1
|
El-Husseiny HM, Mady EA, Doghish AS, Zewail MB, Abdelfatah AM, Noshy M, Mohammed OA, El-Dakroury WA. Smart/stimuli-responsive chitosan/gelatin and other polymeric macromolecules natural hydrogels vs. synthetic hydrogels systems for brain tissue engineering: A state-of-the-art review. Int J Biol Macromol 2024; 260:129323. [PMID: 38242393 DOI: 10.1016/j.ijbiomac.2024.129323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
Currently, there are no viable curative treatments that can enhance the central nervous system's (CNS) recovery from trauma or illness. Bioengineered injectable smart/stimuli-responsive hydrogels (SSRHs) that mirror the intricacy of the CNS milieu and architecture have been suggested as a way to get around these restrictions in combination with medication and cell therapy. Additionally, the right biophysical and pharmacological stimuli are required to boost meaningful CNS regeneration. Recent research has focused heavily on developing SSRHs as cutting-edge delivery systems that can direct the regeneration of brain tissue. In the present article, we have discussed the pathology of brain injuries, and the applicable strategies employed to regenerate the brain tissues. Moreover, the most promising SSRHs for neural tissue engineering (TE) including alginate (Alg.), hyaluronic acid (HA), chitosan (CH), gelatin, and collagen are used in natural polymer-based hydrogels and thoroughly discussed in this review. The ability of these hydrogels to distribute bioactive substances or cells in response to internal and external stimuli is highlighted with particular attention. In addition, this article provides a summary of the most cutting-edge techniques for CNS recovery employing SSRHs for several neurodegenerative diseases.
Collapse
Affiliation(s)
- Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt.
| | - Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Department of Biochemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Amr M Abdelfatah
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mina Noshy
- Clinical Pharmacy Department, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Ras Sudr 46612, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| |
Collapse
|
2
|
Jafari A, Nazari E, Ghaderpoori M, Rashidipour M, Nazari A, Chehelcheraghi F, Kamarehie B, Rezaee R. Loaded paraquaton polymeric nanocapsules and evaluation for cardiotoxicity in Wistar rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1284-1298. [PMID: 36800924 DOI: 10.1080/09603123.2023.2181317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Present work was conducted to prepare and evaluate, loaded paraquat nano-hydrogels using chitosan, sodium polytriphosphate, and xanthan via ionic gelification method. The fabricated L-PQ formulations were analyzed for surface morphology and functional groups using SEM and FTIR, respectively. The stability of the synthesized nanoparticle was, also, analyzed in terms of diameter size, zeta potential, dispersion index, and pH. Furthermore, the cardiotoxicity effects of the synthesized nanogels were investigated on Wistar rats in terms of enzymatic activity, echocardiographic, and histological analysis. The proper stability of the prepared formulation was also confirmed by diameter size, zeta potential, dispersion index, and pH. The efficiency of encapsulation was about 90±3.2% and the release of PQ in the loaded nanogel was about 90±2.3%. A decrease in ST (shortening time) segment by formulated PQ, either in peritoneal or gavage exposure pathway, indicates the effectiveness of the capsule layer against the penetration of toxin into the body.
Collapse
Affiliation(s)
- Ali Jafari
- Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Efat Nazari
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mansour Ghaderpoori
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Marzieh Rashidipour
- Razi Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Afshin Nazari
- Department of Physiology and Pharmacology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Farzaneh Chehelcheraghi
- Department of Anatomical Sciences, School of Medicine Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Bahram Kamarehie
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Reza Rezaee
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
3
|
Chelu M, Popa M, Calderon Moreno J, Leonties AR, Ozon EA, Pandele Cusu J, Surdu VA, Aricov L, Musuc AM. Green Synthesis of Hydrogel-Based Adsorbent Material for the Effective Removal of Diclofenac Sodium from Wastewater. Gels 2023; 9:454. [PMID: 37367125 DOI: 10.3390/gels9060454] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
The removal of pharmaceutical contaminants from wastewater has gained considerable attention in recent years, particularly in the advancements of hydrogel-based adsorbents as a green solution for their ease of use, ease of modification, biodegradability, non-toxicity, environmental friendliness, and cost-effectiveness. This study focuses on the design of an efficient adsorbent hydrogel based on 1% chitosan, 40% polyethylene glycol 4000 (PEG4000), and 4% xanthan gum (referred to as CPX) for the removal of diclofenac sodium (DCF) from water. The interaction between positively charged chitosan and negatively charged xanthan gum and PEG4000 leads to strengthening of the hydrogel structure. The obtained CPX hydrogel, prepared by a green, simple, easy, low-cost, and ecological method, has a higher viscosity due to the three-dimensional polymer network and mechanical stability. The physical, chemical, rheological, and pharmacotechnical parameters of the synthesized hydrogel were determined. Swelling analysis demonstrated that the new synthetized hydrogel is not pH-dependent. The obtained adsorbent hydrogel reached the adsorption capacity (172.41 mg/g) at the highest adsorbent amount (200 mg) after 350 min. In addition, the adsorption kinetics were calculated using a pseudo first-order model and Langmuir and Freundlich isotherm parameters. The results demonstrate that CPX hydrogel can be used as an efficient option to remove DCF as a pharmaceutical contaminant from wastewater.
Collapse
Affiliation(s)
- Mariana Chelu
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Monica Popa
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Jose Calderon Moreno
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Anca Ruxandra Leonties
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Jeanina Pandele Cusu
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Vasile Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Ludmila Aricov
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Adina Magdalena Musuc
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| |
Collapse
|
4
|
Raschip IE, Darie-Nita RN, Fifere N, Hitruc GE, Dinu MV. Correlation between Mechanical and Morphological Properties of Polyphenol-Laden Xanthan Gum/Poly(vinyl alcohol) Composite Cryogels. Gels 2023; 9:gels9040281. [PMID: 37102893 PMCID: PMC10137999 DOI: 10.3390/gels9040281] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/28/2023] Open
Abstract
This study aimed to evaluate the effect of the synthesis parameters and the incorporation of natural polyphenolic extract within hydrogel networks on the mechanical and morphological properties of physically cross-linked xanthan gum/poly(vinyl alcohol) (XG/PVA) composite hydrogels prepared by multiple cryo-structuration steps. In this context, the toughness, compressive strength, and viscoelasticity of polyphenol-loaded XG/PVA composite hydrogels in comparison with those of the neat polymer networks were investigated by uniaxial compression tests and steady and oscillatory measurements under small deformation conditions. The swelling behavior, the contact angle values, and the morphological features revealed by SEM and AFM analyses were well correlated with the uniaxial compression and rheological results. The compressive tests revealed an enhancement of the network rigidity by increasing the number of cryogenic cycles. On the other hand, tough and flexible polyphenol-loaded composite films were obtained for a weight ratio between XG and PVA of 1:1 and 10 v/v% polyphenol. The gel behavior was confirmed for all composite hydrogels, as the elastic modulus (G') was significantly greater than the viscous modulus (G″) for the entire frequency range.
Collapse
Affiliation(s)
- Irina Elena Raschip
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | | | - Nicusor Fifere
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Gabriela-Elena Hitruc
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Maria Valentina Dinu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| |
Collapse
|
5
|
Barbosa RM, da Rocha DN, Bombaldi de Souza RF, Santos JL, Ferreira JRM, Moraes ÂM. Cell-Friendly Chitosan-Xanthan Gum Membranes Incorporating Hydroxyapatite Designed for Periodontal Tissue Regeneration. Pharmaceutics 2023; 15:pharmaceutics15020705. [PMID: 36840027 PMCID: PMC9962096 DOI: 10.3390/pharmaceutics15020705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
In this work, a simple method was proposed to produce dense composite polysaccharide-based membranes to be used for guided tissue and guided bone regeneration. The mucoadhesive polysaccharides chitosan (C) and xanthan gum (X) were used to produce polyelectrolyte-based complex membranes. Hydroxyapatite (HA) was added to the formulation as a potential drug carrier, in C:X:HA mass proportions equal to 1:1:0.4, 1:1:2, and 1:1:10, and also to improve membranes bioactivity and biomimetic properties. FTIR analysis indicated successful incorporation of HA in the membranes and XRD analysis showed that no changes in the HA crystalline structure were observed after incorporation. The residual mass evaluated by TGA was higher for the formulation produced at the proportion 1:1:10. The membranes produced showed asymmetrical surfaces, with distinct roughness. Increasing the HA concentration increased the surface roughness. Greater in vitro proliferation of dental pulp mesenchymal stem cells was observed on the surface of the membrane with 1:1:10 C:X:HA proportion. However, the 1:1:2 formulation showed the most adequate balance of mechanical and biological properties. These results suggest that adding HA to the membranes can influence mechanical parameters as well as cell adhesion and proliferation, supporting the potential application of these materials in regenerative techniques and the treatment of periodontal lesions.
Collapse
Affiliation(s)
- Rafael Maza Barbosa
- Department of Engineering of Materials and Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
- Department of Bioengineering, R-Crio Criogenia S.A., Campinas 13098-324, SP, Brazil
| | | | - Renata Francielle Bombaldi de Souza
- Department of Engineering of Materials and Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
| | - Jheison Lopes Santos
- Department of Physics, Federal Rural University of Rio de Janeiro, Rio de Janeiro 23890-000, RJ, Brazil
| | | | - Ângela Maria Moraes
- Department of Engineering of Materials and Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
- Correspondence:
| |
Collapse
|
6
|
Souza AP, Neves JG, Navarro da Rocha D, Lopes CC, Moraes ÂM, Correr-Sobrinho L, Correr AB. Chitosan/Xanthan/Hydroxyapatite-graphene oxide porous scaffold associated with mesenchymal stem cells for dentin-pulp complex regeneration. J Biomater Appl 2023; 37:1605-1616. [PMID: 36740600 DOI: 10.1177/08853282231155570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of this paper was to synthesize and characterize polymeric scaffolds of Chitosan/Xanthan/Hydroxyapatite-Graphene Oxide nanocomposite associated with mesenchymal stem cells for regenerative dentistry application. The chitosan-xanthan gum (CX) complex was associated with Hydroxyapatite-Graphene Oxide (HA-GO) nanocomposite with different Graphene Oxides (GO) concentration (0.5 wt%; 1.0 wt%; 1.5 wt%). The scaffolds characterizations were performed by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and contact angle. The mechanical properties were assessed by compressive strength. The in vitro bioactivity and the in vitro cytotoxicity test (MTT test) were analyzed as well. The data was submitted to the Normality and Homogeneity tests. In vitro Indirect Cytotoxicity assay data was statistically analyzed by ANOVA two-way, followed by Tukey's test (α = 0.05). Compressive strength and contact angle data were statistically analyzed by one-way ANOVA, followed by Tukey's test (α = 0.05). XRD showed the presence of Hydroxyapatite (HA) peaks in the structures CXHA, CXHAGO 0.5%,1.0% and 1.5%. FT-IR showed amino and carboxylic bands characteristic of CX. Raman spectroscopy analysis evidenced a high quality of the GO. In the TGA it was observed the mass loss associated with the CX degradation by depolymerization. SEM analysis showed pores in the scaffolds, in addition to HA incorporated and adhered to the polymer. Contact angle test showed that scaffolds have a hydrophilic characteristic, with the CX group the highest contact angle and CXHA the lowest (p < 0.05). 1.0 wt% GO significantly increased the compressive strength compared to other compositions. In the bioactivity test, the apatite crystals precipitation on the scaffold surface was observed. MTT test showed high cell viability in CXHAGO 1.0% and CXHAGO 1.5% scaffold. CXHAGO scaffolds are promising for regenerative dentistry application because they have morphological characteristics, mechanical and biological properties favorable for the regeneration process.
Collapse
Affiliation(s)
- Alana Pc Souza
- Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School, 28132State University of Campinas - UNICAMP, S.P, Brazil
| | - José G Neves
- Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School, 28132State University of Campinas - UNICAMP, S.P, Brazil
| | - Daniel Navarro da Rocha
- Department of Mechanical and Materials Engineering, 28098Military Institute of Engineering- IME, Rio de Janeiro, Brazil.,Department of Bioengineering, 28132R-Crio Criogenia S.A., Campinas, SP, Brazil
| | - Camila C Lopes
- Department of Mechanical and Materials Engineering, 28098Military Institute of Engineering- IME, Rio de Janeiro, Brazil
| | - Ângela M Moraes
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, 28132University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Lourenço Correr-Sobrinho
- Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School, 28132State University of Campinas - UNICAMP, S.P, Brazil
| | - Américo Bortolazzo Correr
- Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School, 28132State University of Campinas - UNICAMP, S.P, Brazil
| |
Collapse
|
7
|
Papagiannopoulos A, Nikolakis SP, Pamvouxoglou A, Koutsopoulou E. Physicochemical properties of electrostatically crosslinked carrageenan/chitosan hydrogels and carrageenan/chitosan/Laponite nanocomposite hydrogels. Int J Biol Macromol 2023; 225:565-573. [PMID: 36410537 DOI: 10.1016/j.ijbiomac.2022.11.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
In this work physical carrageenan/chitosan (Car/Chit) hydrogels are prepared by electrostatic complexation between the two oppositely charged polysaccharides. The hydrogels have storage moduli in the order of 5-10 kPa and swelling ratios in the order of 5000-6000 %. At conditions where both polysaccharides are highly charged (pH 5) the swelling ratios are lower than the ones at conditions of lower dissociation i.e., at pH 2 and 7 and the opposite trend is found for the storage modulus. Chit appears to act as a crosslinker for Car as increasing its concentration the swelling ratio decreases and the moduli increase. The hydrogels can incorporate the nanoclay Laponite (Lap) and form hybrid nanocomposites where the intercalation by the two biopolymers leads to exfoliation of the clay nanoplatelets in the presence of both Car and Chit. The composite hydrogels retain the mechanical properties of the Car/Chit hydrogels at the studied pH range (pH 2 to pH 7). This shows the prepared hydrogels can be potentially used as multifunctional biomaterials for drug delivery, tissue engineering and bone regeneration applications.
Collapse
Affiliation(s)
- Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Spiridon-Paraskevas Nikolakis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Andreas Pamvouxoglou
- Experimental Soft Matter Group, Condensed Matter Physics Laboratory (IPKM), Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Eleni Koutsopoulou
- Technical University of Crete, Department of Mineral Resources Engineering, GR-73100 Chania, Greece; Hellenic Survey of Geology and Mineral Exploration (HSGME), 13677 Acharnes, Greece
| |
Collapse
|
8
|
Souza APC, Neves JG, Navarro da Rocha D, Lopes CC, Moraes ÂM, Correr-Sobrinho L, Correr AB. Chitosan/Xanthan membrane containing hydroxyapatite/Graphene oxide nanocomposite for guided bone regeneration. J Mech Behav Biomed Mater 2022; 136:105464. [PMID: 36209591 DOI: 10.1016/j.jmbbm.2022.105464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To develop a chitosan-xanthan (CX) membrane associated with Hydroxyapatite (HA) and different concentrations of graphene oxide (GO). METHODOLOGY The CX complex was associated with the hydroxyapatite-graphene oxide (HAGO) nanocomposite in different concentrations. The experimental groups were:1) CX; 2) Chitosan-Xanthan/Hydroxyapatite (CXHA); 3) Chitosan-Xanthan/Hydroxyapatite-Graphene Oxide 0.5% (CXHAGO 0.5%); 4) CXHAGO 1.0%; 5) CXHAGO 1.5%. The membranes characterizations were performed by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Raman spectroscopy, Scanning Electron Microscopy (SEM), Contact angle, Tensile Strength, in vitro Bioactivity and the in vitro Cell viability (MTT test). The data was submitted to the Normality and Homogeneity tests. In vitro Indirect Cytotoxicity assay data was statistically analyzed by two-way ANOVA and Tukey's test (α = 0.05). Tensile Strength and Contact Angle data were statistically analyzed by one-way ANOVA followed by Tukey's test (α = 0.05). RESULTS XRD, FTIR and Raman spectroscopy confirmed the characteristic bands of the CX polymeric complex, the phosphate bands related to HA, and the presence of GO. SEM images demonstrated the non-porous and homogeneous surface of membranes. The contact angle test showed the hydrophilic characteristic of all membranes (p > 0.05). CX showed tensile strength significantly higher than other membranes. The apatite deposition was observed in all membranes after performing the bioactivity test. The cell viability of CXHAGO 1.0% and CXHAGO 1.5% was significantly higher than CX. CONCLUSION The addition of HAGO reduced the mechanical strength of membranes, but improved its cell viability. It demonstrated the potential of CXHAGO membranes to be used in guided bone regeneration therapies.
Collapse
Affiliation(s)
- Alana P C Souza
- Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School. State University of Campinas - UNICAMP, S.P., Brazil.
| | - José G Neves
- Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School. State University of Campinas - UNICAMP, S.P., Brazil.
| | - Daniel Navarro da Rocha
- Department of Mechanical and Materials Engineering, Military Institute of Engineering- IME, Rio de Janeiro, R.J., Brazil; Department of Bioengineering, R-Crio Criogenia S.A., Campinas, S.P., Brazil
| | - Camila C Lopes
- Department of Mechanical and Materials Engineering, Military Institute of Engineering- IME, Rio de Janeiro, R.J., Brazil
| | - Ângela M Moraes
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Lourenço Correr-Sobrinho
- Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School. State University of Campinas - UNICAMP, S.P., Brazil
| | - Américo Bortolazzo Correr
- Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School. State University of Campinas - UNICAMP, S.P., Brazil
| |
Collapse
|
9
|
Bilal M, Munir H, Khan MI, Khurshid M, Rasheed T, Rizwan K, Franco M, Iqbal HMN. Gums-based engineered bio-nanostructures for greening the 21st-century biotechnological settings. Crit Rev Food Sci Nutr 2022; 62:3913-3929. [PMID: 33427482 DOI: 10.1080/10408398.2020.1871318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Naturally occurring plant-based gums and their engineered bio-nanostructures have gained an immense essence of excellence in several industrial, biotechnological, and biomedical sectors of the modern world. Gums derived from bio-renewable resources that follow green chemistry principles are considered green macromolecules with unique structural and functional attributes. For instance, gum mostly obtained as exudates are bio-renewable, bio-degradable, bio-compatible, sustainable, overall cost-effective, and nontoxic. Gum exudates also offer tunable attributes that play a crucial role in engineering bio-nanostructures of interest for several bio- and non-bio applications, e.g., food-related items, therapeutic molecules, sustained and controlled delivery cues, bio-sensing constructs, and so on. With particular reference to plant gum exudates, this review focuses on applied perspectives of various gums, i.e., gum Arabic, gum albizzia, gum karaya, gum tragacanth, and gum kondagogu. After a brief introduction with problem statement and opportunities, structural and physicochemical attributes of plant-based natural gums are presented. Following that, considerable stress is given to green synthesis and stabilization of gum-based bio-nanostructures. The final part of the review focuses on the bio- and non-bio related applications of various types of gums polysaccharides-oriented bio-nanostructures.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Hira Munir
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Muhammad Imran Khan
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tahir Rasheed
- School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, Pakistan
| | - Marcelo Franco
- Department of Exact and Technological Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| |
Collapse
|
10
|
Wang CS, Virgilio N, Carreau PJ, Heuzey MC. Understanding the Effect of Conformational Rigidity on Rheological Behavior and Formation of Polysaccharide-Based Hybrid Hydrogels. Biomacromolecules 2021; 22:4016-4026. [PMID: 34510906 DOI: 10.1021/acs.biomac.1c00803] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The importance of conformational rigidity on macroscopic rheological properties was revealed using two model polysaccharides, namely, xanthan gum and hyaluronic acid. Xanthan gum has a rigid tertiary conformation due to its ordered double-helical structure, and the interactions between the tertiary structures result in the formation of a network/quaternary structure. In comparison, hyaluronic acid possesses a relatively flexible tertiary conformation due to its secondary random coil structure. Xanthan gum exhibits a much stronger shear thinning and more solidlike behavior compared to hyaluronic acid, owing to its network/quaternary structure. The rigid tertiary structure and the presence of a network/quaternary structure also endow xanthan gum with better resistance against environmental changes (e.g., salt and/or urea addition, temperature change) compared to hyaluronic acid. The network/quaternary structure allows xanthan gum to form gels with chitosan via electrostatic interactions when using the vapor-induced gelation technique, which is not possible for hyaluronic acid due to its flexible tertiary conformation under similar conditions.
Collapse
Affiliation(s)
- Chang-Sheng Wang
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Nick Virgilio
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Pierre J Carreau
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Marie-Claude Heuzey
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| |
Collapse
|
11
|
Anita Lett J, Sagadevan S, Fatimah I, Hoque ME, Lokanathan Y, Léonard E, Alshahateet SF, Schirhagl R, Oh WC. Recent advances in natural polymer-based hydroxyapatite scaffolds: Properties and applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110360] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Costa Duarte FÍ, Sabino de Mendonça Costa AB, Vieira Filho JF, Pinto Freite VL, Alves Freire JV, Converti A, Ferrari M, Barreto Gomes AP, Ostrosky EA, Neves de Lima ÁA. In vitro release studies of ferulic acid in semi-solid formulations with optimized synthetic membrane. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Ćirić A, Medarević Đ, Čalija B, Dobričić V, Rmandić M, Barudžija T, Malenović A, Djekic L. Effect of ibuprofen entrapment procedure on physicochemical and controlled drug release performances of chitosan/xanthan gum polyelectrolyte complexes. Int J Biol Macromol 2020; 167:547-558. [PMID: 33278438 DOI: 10.1016/j.ijbiomac.2020.11.201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/11/2020] [Accepted: 11/29/2020] [Indexed: 11/19/2022]
Abstract
The effect of the entrapment procedure of a poorly water soluble drug (ibuprofen) on physicochemical and drug release performances of chitosan/xanthan polyelectrolyte complexes (PECs) was investigated to achieve controlled drug release as the ultimate goal. The formation of PECs for two drug entrapment procedures (before or after the mixing of polymers) at pH 4.6 and 5.6 and three chitosan-to-xanthan mass ratios (1:1, 1:2 and 1:3) was observed by continuous decrease in conductivity during the PECs formation and increased apparent viscosity and hysteresis values. The most extensive crosslinking was observed with ibuprofen added before the PECs formation at pH 4.6 and chitosan-to-xanthan mass ratio 1:1. The PECs prepared at polymers' mass ratios 1:2 and 1:3 had higher yield and drug entrapment efficiency. DSC and FT-IR analysis confirmed ibuprofen entrapment in PECs and the partial disruption of its crystallinity. All ibuprofen release profiles were similar, with 60-70% of drug released after 12 h, mainly by diffusion, but erosion and polymer chain relaxation were also included. Potentially optimal can be considered the PEC prepared at pH 4.6, ibuprofen entrapped before the mixing of polymers at chitosan-to-xanthan mass ratio 1:2, which provided controlled drug release by zero-order kinetics, high yield, and drug entrapment efficiency.
Collapse
Affiliation(s)
- Ana Ćirić
- University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Đorđe Medarević
- University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Bojan Čalija
- University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Vladimir Dobričić
- University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Milena Rmandić
- University of Belgrade, Faculty of Pharmacy, Department of Drug Analysis, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Tanja Barudžija
- University of Belgrade, Vinča Institute of Nuclear Sciences, Laboratory for Theoretical Physics and Condensed Matter Physics, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia.
| | - Anđelija Malenović
- University of Belgrade, Faculty of Pharmacy, Department of Drug Analysis, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Ljiljana Djekic
- University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| |
Collapse
|
14
|
Ghaderpoori M, Jafari A, Nazari E, Rashidipour M, Nazari A, Chehelcheraghi F, Kamarehie B, Rezaee R. Preparation and characterization of loaded paraquat- polymeric chitosan/xantan/tripolyphosphate nanocapsules and evaluation for controlled release. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1057-1066. [PMID: 33312624 PMCID: PMC7721950 DOI: 10.1007/s40201-020-00527-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 09/03/2020] [Indexed: 06/12/2023]
Abstract
PURPOSE Paraquat is an effective, non-selective, and fast-acting contact herbicide that is widely used. Its high solubility in water and adsorption in soil can easily poison the non-target organs. In this study, paraquat nano-hydrogels was synthesized using chitosan. METHODS Sodium tripolyphosphate and xanthan via iononic gellification method. After preparation the loaded paraquat formulations, to verify the morphology and analysis the functional groups on the formulation, SEM and FTIR analysis were used, respectively. In this work, stability of the formulation was measured in terms of size distribution, surface charge, and pH values. To determine the release kinetics, a dialysis bag was used. In addition, herbicidal activity of the prepared formulation was tested on corn bushes and wild mustard. RESULTS From the analysis, FT-IR spectra confirmed the hydrogel formation, and SEM images showed a dense structure in the synthesized hydrogel. According to the results of size distribution, surface charge, dispersion index and pH, it was proved that the prepared hydrogel was stable. The optimal values of chitosan, SPP, xanthan, and PQ were 0.3, 0.1, 0.15, and 20 mg, respectively. Based on the peppas equation, about 89.82% of the paraquat was released from the formulation with a paraquat loading of 89.1 ± 4.6%. CONCLUSIONS The effect of loaded paraquat formulations on mustard and corn plants showed that the herbicidal properties of the encapsulated paraquat were preserved. This study reveal that the loaded paraquat L-PQ is a stable formulation with less toxicity effects.
Collapse
Affiliation(s)
- Mansour Ghaderpoori
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Environmental Health Engineering, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ali Jafari
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Environmental Health Engineering, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Efat Nazari
- Department of Environmental Health Engineering, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Marzieh Rashidipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Afshin Nazari
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Physiology and Pharmacology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Farzaneh Chehelcheraghi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Anatomical Sciences, School of Medicine Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Bahram Kamarehie
- Department of Environmental Health Engineering, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Reza Rezaee
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
15
|
Abbaszadeh S, Rashidipour M, Khosravi P, Shahryarhesami S, Ashrafi B, Kaviani M, Moradi Sarabi M. Biocompatibility, Cytotoxicity, Antimicrobial and Epigenetic Effects of Novel Chitosan-Based Quercetin Nanohydrogel in Human Cancer Cells. Int J Nanomedicine 2020; 15:5963-5975. [PMID: 32884259 PMCID: PMC7441583 DOI: 10.2147/ijn.s263013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/28/2020] [Indexed: 12/25/2022] Open
Abstract
Background Previous studies have reported that quercetin (Q) has a potential antibacterial and anticancer activity. However, its application is limited by many important factors including high hydrophobicity and low absorption. Methodology In the current study, we synthesized and characterized (Patent) a novel chitosan-based quercetin nanohydrogel (ChiNH/Q). Encapsulation efficiency was confirmed by UV/VIS spectrophotometer. Physicochemical characterization of ChiNH/Q was assessed by PDI, DLS, SEM, FTIR, and XRD. The toxicity of the ChiNH/Q against five strains of the pathogen and HepG2 cells was examined. Moreover, the quantification of ChiNH/Q on genomic global DNA methylation and expression of DNMTs (DNMT1/3A/3B) in HepG2 cancer cells were evaluated by ELISA and real-time PCR, respectively. Results Under the SEM-based images, the hydrodynamic size of the ChiNH/Q was 743.6 nm. The changes in the PDI were 0.507, and zeta potential was obtained as 12.1 mV for ChiNH/Q. The FTIR peak of ChiNH/Q showed the peak at 627 cm−1 corresponded to tensile vibrational of NH2-groups related to Q, and it is the indication of Q loading in the formulation. Moreover, XRD data have detected the encapsulation of ChiNH/Q. The ChiNH/Q showed a potent antimicrobial inhibitory effect and exerted cytotoxic effects against HepG2 cancer cells with IC50 values of 100 µg/mL. Moreover, our data have shown that ChiNH/Q effectively reduced (65%) the average expression level of all the three DNMTs (p<0.05) and significantly increased (1.01%) the 5-methylated cytosine (5-mC) levels in HepG2 cells. Conclusion Our results showed for the first time the bioavailability and potentiality of ChiNH/Q as a potent antimicrobial and anticancer agent against cancer cells. Our result provided evidence that ChiNH/Q could effectively reduce cellular DNMT expression levels and increase genomic global DNA methylation in HepG2 cancer cells. Our results suggest a potential clinical application of nanoparticles as antimicrobial and anticancer agents in combination cancer therapy.
Collapse
Affiliation(s)
- Saber Abbaszadeh
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Marzieh Rashidipour
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Peyman Khosravi
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Soroosh Shahryarhesami
- Functional Genome Analysis/B070, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Behnam Ashrafi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mozhgan Kaviani
- Department of Internal Medicine, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mostafa Moradi Sarabi
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.,Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
16
|
Ćirić A, Medarević Đ, Čalija B, Dobričić V, Mitrić M, Djekic L. Study of chitosan/xanthan gum polyelectrolyte complexes formation, solid state and influence on ibuprofen release kinetics. Int J Biol Macromol 2020; 148:942-955. [DOI: 10.1016/j.ijbiomac.2020.01.138] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 01/24/2023]
|
17
|
Raschip IE, Paduraru‐Mocanu OM, Nita LE, Dinu MV. Antibacterial porous xanthan‐based films containing flavoring agents evaluated by near infrared chemical imaging technique. J Appl Polym Sci 2020. [DOI: 10.1002/app.49111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Irina E. Raschip
- Physical Chemistry Department“Petru Poni” Institute of Macromolecular Chemistry Iasi Romania
| | - Oana M. Paduraru‐Mocanu
- Physical Chemistry Department“Petru Poni” Institute of Macromolecular Chemistry Iasi Romania
| | - Loredana E. Nita
- Physical Chemistry Department“Petru Poni” Institute of Macromolecular Chemistry Iasi Romania
| | - Maria V. Dinu
- Physical Chemistry Department“Petru Poni” Institute of Macromolecular Chemistry Iasi Romania
| |
Collapse
|
18
|
Mohammadinejad R, Kumar A, Ranjbar-Mohammadi M, Ashrafizadeh M, Han SS, Khang G, Roveimiab Z. Recent Advances in Natural Gum-Based Biomaterials for Tissue Engineering and Regenerative Medicine: A Review. Polymers (Basel) 2020; 12:E176. [PMID: 31936590 PMCID: PMC7022386 DOI: 10.3390/polym12010176] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
The engineering of tissues under a three-dimensional (3D) microenvironment is a great challenge and needs a suitable supporting biomaterial-based scaffold that may facilitate cell attachment, spreading, proliferation, migration, and differentiation for proper tissue regeneration or organ reconstruction. Polysaccharides as natural polymers promise great potential in the preparation of a three-dimensional artificial extracellular matrix (ECM) (i.e., hydrogel) via various processing methods and conditions. Natural polymers, especially gums, based upon hydrogel systems, provide similarities largely with the native ECM and excellent biological response. Here, we review the origin and physico-chemical characteristics of potentially used natural gums. In addition, various forms of scaffolds (e.g., nanofibrous, 3D printed-constructs) based on gums and their efficacy in 3D cell culture and various tissue regenerations such as bone, osteoarthritis and cartilage, skin/wound, retinal, neural, and other tissues are discussed. Finally, the advantages and limitations of natural gums are precisely described for future perspectives in tissue engineering and regenerative medicine in the concluding remarks.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran;
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
| | | | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
| | - Gilson Khang
- Department of Polymer Nano Science and Technology, Department of BIN Fusion Technology and BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, Dukjin, Jeonju 54896, Korea;
| | - Ziba Roveimiab
- Department of Biological Sciences, and Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
19
|
Alves A, Miguel SP, Araujo AR, de Jesús Valle MJ, Sánchez Navarro A, Correia IJ, Ribeiro MP, Coutinho P. Xanthan Gum-Konjac Glucomannan Blend Hydrogel for Wound Healing. Polymers (Basel) 2020; 12:E99. [PMID: 31947937 PMCID: PMC7023620 DOI: 10.3390/polym12010099] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/11/2019] [Accepted: 12/21/2019] [Indexed: 02/08/2023] Open
Abstract
Hydrogels are considered to be the most ideal materials for the production of wound dressings since they display a three-dimensional structure that mimics the native extracellular matrix of skin as well as a high-water content, which confers a moist environment at the wound site. Until now, different polymers have been used, alone or blended, for the production of hydrogels aimed for this biomedical application. From the best of our knowledge, the application of a xanthan gum-konjac glucomannan blend has not been used for the production of wound dressings. Herein, a thermo-reversible hydrogel composed of xanthan gum-konjac glucomannan (at different concentrations (1% and 2% w/v) and ratios (50/50 and 60/40)) was produced and characterized. The obtained data emphasize the excellent physicochemical and biological properties of the produced hydrogels, which are suitable for their future application as wound dressings.
Collapse
Affiliation(s)
- Andreia Alves
- CPIRN-IPG- Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain
| | - Sónia P. Miguel
- CICS-UBI- Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - André R.T.S. Araujo
- CPIRN-IPG- Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - María José de Jesús Valle
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain
- Institute of Biopharmaceutical Sciences of University of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Amparo Sánchez Navarro
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain
- Institute of Biopharmaceutical Sciences of University of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Ilídio J. Correia
- CICS-UBI- Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, P-3030 790 Coimbra, Portugal
| | - Maximiano P. Ribeiro
- CPIRN-IPG- Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal
- CICS-UBI- Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Paula Coutinho
- CPIRN-IPG- Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal
- CICS-UBI- Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
20
|
Ćirić A, Krajišnik D, Čalija B, Đekić L. Biocompatible non-covalent complexes of chitosan and different polymers: Characteristics and application in drug delivery. ARHIV ZA FARMACIJU 2020. [DOI: 10.5937/arhfarm2004173q] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
21
|
Boudoukhani M, Yahoum MM, Lefnaoui S, Moulai-Mostefa N, Banhobre M. Synthesis, characterization and evaluation of deacetylated xanthan derivatives as new excipients in the formulation of chitosan-based polyelectrolytes for the sustained release of tramadol. Saudi Pharm J 2019; 27:1127-1137. [PMID: 31885472 PMCID: PMC6921171 DOI: 10.1016/j.jsps.2019.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/23/2019] [Indexed: 11/30/2022] Open
Abstract
This paper addressed the application of deacetylated xanthan (XGDS) and chitosan (CTS) as a mixture blend forming hydrophilic matrices for Tramadol (TD) sustained release tablets. XGDSs derivatives were obtained by alkaline treatment of xanthan gum (XG) with various degrees of deacetylation (DD). The obtained products were characterized in terms of structural, thermal and physicochemical properties. Different tablet formulations containing CTS/XGDSs were prepared by direct compression method and compared to CTS/XG tablets. Flow properties of powder mixtures and pharmaceutical characteristics were evaluated. The dissolution test of TD was realized under simulated gastric and intestinal conditions to achieve drug release more than 24 h. All developed tablets were found conforming to standard evaluation tests. It was shown that CTS/XGDSs matrices ensure a slower release of TD in comparison with CTS/XG based formulations. Meanwhile, increasing DD resulted in a decrease of drug release. In addition, TD release from XGDS matrices was faster at pH (6.8) than at acidic pH (1.2). The matrix tablets based on CTS/XGDS4 (DD = 98.08%) were selected as the best candidates compared to the other systems in prolonging drug release. The optimal formulation was found to release 99.99% of TD after 24 h following a non-Fickian type.
Collapse
Affiliation(s)
- Meriem Boudoukhani
- LME, Faculty of Technology, University of Medea, Ain D'Heb, Medea, Algeria
| | - Madiha M Yahoum
- LME, Faculty of Technology, University of Medea, Ain D'Heb, Medea, Algeria
| | - Sonia Lefnaoui
- Faculty of Sciences, University of Medea, Ain D'Heb, Medea, Algeria
| | | | - Manuel Banhobre
- INL, International Iberian Nanotechnology Laboratory, Braga, Portugal
| |
Collapse
|
22
|
Cheaburu-Yilmaz CN, Lupuşoru CE, Vasile C. New Alginate/PNIPAAm Matrices for Drug Delivery. Polymers (Basel) 2019; 11:E366. [PMID: 30960350 PMCID: PMC6419225 DOI: 10.3390/polym11020366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/14/2022] Open
Abstract
This paper deals with a comparative study on the interpolymeric complexes of alginate poly(N-isopropyl acryl amide (PNIPAAm) and corresponding graft copolymers with various compositions in respect to their toxicity, biocompatibility and in vitro and in vivo release of theophylline (THP). Loading of the various matrices with theophylline and characterization of loaded matrices was studied by near infrared spectroscopy⁻chemical imaging (NIR⁻CI) analysis, scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). It was appreciated that THP loading is higher than 40% and the drug is relatively homogeneous distributed within all matrices because of some specific interactions between components of the system. All samples have been found to be non-toxic and biocompatible. It was established that graft copolymers having a good stability show a better drug carrier ability, a higher THP loading, a prolonged release (longer release duration for graft copolymers of 235.4⁻302.3 min than that for IPC 72/28 of 77.6 min, which means approximately four times slower release from the graft copolymer-based matrices than from the interpolymeric complex) and a good bioavailability. The highest values for THP loading (45%), prolonged release (302.3 min) and bioavailability (175%) were obtained for graft copolymer AgA-g-PNIPAAm 68. The drug release mechanism varies with composition and architecture of the matrix.
Collapse
Affiliation(s)
- Catalina N Cheaburu-Yilmaz
- Department of Physical Chemistry of Polymers, "Petru Poni" Institute of Macromolecular Chemistry of the Romanian Academy, 700487 Iași, Romania.
| | - Catalina Elena Lupuşoru
- Department of Pharmacology, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iaşi, Romania.
| | - Cornelia Vasile
- Department of Physical Chemistry of Polymers, "Petru Poni" Institute of Macromolecular Chemistry of the Romanian Academy, 700487 Iași, Romania.
| |
Collapse
|
23
|
Faralli A, Shekarforoush E, Ajalloueian F, Mendes AC, Chronakis IS. In vitro permeability enhancement of curcumin across Caco-2 cells monolayers using electrospun xanthan-chitosan nanofibers. Carbohydr Polym 2019; 206:38-47. [DOI: 10.1016/j.carbpol.2018.10.073] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/19/2018] [Accepted: 10/24/2018] [Indexed: 11/15/2022]
|
24
|
Das S, Maharana J, Mohanty S, Subuddhi U. Spectroscopic and computational insights into theophylline/β-cyclodextrin complexation: inclusion accomplished by diverse methods. J Microencapsul 2019; 35:667-679. [PMID: 30669907 DOI: 10.1080/02652048.2019.1572239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Current scenario in asthmatic prevalence worldwide calls for a facile, cost-effective, and energy efficient methodology to formulate the potent bronchodilator, theophylline (THP), into an effective dosage forms. Since the uses of THP are severely impeded by its poor aqueous solubility and low bioavailability, solid inclusion complexes (ICs) of THP in β-cyclodextrin (β-CD) were prepared to overcome the limitations. The ICs were developed by conventional methods and also by microwave irradiation method, which is environmentally more benign and requires lesser reaction time. The complexation phenomenon was effectual by the co-precipitation, freeze-drying, and microwave methods as affirmed from various spectroscopic analyses. 1H NMR and molecular docking studies illustrated the total inclusion of THP into β-CD cavity. Better efficacy of the microwaved product was witnessed in terms of drug content, dissolution, and anti-biofilm activities. Thus microwave irradiation can be utilised as a naive and economical methodology to design β-CD-THP dosage formulations.
Collapse
Affiliation(s)
- Subhraseema Das
- a Department of Chemistry , National Institute of Technology Rourkela , Rourkela , India
| | - Jitendra Maharana
- b Department of Agricultural Biotechnology, Distributed Information Centre , Assam Agricultural University , Jorhat , India
| | - Subhrajit Mohanty
- a Department of Chemistry , National Institute of Technology Rourkela , Rourkela , India
| | - Usharani Subuddhi
- a Department of Chemistry , National Institute of Technology Rourkela , Rourkela , India
| |
Collapse
|
25
|
Lopes SA, Veiga IG, Bierhalz ACK, Pires ALR, Moraes ÂM. Physicochemical properties and release behavior of indomethacin-loaded polysaccharide membranes. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1525540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Hu Y, Wu XY, Xu JR, Guo J. Study on the preparation and drug release property of soybean selenoprotein/carboxymethyl chitosan composite hydrogel. JOURNAL OF POLYMER ENGINEERING 2018. [DOI: 10.1515/polyeng-2017-0222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Soybean selenoprotein/carboxymethyl chitosan (SSP/CMCS) composite hydrogel obtained by the crosslinking of genipin was evaluated for caffeine release. The gelation process of the hydrogel was investigated by resonance Rayleigh scattering spectra and viscosity methods. The hydrogels presented a compact network structure, which was observed by positive fluorescence microscopy (PFM). The structural properties of the hydrogel were revealed by fluorescence and FT-IR. The swelling characteristic of the hydrogel and its application in the slow release of caffeine were also studied. These results indicate that there is obvious interaction between SSP and CMCS by the addition of genipin, and the CMCS/SSP solution experiences a significant sol-gel phase transition process upon polymerization. The swelling ratio and release of caffeine slow down obviously at pH 1.2. However, larger swelling and more drug release can be observed at pH 7.4. The experimental values of the empiric diffusional exponent show that the release profiles abide by the non-Fickian diffusion process under both investigated pH conditions. The hydrogel, which is pale transparent with light yellow color at room temperature, can be formulated to be a suitable carrier for site-specific drug delivery.
Collapse
Affiliation(s)
- Yong Hu
- School of Food Science , Guangdong Pharmaceutical University , Zhong Shan 528458 , P.R. China
| | - Xiao Y. Wu
- School of Food Science , Guangdong Pharmaceutical University , Zhong Shan 528458 , P.R. China
| | - Jin R. Xu
- School of Food Science , Guangdong Pharmaceutical University , Zhong Shan 528458 , P.R. China
| | - Juan Guo
- School of Food Science , Guangdong Pharmaceutical University , Zhong Shan 528458 , P.R. China
| |
Collapse
|
27
|
Bombaldi de Souza RF, Bombaldi de Souza FC, Moraes ÂM. Analysis of the performance of polysaccharide membranes in aqueous media as a tool to assist wound-dressing selection. J Appl Polym Sci 2017. [DOI: 10.1002/app.45386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Renata Francielle Bombaldi de Souza
- Department of Engineering of Materials and of Bioprocesses; School of Chemical Engineering, University of Campinas; Avenida Albert Einstein 500 Campinas São Paulo - CEP 13083-852 Brazil
| | - Fernanda Carla Bombaldi de Souza
- Department of Engineering of Materials and of Bioprocesses; School of Chemical Engineering, University of Campinas; Avenida Albert Einstein 500 Campinas São Paulo - CEP 13083-852 Brazil
| | - Ângela Maria Moraes
- Department of Engineering of Materials and of Bioprocesses; School of Chemical Engineering, University of Campinas; Avenida Albert Einstein 500 Campinas São Paulo - CEP 13083-852 Brazil
| |
Collapse
|
28
|
Kim J, Hwang J, Seo Y, Jo Y, Son J, Choi J. Engineered chitosan–xanthan gum biopolymers effectively adhere to cells and readily release incorporated antiseptic molecules in a sustained manner. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2016.10.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Bierhalz ACK, Lopes SA, Pires ALR, Moraes ÂM. Development of polysaccharide-based membranes incorporating the bioactive compound aloin. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1201762] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
30
|
Dodi G, Pala A, Barbu E, Peptanariu D, Hritcu D, Popa M, Tamba B. Carboxymethyl guar gum nanoparticles for drug delivery applications: Preparation and preliminary in-vitro investigations. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:628-36. [DOI: 10.1016/j.msec.2016.03.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/09/2016] [Accepted: 03/12/2016] [Indexed: 01/05/2023]
|
31
|
Cavalcanti AL, Reis MY, Silva GC, Ramalho ÍM, Guimarães GP, Silva JA, Saraiva KL, Damasceno BP. Microemulsion for topical application of pentoxifylline: In vitro release and in vivo evaluation. Int J Pharm 2016; 506:351-60. [DOI: 10.1016/j.ijpharm.2016.04.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/19/2016] [Accepted: 04/25/2016] [Indexed: 12/19/2022]
|
32
|
Alves VD, Torres CAV, Freitas F. Bacterial polymers as materials for the development of micro/nanoparticles. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2015.1103239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Kulkarni N, Wakte P, Naik J. Development of floating chitosan-xanthan beads for oral controlled release of glipizide. Int J Pharm Investig 2015; 5:73-80. [PMID: 25838991 PMCID: PMC4381389 DOI: 10.4103/2230-973x.153381] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction: The aim of the present work was to develop controlled release, floating and mucoadhesive beads of glipizide by using the polyionic complexation technique. Plasma half-life of glipizide being 2–4 h was selected for development of controlled release dosage form. Methods: Formulation batches were designed by employing chitosan as cationic and xanthan gum as anionic polymers. In vitro drug release was evaluated for the period of 24 h in phosphate buffer pH 7.4. Results: Sustained release of drug was observed in all formulation batches with % drug release ranging from 87.50% to 100.67%, no significant effect on the drug release was observed after varying chitosan to xanthan gum ratio. Encapsulation efficiency was found to be in the range of 79.48 ± 1.10–94.48 ± 1.52. In vitro bioadhesion studies showed that beads had satisfactory bioadhesive strength ranging from 67.11% ± 1.73% to 93.12% ± 1.56%. Buoyancy studies revealed that beads possess comparable floating capacity in the gastric fluids. Swelling kinetics was carried in pH 1.2 and 7.4 buffers. Significant difference (P < 0.05) in swelling kinetics was observed. Drug to polymer interaction was analyzed by Fourier transform infrared spectroscopy and differential scanning calorimetry studies. Scanning electron microscopy studies revealed that formed beads were discrete with rough and wrinkled surfaces. Conclusions: In conclusion, beads were successfully formed by employing chitosan and xanthan gum and showed to possess sustained release effect. Beads also showed pH dependent swelling kinetics, this property can also be applied for the drugs which are susceptible to the acidic environment in the stomach, and comparable bioadhesive and floating properties were also observed.
Collapse
Affiliation(s)
- Nilesh Kulkarni
- Department of Pharmacutics, Smt. Kashibai Navale College of Pharmacy, Kondhwa-Saswad Road, Yeolewadi, Kondhwa (Bk.), Pune, Maharashtra, India
| | - Pravin Wakte
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Nagsenvan, Aurangabad, Maharashtra, India
| | - Jitendra Naik
- Department of Chemical Technology, North Maharashtra University, Jalgaon, Maharashtra, India
| |
Collapse
|
34
|
Valderruten N, Valverde J, Zuluaga F, Ruiz-Durántez E. Synthesis and characterization of chitosan hydrogels cross-linked with dicarboxylic acids. REACT FUNCT POLYM 2014. [DOI: 10.1016/j.reactfunctpolym.2014.08.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Luo Y, Wang Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 2014; 64:353-67. [DOI: 10.1016/j.ijbiomac.2013.12.017] [Citation(s) in RCA: 518] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 01/20/2023]
|
36
|
Martínez-Gómez A, Cruz-Barba L, Sánchez-Díaz J, Becerra-Bracamontes F, Martínez-Ruvalcaba A. Plasma enhanced modification of xanthan and its use in chitosan/xanthan hydrogels. POLYM ENG SCI 2013. [DOI: 10.1002/pen.23778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- A.J. Martínez-Gómez
- Department of Chemical Engineering; University of Guadalajara; Guadalajara 44430 Jalisco Mexico
| | - L.E. Cruz-Barba
- Department of Chemical Engineering; University of Guadalajara; Guadalajara 44430 Jalisco Mexico
| | - J.C. Sánchez-Díaz
- Department of Chemical Engineering; University of Guadalajara; Guadalajara 44430 Jalisco Mexico
| | | | - A. Martínez-Ruvalcaba
- Department of Chemical Engineering; University of Guadalajara; Guadalajara 44430 Jalisco Mexico
| |
Collapse
|
37
|
Oprea AM, Nistor MT, Profire L, Popa MI, Lupusoru CE, Vasile C. Evaluation of the Controlled Release Ability of Theophylline from Xanthan/Chondroitin Sulfate Hydrogels. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbnb.2013.42017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Eudraginated polymer blends: a potential oral controlled drug delivery system for theophylline. ACTA PHARMACEUTICA 2012; 62:71-82. [PMID: 22472450 DOI: 10.2478/v10007-012-0001-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sustained release (SR) dosage forms enable prolonged and continuous deposition of the drug in the gastrointestinal (GI) tract and improve the bioavailability of medications characterized by a narrow absorption window. In this study, a new strategy is proposed for the development of SR dosage forms for theophylline (TPH). Design of the delivery system was based on a sustained release formulation, with a modified coating technique and swelling features aimed to extend the release time of the drug. Different polymers, such as Carbopol 71G (CP), sodium carboxymethylcellulose (SCMC), ethylcellulose (EC) and their combinations were tried. Prepared matrix tablets were coated with a 5 % (m/m) dispersion of Eudragit (EUD) in order to get the desired sustained release profile over a period of 24 h. Various formulations were evaluated for micromeritic properties, drug concentration and in vitro drug release. It was found that the in vitro drug release rate decreased with increasing the amount of polymer. Coating with EUD resulted in a significant lag phase in the first two hours of dissolution in the acidic pH of simulated gastric fluid (SGF) due to decreased water uptake, and hence decreased driving force for drug release. Release became faster in the alkaline pH of simulated intestinal fluid (SIF) owing to increased solubility of both the coating and matrixing agents. The optimized formulation was subjected to in vivo studies in rabbits and the pharmacokinetic parameters of developed formulations were compared with the commercial (Asmanyl(®)) formulation. Asmanyl(®) tablets showed faster absorption (t(max) 4.0 h) compared to the TPH formulation showing a t(max) value of 8.0 h. The C(max) and AUC values of TPH formulation were significantly (p < 0.05) higher than those for Asmanyl(®), revealing relative bioavailability of about 136.93 %. Our study demonstrated the potential usefulness of eudraginated polymers for the oral delivery of the sparingly soluble drug theophylline.
Collapse
|
39
|
Veiga IG, Moraes ÂM. Study of the swelling and stability properties of chitosan-xanthan membranes. J Appl Polym Sci 2011. [DOI: 10.1002/app.35526] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Ribeiro AC, Gomes JC, Rita MB, Lobo VM, Esteso MA. Ternary diffusion coefficients of nickel chloride plus theophylline plus water at 298.15K. Food Chem 2011. [DOI: 10.1016/j.foodchem.2011.03.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|