1
|
Li S, Sharaf MG, Rowe EM, Serrano K, Devine DV, Unsworth LD. Hemocompatibility of β-Cyclodextrin-Modified (Methacryloyloxy)ethyl Phosphorylcholine Coated Magnetic Nanoparticles. Biomolecules 2023; 13:1165. [PMID: 37627230 PMCID: PMC10452919 DOI: 10.3390/biom13081165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
Adsorbing toxins from the blood to augment membrane-based hemodialysis is an active area of research. Films composed of β-cyclodextrin-co-(methacryloyloxy)ethyl phosphorylcholine (p(PMβCD-co-MPC)) with various monomer ratios were formed on magnetic nanoparticles and characterized. Surface chemistry effects on protein denaturation were evaluated and indicated that unmodified magnetic nanoparticles greatly perturbed the structure of proteins compared to coated particles. Plasma clotting assays were conducted to investigate the stability of plasma in the presence of particles, where a 2:2 monomer ratio yielded the best results for a given total surface area of particles. Total protein adsorption results revealed that modified surfaces exhibited reduced protein adsorption compared to bare particles, and pure MPC showed the lowest adsorption. Immunoblot results showed that fibrinogen, α1-antitrypsin, vitronectin, prekallikrein, antithrombin, albumin, and C3 correlated with film composition. Hemocompatibility testing with whole blood illustrated that the 1:3 ratio of CD to MPC had a negative impact on platelets, as evidenced by the increased activation, reduced response to an agonist, and reduced platelet count. Other formulations had statistically significant effects on platelet activation, but no formulation yielded apparent adverse effects on hemostasis. For the first time, p(PMβCD-co-MPC)-coated MNP were synthesized and their general hemocompatibility assessed.
Collapse
Affiliation(s)
- Shuhui Li
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (S.L.)
| | - Mehdi Ghaffari Sharaf
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (S.L.)
| | - Elyn M. Rowe
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada (K.S.); (D.V.D.)
| | - Katherine Serrano
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada (K.S.); (D.V.D.)
| | - Dana V. Devine
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada (K.S.); (D.V.D.)
| | - Larry D. Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (S.L.)
| |
Collapse
|
2
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Kreusser J, Ninni L, Jirasek F, Hasse H. Adsorption of conjugates of lysozyme and fluorescein isothiocyanate in hydrophobic interaction chromatography. J Biotechnol 2022; 360:133-141. [PMID: 36441112 DOI: 10.1016/j.jbiotec.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022]
Abstract
Bioconjugates, such as antibody-drug conjugates or fluorescent-labeled proteins, are highly interesting for various applications in medicine and biology. In their production, not only the synthesis is challenging but also the downstream processing, for which hydrophobic interaction chromatography (HIC) is often used. However, in-depth studies of the adsorption of bioconjugates in HIC are still rare. Therefore, in the present work, three different conjugates of lysozyme and fluorescein isothiocyanate (FITC) were synthesized and isolated, and their adsorption on the hydrophobic resin Toyopearl PPG-600 M was systematically studied in batch experiments. The influence of sodium chloride and ammonium sulfate with ionic strengths up to 2000 mM on the adsorption isotherms was investigated at pH 7.0 and 25 °C, and the results were compared to those for pure lysozyme. The conjugation leads to an increase of the adsorption in all studied cases. All studied conjugates contain only a single FITC and differ only in the position of the conjugation on the lysozyme. Despite this, strong differences in the adsorption behavior were observed. Moreover, a mathematical model was developed, which enables the prediction of the adsorption isotherms in the studied systems for varying ionic strengths.
Collapse
Affiliation(s)
- Jannette Kreusser
- Laboratory of Engineering Thermodynamics (LTD), TU Kaiserslautern, Kaiserslautern, Germany
| | - Luciana Ninni
- Laboratory of Engineering Thermodynamics (LTD), TU Kaiserslautern, Kaiserslautern, Germany
| | - Fabian Jirasek
- Laboratory of Engineering Thermodynamics (LTD), TU Kaiserslautern, Kaiserslautern, Germany.
| | - Hans Hasse
- Laboratory of Engineering Thermodynamics (LTD), TU Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
4
|
Gusmão LA, Machado AEH, Perussi JR. Improved Hypericin solubility via β-cyclodextrin complexation: Photochemical and theoretical study for PDT applications. Photodiagnosis Photodyn Ther 2022; 40:103073. [PMID: 35998882 DOI: 10.1016/j.pdpdt.2022.103073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
Hypericin (HY) is a lipophilic photosensitizer (PS) extensively employed for photodynamic therapy (PDT), presenting high absorption in the visible region, chemical and photostability, as well as a good triplet quantum yield. Supramolecular complexation of photosensitizers into cyclodextrins (CD) is promising to improve their poor solubility, compromising their bioavailability and upcoming applications in PDT. This research produced an inclusion complex between HY and β-CD through the co-solvent method. HY became soluble after inclusion into β-CD cavities, besides retaining its fluorescent and singlet oxygen quantum yields (ϕf =0.115 and ϕΔ= 0.23, respectively), which are essential parameters for PDT uses and are not reported in the literature. By the theoretical analysis, since ΔG < 0, it was easy to conclude that HY inclusion into β-CD is a spontaneous process. Additionally, the complexes presented no changes in excited states after complexation. β-CDHY was 27% more phototoxic than free HY when tested in MCF7 cells using 3 J cm-2 of irradiation, indicating a better cell uptake of HY. These outcomes suggest that the inclusion complex of HY into β-CD has the potential for use in PDT.
Collapse
Affiliation(s)
- Luiza Araújo Gusmão
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil.
| | - Antonio Eduardo H Machado
- Laboratório de Fotoquímica e Ciência de Materiais, Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil; Programa de Pós-Graduação em Ciências Exatas e Tecnológicas, Unidade Acadêmica de Física, Universidade Federal de Catalão, Catalão, GO, Brasil
| | | |
Collapse
|
5
|
Di Palma G, Geels S, Carpenter BP, Talosig RA, Chen C, Marangoni F, Patterson JP. Cyclodextrin metal-organic framework-based protein biocomposites. Biomater Sci 2022; 10:6749-6754. [PMID: 36286095 PMCID: PMC9717710 DOI: 10.1039/d2bm01240e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Materials are needed to increase the stability and half-life of therapeutic proteins during delivery. These materials should be biocompatible and biodegradable. Here, we demonstrate that enzymes and immunoproteins can be encapsulated inside cyclodextrin based metal-organic frameworks using potassium as the metal node. The release profile can be controlled with the solubility of the cyclodextrin linker. The activity of the proteins after release is determined using catalytic and in vitro assays. The results show that cyclodextrin metal-organic framework-based protein biocomposites are a promising class of materials to deliver therapeutic proteins.
Collapse
Affiliation(s)
- Giuseppe Di Palma
- Department of Chemistry, University of California Irvine, Irvine, California 92697, USA.
| | - Shannon Geels
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
- Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA
| | - Brooke P Carpenter
- Department of Chemistry, University of California Irvine, Irvine, California 92697, USA.
| | - Rain A Talosig
- Department of Chemistry, University of California Irvine, Irvine, California 92697, USA.
| | - Charles Chen
- Department of Chemistry, University of California Irvine, Irvine, California 92697, USA.
| | - Francesco Marangoni
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
- Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA
| | - Joseph P Patterson
- Department of Chemistry, University of California Irvine, Irvine, California 92697, USA.
- Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, USA
| |
Collapse
|
6
|
Wen H, Zhang D, Liu J, Shang X, Liu X, Du Z, Zhang T. Application of γ-cyclodextrin-lysozyme as host materials for encapsulation of curcumin: characterization, stability, and controlled release properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5925-5934. [PMID: 35437803 DOI: 10.1002/jsfa.11943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In this study, a safe and relatively stable γ-cyclodextrin-lysozyme (γ-CD-Lys) was synthesized using epichlorohydrin as the cross-linking agent, and curcumin was successfully encapsulated in γ-CD-Lys. RESULTS The successful Lys grafting onto γ-CD can be demonstrated by a high grafting ratio (79.02%) and was further confirmed by Fourier transform infrared (FTIR) band shifts and the new signal obtained at δ 2.75 in proton nuclear magnetic resonance. The encapsulation efficiency value of γ-CD-Lys was 76.74%, and the successful encapsulation of curcumin into γ-CD-Lys was confirmed by crystal structure change, increased melting point, and FTIR band shifts. The intermolecular bonds results suggested that associative forces between curcumin and γ-CD-Lys were electrostatic interaction, hydrogen bonds interaction, and hydrophobic interaction. The designed nanoparticles had excellent stability at low pH and low salt concentration. The release rate of these nanoparticles was inhibited in simulated gastric conditions, whereas it increased significantly in intestinal media. Simulated gastrointestinal digestion experiments further confirmed that nanoparticles showed higher bioaccessibility (86.05%) compared with curcumin (58.82%). CONCLUSION Overall, our study showed that the nanoparticles were highly promising for delivering curcumin because of their enhanced functional attributes and stabilization in acid or low salt environments. Also, it was an excellent wall material for targeting hydrophobic bioactive compounds in the intestinal tract via oral administration. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hedi Wen
- Jilin Provincial Key Laboratory of Nutrition and Functional Food & College of Food Science and Engineering, Jilin University, Changchun, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food & College of Food Science and Engineering, Jilin University, Changchun, China
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food & College of Food Science and Engineering, Jilin University, Changchun, China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food & College of Food Science and Engineering, Jilin University, Changchun, China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food & College of Food Science and Engineering, Jilin University, Changchun, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food & College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
7
|
Deshpande SS, Veeragoni D, Rachamalla HK, Misra S. Anticancer properties of ZnO-Curcumin nanocomposite against melanoma cancer and its genotoxicity profiling. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Łagiewka J, Girek T, Ciesielski W. Cyclodextrins-Peptides/Proteins Conjugates: Synthesis, Properties and Applications. Polymers (Basel) 2021; 13:1759. [PMID: 34072062 PMCID: PMC8198514 DOI: 10.3390/polym13111759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclodextrins (CDs) are a family of macrocyclic oligosaccharides mostly composed of six, seven, or eight α-D-glucopyranose units with α-1,4-glycosidic bonds to form toroidal structures. The CDs possess a hydrophilic exterior and hydrophobic interior with the ability to form an inclusion complex, especially with hydrophobic molecules. However, most existing studies are about conjugation CDs with peptide/protein focusing on the formation of new systems. The CD-peptide/protein can possess new abilities; particularly, the cavity can be applied in modulation properties of more complexed proteins. Most studies are focused on drug delivery, such as targeted delivery in cell-penetrating peptides or co-delivery. The co-delivery is based mostly on polylysine systems; on the other hand, the CD-peptide allows us to understand biomolecular mechanisms such as fibryllation or stem cell behaviour. Moreover, the CD-proteins are more complexed systems with a focus on targeted therapy; these conjugates might be controllable with various properties due to changes in their stability. Finally, the studies of CD-peptide/protein are promising in biomedical application and provide new possibilities for the conjugation of simple molecules to biomolecules.
Collapse
Affiliation(s)
- Jakub Łagiewka
- Faculty of Mathematics and Natural Science, Jan Dlugosz University in Czestochowa, Armii Krajowej Ave., 13/15, 42 201 Czestochowa, Poland; (T.G.); (W.C.)
| | | | | |
Collapse
|
9
|
|