1
|
Nikolov S, Ramakrishna K, Rohskopf A, Lokamani M, Tranchida J, Carpenter J, Cangi A, Wood MA. Probing iron in Earth's core with molecular-spin dynamics. Proc Natl Acad Sci U S A 2024; 121:e2408897121. [PMID: 39665761 DOI: 10.1073/pnas.2408897121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/07/2024] [Indexed: 12/13/2024] Open
Abstract
Dynamic compression of iron to Earth-core conditions is one of the few ways to gather important elastic and transport properties needed to uncover key mechanisms surrounding the geodynamo effect. Herein, a machine-learned ab initio derived molecular-spin dynamics (MSD) methodology with explicit treatment for longitudinal spin-fluctuations is utilized to probe the dynamic phase-diagram of iron. This framework uniquely enables an accurate resolution of the phase-transition kinetics and Earth-core elastic properties, as highlighted by compressional wave velocity and adiabatic bulk moduli measurements. In addition, a unique coupling of MSD with time-dependent density functional theory enables gauging electronic transport properties, critically important for resolving geodynamo dynamics.
Collapse
Affiliation(s)
- Svetoslav Nikolov
- Computational Multiscale Department, Sandia National Laboratories, Albuquerque, NM 87123
| | - Kushal Ramakrishna
- Center for Advanced Systems Understanding, D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
| | - Andrew Rohskopf
- Computational Multiscale Department, Sandia National Laboratories, Albuquerque, NM 87123
| | - Mani Lokamani
- Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
| | - Julien Tranchida
- French Alternative Energies and Atomic Energy Commission, Energy Division, Research Institute for Nuclear Systems for Low Carbon Energy Production, Department of Fuel Studies, 13018 Saint Paul Les Durance, France
| | - John Carpenter
- Computational Multiscale Department, Sandia National Laboratories, Albuquerque, NM 87123
| | - Attila Cangi
- Center for Advanced Systems Understanding, D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
| | - Mitchell A Wood
- Computational Multiscale Department, Sandia National Laboratories, Albuquerque, NM 87123
| |
Collapse
|
2
|
Liao Y, Li B, Chen H, Ma Y, Wang F, Huang L, Shen B, Song H, Yue P. Stimuli-responsive mesoporous silica nanoplatforms for smart antibacterial therapies: From single to combination strategies. J Control Release 2024; 378:60-91. [PMID: 39615754 DOI: 10.1016/j.jconrel.2024.11.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/08/2024] [Accepted: 11/23/2024] [Indexed: 12/13/2024]
Abstract
The demand for new antibacterial therapies is urgent and crucial in the clinical setting because of the growing degree of antibiotic resistance and the limits of conventional antibacterial therapies. Stimuli- responsive nanoplatforms, are sensitive to endogenous or exogenous stimulus (pH, temperature, light, and magnetic fields, etc.) which activate cargo release locally and on-demand, hold great potential in developing next generation personalized precision medicine. For instance, pH-sensitive nanoplatforms can selectively release antibacterial agents in the acidic environment of infection sites. To achieve the stimuli-responsive delivery, mesoporous silica nanoplatforms (MSNs) have demonstrated as prospective candidates for efficient cargo loading and controlled release through strategies such as tunable pore engineering, versatile surface modification/coating, and tailored framework composition. Furthermore, aiming for more precise delivery of MSNs, current research interests are increasingly shifting from single-stimuli antibacterial strategy to integrated strategy that combine multiple-stimulus. In this review, we briefly discuss the microenvironment of bacterial infections and provide a comprehensive summary of current stimuli-responsive strategies, and associated materials design principles of stimuli-responsive mesoporous silica-based smart nanoplatforms (SRMSNs). Additionally, integrative antibacterial strategies with synergistic effects, combining chemodynamic, photodynamic, photothermal, sonodynamic and gas therapies, have also been elaborated. Present research advances and limitations of SRMSNs-based antibacterial therapies, such as limited biodegradability and potential cytotoxicity, have been overviewed with future outlooks presented. This review aims to inspire and guide future research in developing novel antibacterial strategies with integrative solutions.
Collapse
Affiliation(s)
- Yan Liao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Biao Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hongxin Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yueqin Ma
- Department of Pharmaceutics, 908th Hospital of Joint Logistics Support Force of PLA, Nanchang 330000, China
| | - Fengxia Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Lizhen Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Baode Shen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 20139, USA.
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
3
|
Novikau IS, Novak EV, Kantorovich SS. The impact of cross-linker distribution on magnetic nanogels: encapsulation, transport and controlled release of the tracer. SOFT MATTER 2024; 20:8765-8774. [PMID: 39449291 DOI: 10.1039/d4sm00797b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Magnetic nanogels (MNGs) are highly attractive for biomedical applications because of their potential for remote control of the rheology and internal structure of these soft colloids with biocompatible magnetic fields. In this contribution, using molecular dynamics simulations, we investigate the impact of the cross-linker distribution in the body of a MNG on the shape and magnetic response to constant and AC magnetic fields and relate those properties to the behaviour of non-magnetic tracers placed in the MNGs and left to escape. We find that if no AC magnetic field is applied, although the escape times of the tracer particles barely depend on morphology, the highest degree of subdiffusion is observed for the gels with a non-uniform cross-linkerer distribution. We also find how the eigen frequency at which particles relax locally in the polymer matrix affects the dynamic magnetic response of the gel. We show that a magnetic field-induced wobbling can facilitate drug release from gels.
Collapse
Affiliation(s)
- Ivan S Novikau
- Faculty of Physics, University of Vienna, Kolingasse 14-16, Vienna 1090, Austria.
| | - Ekaterina V Novak
- Ural Federal University, Lenin Av. 51, Ekaterinburg 620000, Russian Federation
| | - Sofia S Kantorovich
- Faculty of Physics, University of Vienna, Kolingasse 14-16, Vienna 1090, Austria.
| |
Collapse
|
4
|
Kaniewska K, Mackiewicz M, Smutok O, Gonchar M, Katz E, Karbarz M. Enzymatically Triggered Drug Release from Microgels Controlled by Glucose Concentration. ACS Biomater Sci Eng 2024; 10:6415-6424. [PMID: 39356930 PMCID: PMC11480938 DOI: 10.1021/acsbiomaterials.4c01721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
This study aims to design microgels for controlled drug release via enzymatically generated pH changes in the presence of glucose. Modern medicine is focused on developing smart delivery systems with controlled release capabilities. In response to this demand, we present the synthesis, characterization, and enzymatically triggered drug release behavior of microgels based on poly(acrylic acid) modified with glucose oxidase (GOx) (p(AA-BIS)-GOx). TEM images revealed that the sizes of air-dried p(AA-BIS)-GOx microgels were approximately 130 nm. DLS measurements showed glucose-triggered microgel size changes upon glucose addition, which depended on buffer concentration. Enzymatically triggered drug release experiments using doxorubicin-loaded microgels with immobilized GOx demonstrated that drug release is strongly dependent on glucose and buffer concentration. The highest differences in release triggered by 5 and 25 mM glucose were observed in HEPES buffer at concentrations of 3 and 9 mM. Under these conditions, 80 and 52% of DOX were released with 25 mM glucose, while 47 and 28% of DOX were released with 5 mM glucose. The interstitial glucose concentration in a tumor ranges from ∼15 to 50 mM. Normal fasting blood glucose levels are about 5.5 mM, and postprandial (2 h after a meal) glucose levels should be less than 7.8 mM. The obtained results highlight the microgel's potential for drug delivery using the enhanced permeability and retention (EPR) effect, where drug release is controlled by enzymatically generated pH changes in response to elevated glucose concentrations.
Collapse
Affiliation(s)
- Klaudia Kaniewska
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura, Warsaw, PL 02-093, Poland
- Biological
and Chemical Research Center, University
of Warsaw, 101 Żwirki
i Wigury Av., Warsaw, PL 02-089, Poland
| | - Marcin Mackiewicz
- Biological
and Chemical Research Center, University
of Warsaw, 101 Żwirki
i Wigury Av., Warsaw, PL 02-089, Poland
| | - Oleh Smutok
- Department
of Chemistry and Biomolecular Science, Clarkson
University, Potsdam 13699, New York, United States
| | - Mykhailo Gonchar
- Institute
of Cell Biology, National Academy of Sciences
of Ukraine, Lviv 79005, Ukraine
| | - Evgeny Katz
- Department
of Chemistry and Biomolecular Science, Clarkson
University, Potsdam 13699, New York, United States
| | - Marcin Karbarz
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura, Warsaw, PL 02-093, Poland
- Biological
and Chemical Research Center, University
of Warsaw, 101 Żwirki
i Wigury Av., Warsaw, PL 02-089, Poland
| |
Collapse
|
5
|
Ghosh Majumdar A, Pany B, Parua SS, Mukherjee D, Panda A, Mohanty M, Das B, Si S, Mohanty PS. Stimuli-Responsive Nanogel/Microgel Hybrids as Targeted Drug Delivery Systems: A Comprehensive Review. BIONANOSCIENCE 2024; 14:3496-3521. [DOI: 10.1007/s12668-024-01577-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 01/06/2025]
|
6
|
Patri S, Thanh NTK, Kamaly N. Magnetic iron oxide nanogels for combined hyperthermia and drug delivery for cancer treatment. NANOSCALE 2024; 16:15446-15464. [PMID: 39113663 DOI: 10.1039/d4nr02058h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Hyperthermia and chemotherapy represent potential modalities for cancer treatments. However, hyperthermia can be invasive, while chemotherapy drugs often have severe side effects. Recent clinical investigations have underscored the potential synergistic efficacy of combining hyperthermia with chemotherapy, leading to enhanced cancer cell killing. In this context, magnetic iron oxide nanogels have emerged as promising candidates as they can integrate superparamagnetic iron oxide nanoparticles (IONPs), providing the requisite magnetism for magnetic hyperthermia, with the nanogel scaffold facilitating smart drug delivery. This review provides an overview of the synthetic methodologies employed in fabricating magnetic nanogels. Key properties and designs of these nanogels are discussed and challenges for their translation to the clinic and the market are summarised.
Collapse
Affiliation(s)
- Sofia Patri
- Department of Materials, Molecular Sciences Research Hub, Imperial College London, 82 Wood Ln, London W12 0BZ, UK.
| | - Nguyen Thi Kim Thanh
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK.
- Biophysic Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - Nazila Kamaly
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Ln, London W12 0BZ, UK.
| |
Collapse
|
7
|
Hengsbach R, Fink G, Simon U. 1H-NMR studies on the volume phase transition of DNA-modified pNipmam microgels. SOFT MATTER 2024; 20:330-337. [PMID: 38087892 DOI: 10.1039/d3sm01124k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
DNA functionalized pNipmam microgels, which have recently been introduced, are examined at different concentrations of sodium chloride and in PBS solutions via temperature dependent 1H-NMR measurements and are compared to pure pNipmam microgels. We show that the DNA modification shifts the volume phase transition temperature towards lower temperatures and the addition of salt and PBS further supports this effect in both materials. Thermodynamic values, i.e. enthalpy, entropy and Gibbs free energy, are determined via a non-linear fit which can be applied directly to the measurement data without further linearization.
Collapse
Affiliation(s)
- Rebecca Hengsbach
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, D-52074 Aachen, Germany.
| | - Gerhard Fink
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, D-52074 Aachen, Germany.
| | - Ulrich Simon
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, D-52074 Aachen, Germany.
| |
Collapse
|
8
|
Brasili F, Del Monte G, Capocefalo A, Chauveau E, Buratti E, Casciardi S, Truzzolillo D, Sennato S, Zaccarelli E. Toward a Unified Description of the Electrostatic Assembly of Microgels and Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58770-58783. [PMID: 38060242 DOI: 10.1021/acsami.3c14608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The interplay of soft responsive particles, such as microgels, with nanoparticles (NPs) yields highly versatile complexes that show great potential for applications, ranging from plasmonic sensing to catalysis and drug delivery. However, the microgel-NP assembly process has not been investigated so far at the microscopic level, thus hindering the possibility of designing such hybrid systems a priori. In this work, we combine state-of-the-art numerical simulations with experiments to elucidate the fundamental mechanisms taking place when microgel-NP assembly is controlled by electrostatic interactions and the associated effects on the structure of the resulting complexes. We find a general behavior where, by increasing the number of interacting NPs, the microgel deswells up to a minimum size after which a plateau behavior occurs. This occurs either when NPs are mainly adsorbed to the microgel corona via the folding of the more external chains or when NPs penetrate inside the microgel, thereby inducing a collective reorganization of the polymer network. By varying microgel properties, such as fraction of cross-linkers or charge, as well as NP size and charge, we further show that the microgel deswelling curves can be rescaled onto a single master curve, for both experiments and simulations, demonstrating that the process is entirely controlled by the charge of the whole microgel-NP complex. Our results thus have a direct relevance in fundamental materials science and offer novel tools to tailor the nanofabrication of hybrid devices of technological interest.
Collapse
Affiliation(s)
- Francesco Brasili
- Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giovanni Del Monte
- Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Angela Capocefalo
- Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, Coppito, 67100 L'Aquila, Italy
| | - Edouard Chauveau
- UMR 5221, CNRS-Université de Montpellier, Laboratoire Charles Coulomb, 34095 Montpellier, France
| | - Elena Buratti
- Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance Against Accidents at Work (INAIL), Via di Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Domenico Truzzolillo
- UMR 5221, CNRS-Université de Montpellier, Laboratoire Charles Coulomb, 34095 Montpellier, France
| | - Simona Sennato
- Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Emanuela Zaccarelli
- Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
9
|
Upcycling of Acid-Leaching Solutions from Li-Ion Battery Waste Treatment through the Facile Synthesis of Magnetorheological Fluid. Molecules 2023; 28:molecules28062558. [PMID: 36985530 PMCID: PMC10054329 DOI: 10.3390/molecules28062558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
The rapidly growing production and usage of lithium-ion batteries (LIBs) dramatically raises the number of harmful wastes. Consequently, the LIBs waste management processes, taking into account reliability, efficiency, and sustainability criteria, became a hot issue in the context of environmental protection as well as the scarcity of metal resources. In this paper, we propose for the first time a functional material—a magnetorheological fluid (MRF) from the LIBs-based liquid waste containing heavy metal ions. At first, the spent battery waste powder was treated with acid-leaching, where the post-treatment acid-leaching solution (ALS) contained heavy metal ions including cobalt. Then, ALS was used during wet co-precipitation to obtain cobalt-doped superparamagnetic iron oxide nanoparticles (SPIONs) and as an effect, the harmful liquid waste was purified from cobalt. The obtained nanoparticles were characterized with SEM, TEM, XPS, and magnetometry. Subsequently, superparamagnetic nanoparticles sized 15 nm average in diameter and magnetization saturation of about 91 emu g−1 doped with Co were used to prepare the MRF that increases the viscosity by about 300% in the presence of the 100 mT magnetic fields. We propose a facile and cost-effective way to utilize harmful ALS waste and use them in the preparation of superparamagnetic particles to be used in the magnetorheological fluid. This work describes for the first time the second life of the battery waste in the MRF and a facile way to remove the harmful ingredients from the solutions obtained after the acid leaching of LIBs as an effective end-of-life option for hydrometallurgical waste utilization.
Collapse
|