Savic
- Faculty of Technology, University of Nis, Leskovac, Republic of Serbia
| | - Mirjana M Popsavin
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Republic of Serbia
| | - Srdjan J Rakic
- Department of Physics, Faculty of Sciences, University of Novi Sad, Novi Sad, Republic of Serbia
| | - Tatjana M Mihajilov-Krstev
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Nis, Nis, Republic of Serbia
| | - Ivan S Ristic
- Faculty of Technology, University of Novi Sad, Novi Sad, Republic of Serbia
| | - Suzana P Eric
- Faculty of Mining and Geology, University of Belgrade, Belgrade, Republic of Serbia
| | | |
Collapse
|
20
|
Furuishi T, Sekino K, Gunji M, Fukuzawa K, Nagase H, Endo T, Ueda H, Yonemochi E. Effect of sulfobutyl ether-β-cyclodextrin and propylene glycol alginate on the solubility of clozapine. Pharm Dev Technol 2018; 24:479-486. [PMID: 30126299 DOI: 10.1080/10837450.2018.1514521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Clozapine (CLZ) is an atypical antipsychotic medication used in the treatment of schizophrenia and is poorly soluble in water (0.05 mM). In this study, we have investigated the effect of β-cyclodextrin (CD) and its derivatives on the solubility of CLZ. The solubility of the CLZ was measured to generate a phase solubility diagram, and the interaction between CLZ and sulfobutyl ether-β-cyclodextrin (SBE-β-CD) in aqueous solution was observed by 1H- and 2D rotating-frame Overhauser enhancement spectroscopy (ROESY)-NMR methods. Moreover, the synergistic effect of SBE-β-CD and water-soluble polymers, including polyvinylpyrrolidone, hydroxypropyl methylcellulose, carboxymethylcellulose sodium salt, polyvinyl alcohol, sodium alginate, and propylene glycol alginate (PGA), on the solubility of CLZ was investigated. The results show that the solubility of CLZ with 1 w/v% PGA was 7.6 mM, which was almost four times greater than that of CLZ without PGA in a 15 mM SBE-β-CD solution. In contrast, the solubility of CLZ with 1 w/v % PGA in an aqueous solution decreased by one-third relative to that of CLZ in a 15 mM SBE-β-CD solution. 2D ROESY-NMR indicated that a CLZ/SBE-β-CD/PGA ternary complex formed. It was found that the combination of PGA and SBE-β-CD enhanced the solubility of CLZ.
Collapse
Affiliation(s)
- Takayuki Furuishi
- a Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences , Hoshi University , Tokyo , Japan
| | - Kohei Sekino
- a Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences , Hoshi University , Tokyo , Japan
| | - Mihoko Gunji
- a Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences , Hoshi University , Tokyo , Japan
| | - Kaori Fukuzawa
- a Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences , Hoshi University , Tokyo , Japan
| | - Hiromasa Nagase
- b Central Research Laboratories, School of Pharmacy and Pharmaceutical Sciences , Hoshi University , Tokyo , Japan
| | - Tomohiro Endo
- c School of Pharmacy , Tokyo University of Pharmacy and Life Sciences , Tokyo , Japan
| | - Haruhisa Ueda
- a Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences , Hoshi University , Tokyo , Japan
| | - Etsuo Yonemochi
- a Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences , Hoshi University , Tokyo , Japan
| |
Collapse
|
21
|
Yang L, Bi L, Lei Z, Miao Y, Li B, Liu T, Wu W. Preparation of Amidoxime-Functionalized β-Cyclodextrin-Graft-(Maleic Anhydride-co-Acrylonitrule) Copolymer and Evaluation of the Adsorption and Regeneration Properties of Uranium. Polymers (Basel) 2018; 10:E236. [PMID: 30966271 PMCID: PMC6414990 DOI: 10.3390/polym10030236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 11/25/2022] Open
Abstract
The β-cyclodextrin-graft-(maleic anhydride-co-acrylonitrule) copolymer (β-CD-g-(MAH-co-AN)) synthesized through radical polymerization reactions of β-cyclodextrin (β-CD) with maleic anhydride (MAH) and acrylonitrule (AN) in the special monomer proportion, chemically modify with amidoxime groups to obtained the new adsorbent, which was terms as amidoxime-functionalized β-cyclodextrin-graft-(maleic anhydride-co-acrylonitrule) copolymer (β-CD-g-(MAH-co-AO)). Based on the characteristic results of Fourier transform infrared spectra (FTIR), scanning electron microscopy (SEM), X-ray Diffraction (XRD), and thermalgravity analysis (TGA) techniques, the grafted nitrile groups were successfully converted to amidoxime groups by reaction with hydroxylamine. In this report, the influence of different factors such as pH value and ionic strength, solid-liquid ratio, contact time, initial U(VI) concentration, and temperature on adsorption was investigated by a batch adsorption experiment. The adsorption process fitting results show that the adsorption followed the Langmuir isotherm model and the maximum adsorption capacity was 0.747 g/g at pH 4.0. In addition, the regeneration performance was investigated by varying the concentration of eluent, temperature, and contact time. Under the desorption condition of 0.10 M HNO₃, the adsorbents can be reused 12 times in the case that the adsorption capacity was not significantly reduced. The functionalized copolymer exhibits high selectivity under circumstance of other co-existing ions is present in the solution.
Collapse
Affiliation(s)
- Liu Yang
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Lei Bi
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Zhiwei Lei
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Yu Miao
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Bolin Li
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Tonghuan Liu
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Wangsuo Wu
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
22
|
Li S, Yuan L, Zhang B, Zhou W, Wang X, Bai D. Photostability and antioxidant activity studies on the inclusion complexes of trans-polydatin with β-cyclodextrin and derivatives. RSC Adv 2018; 8:25941-25948. [PMID: 35541971 PMCID: PMC9082899 DOI: 10.1039/c8ra04778b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/10/2018] [Indexed: 01/13/2023] Open
Abstract
The inclusion complexes of trans-polydatin and three cyclodextrins (CDs), namely β-cyclodextrin (β-CD), methyl-β-cyclodextrin (Me-β-CD) and (2-hydroxy) propyl-β-cyclodextrin (HP-β-CD) were prepared.
Collapse
Affiliation(s)
- Shujing Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Technology and Business University
- Beijing 100048
- PR China
- Department of Chemistry
| | - Li Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Technology and Business University
- Beijing 100048
- PR China
- Department of Chemistry
| | - Bing Zhang
- Technical Institute of Physics and Chemistry
- Chinese Academy of Science
- Beijing 100190
- PR China
| | - Wei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Technology and Business University
- Beijing 100048
- PR China
- Department of Chemistry
| | - Xinrui Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Technology and Business University
- Beijing 100048
- PR China
- Department of Chemistry
| | - Dongsheng Bai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Technology and Business University
- Beijing 100048
- PR China
- Department of Chemistry
| |
Collapse
|
23
|
Ioele G, De Luca M, Garofalo A, Ragno G. Photosensitive drugs: a review on their photoprotection by liposomes and cyclodextrins. Drug Deliv 2017; 24:33-44. [PMID: 29069944 PMCID: PMC8812581 DOI: 10.1080/10717544.2017.1386733] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Giuseppina Ioele
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Rende (CS), Italy
| | - Michele De Luca
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Rende (CS), Italy
| | - Antonio Garofalo
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Rende (CS), Italy
| | - Gaetano Ragno
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Rende (CS), Italy
| |
Collapse
|
24
|
Praveena A, Prabu S, Rajamohan R. Encapsulation of quercetin in β-cyclodextrin and (2-hydroxypropyl)-β-cyclodextrin cavity: In-vitro cytotoxic evaluation. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2017. [DOI: 10.1080/10601325.2017.1381851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Arumugam Praveena
- Department of Chemistry, Idhaya College of Engineering for Women, Chinnasalem, Tamil Nadu, India
| | - Samikannu Prabu
- Department of Chemistry, SKP Engineering College, Tiruvannamalai, Tamil Nadu, India
| | - Rajaram Rajamohan
- Department of Chemistry, SKP Engineering College, Tiruvannamalai, Tamil Nadu, India
| |
Collapse
|
25
|
Experimental and computational studies of naringin/cyclodextrin inclusion complexation. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0704-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|