1
|
Ashammakhi N, GhavamiNejad A, Tutar R, Fricker A, Roy I, Chatzistavrou X, Hoque Apu E, Nguyen KL, Ahsan T, Pountos I, Caterson EJ. Highlights on Advancing Frontiers in Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:633-664. [PMID: 34210148 PMCID: PMC9242713 DOI: 10.1089/ten.teb.2021.0012] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/15/2021] [Indexed: 01/05/2023]
Abstract
The field of tissue engineering continues to advance, sometimes in exponential leaps forward, but also sometimes at a rate that does not fulfill the promise that the field imagined a few decades ago. This review is in part a catalog of success in an effort to inform the process of innovation. Tissue engineering has recruited new technologies and developed new methods for engineering tissue constructs that can be used to mitigate or model disease states for study. Key to this antecedent statement is that the scientific effort must be anchored in the needs of a disease state and be working toward a functional product in regenerative medicine. It is this focus on the wildly important ideas coupled with partnered research efforts within both academia and industry that have shown most translational potential. The field continues to thrive and among the most important recent developments are the use of three-dimensional bioprinting, organ-on-a-chip, and induced pluripotent stem cell technologies that warrant special attention. Developments in the aforementioned areas as well as future directions are highlighted in this article. Although several early efforts have not come to fruition, there are good examples of commercial profitability that merit continued investment in tissue engineering. Impact statement Tissue engineering led to the development of new methods for regenerative medicine and disease models. Among the most important recent developments in tissue engineering are the use of three-dimensional bioprinting, organ-on-a-chip, and induced pluripotent stem cell technologies. These technologies and an understanding of them will have impact on the success of tissue engineering and its translation to regenerative medicine. Continued investment in tissue engineering will yield products and therapeutics, with both commercial importance and simultaneous disease mitigation.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, Michigan, USA
| | - Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Rumeysa Tutar
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Annabelle Fricker
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Ehsanul Hoque Apu
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, USA
| | - Kim-Lien Nguyen
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Taby Ahsan
- RoosterBio, Inc., Frederick, Maryland, USA
| | - Ippokratis Pountos
- Academic Department of Trauma and Orthopaedics, University of Leeds, Leeds, United Kingdom
| | - Edward J. Caterson
- Division of Plastic Surgery, Department of Surgery, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, Delaware, USA
| |
Collapse
|
2
|
Wang J, Xiao L, Wang W, Zhang D, Ma Y, Zhang Y, Wang X. The Auxiliary Role of Heparin in Bone Regeneration and its Application in Bone Substitute Materials. Front Bioeng Biotechnol 2022; 10:837172. [PMID: 35646879 PMCID: PMC9133562 DOI: 10.3389/fbioe.2022.837172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Bone regeneration in large segmental defects depends on the action of osteoblasts and the ingrowth of new blood vessels. Therefore, it is important to promote the release of osteogenic/angiogenic growth factors. Since the discovery of heparin, its anticoagulant, anti-inflammatory, and anticancer functions have been extensively studied for over a century. Although the application of heparin is widely used in the orthopedic field, its auxiliary effect on bone regeneration is yet to be unveiled. Specifically, approximately one-third of the transforming growth factor (TGF) superfamily is bound to heparin and heparan sulfate, among which TGF-β1, TGF-β2, and bone morphogenetic protein (BMP) are the most common growth factors used. In addition, heparin can also improve the delivery and retention of BMP-2 in vivo promoting the healing of large bone defects at hyper physiological doses. In blood vessel formation, heparin still plays an integral part of fracture healing by cooperating with the platelet-derived growth factor (PDGF). Importantly, since heparin binds to growth factors and release components in nanomaterials, it can significantly facilitate the controlled release and retention of growth factors [such as fibroblast growth factor (FGF), BMP, and PDGF] in vivo. Consequently, the knowledge of scaffolds or delivery systems composed of heparin and different biomaterials (including organic, inorganic, metal, and natural polymers) is vital for material-guided bone regeneration research. This study systematically reviews the structural properties and auxiliary functions of heparin, with an emphasis on bone regeneration and its application in biomaterials under physiological conditions.
Collapse
Affiliation(s)
- Jing Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lan Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
- Australia−China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, Australia
| | - Weiqun Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dingmei Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
- Australia−China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, Australia
| |
Collapse
|
3
|
Baek S, Park H, Chen K, Park H, Lee D. Development of an implantable PCL/alginate bilayer scaffold to prevent secondary infections. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-019-0459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Shahabipour F, Ashammakhi N, Oskuee RK, Bonakdar S, Hoffman T, Shokrgozar MA, Khademhosseini A. Key components of engineering vascularized 3-dimensional bioprinted bone constructs. Transl Res 2020; 216:57-76. [PMID: 31526771 DOI: 10.1016/j.trsl.2019.08.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/16/2022]
Abstract
Vascularization has a pivotal role in engineering successful tissue constructs. However, it remains a major hurdle of bone tissue engineering, especially in clinical applications for the treatment of large bone defects. Development of vascularized and clinically-relevant engineered bone substitutes with sufficient blood supply capable of maintaining implant viability and supporting subsequent host tissue integration remains a major challenge. Since only cells that are 100-200 µm from blood vessels can receive oxygen through diffusion, engineered constructs that are thicker than 400 µm face a challenging oxygenation problem. Following implantation in vivo, spontaneous ingrowth of capillaries in thick engineered constructs is too slow. Thus, it is critical to provide optimal conditions to support vascularization in engineered bone constructs. To achieve this, an in-depth understanding of the mechanisms of angiogenesis and bone development is required. In addition, it is also important to mimic the physiological milieu of native bone to fabricate more successful vascularized bone constructs. Numerous applications of engineered vascularization with cell-and/or microfabrication-based approaches seek to meet these aims. Three-dimensional (3D) printing promises to create patient-specific bone constructs in the future. In this review, we discuss the major components of fabricating vascularized 3D bioprinted bone constructs, analyze their related challenges, and highlight promising future trends.
Collapse
Affiliation(s)
- Fahimeh Shahabipour
- National cell bank of Iran, Pasteur Institute of Iran, Tehran, Iran; Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, California; California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, California; Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | - Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, California; California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, California; Department of Bioengineering, University of California, Los Angeles, Los Angeles, California; Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, California
| | - Reza K Oskuee
- Targeted Drug Delivery Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahin Bonakdar
- National cell bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Tyler Hoffman
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, California; California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, California; Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | | | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, California; California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, California; Department of Bioengineering, University of California, Los Angeles, Los Angeles, California; Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, California; Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
5
|
Sparks DS, Savi FM, Saifzadeh S, Schuetz MA, Wagels M, Hutmacher DW. Convergence of Scaffold-Guided Bone Reconstruction and Surgical Vascularization Strategies-A Quest for Regenerative Matching Axial Vascularization. Front Bioeng Biotechnol 2020; 7:448. [PMID: 31998712 PMCID: PMC6967032 DOI: 10.3389/fbioe.2019.00448] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
The prevalent challenge facing tissue engineering today is the lack of adequate vascularization to support the growth, function, and viability of tissue engineered constructs (TECs) that require blood vessel supply. The research and clinical community rely on the increasing knowledge of angiogenic and vasculogenic processes to stimulate a clinically-relevant vascular network formation within TECs. The regenerative matching axial vascularization approach presented in this manuscript incorporates the advantages of flap-based techniques for neo-vascularization yet also harnesses the in vivo bioreactor principle in a more directed "like for like" approach to further assist regeneration of the specific tissue type that is lost, such as a corticoperiosteal flap in critical sized bone defect reconstruction.
Collapse
Affiliation(s)
- David S Sparks
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, QLD, Australia.,Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD, Australia
| | - Flavia Medeiros Savi
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Siamak Saifzadeh
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Medical Engineering Research Facility, Queensland University of Technology, Chermside, QLD, Australia
| | - Michael A Schuetz
- Department of Orthopaedic Surgery, Royal Brisbane Hospital, Herston, QLD, Australia.,Jamieson Trauma Institute, Royal Brisbane Hospital, Herston, QLD, Australia
| | - Michael Wagels
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, QLD, Australia.,Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD, Australia.,Australian Centre for Complex Integrated Surgical Solutions, Woolloongabba, QLD, Australia
| | - Dietmar W Hutmacher
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,ARC Centre for Additive Bio-Manufacturing, Queensland University of Technology, Kelvin Grove, QLD, Australia
| |
Collapse
|
6
|
Steiner D, Lang G, Fischer L, Winkler S, Fey T, Greil P, Scheibel T, Horch RE, Arkudas A. Intrinsic Vascularization of Recombinant eADF4(C16) Spider Silk Matrices in the Arteriovenous Loop Model. Tissue Eng Part A 2019; 25:1504-1513. [DOI: 10.1089/ten.tea.2018.0360] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dominik Steiner
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Gregor Lang
- Biopolymer Processing, Faculty of Engineering Science, University of Bayreuth, Bayreuth, Germany
| | - Laura Fischer
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sophie Winkler
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Fey
- Department of Materials Science and Engineering, Institute of Glass and Ceramics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Nagoya, Japan
| | - Peter Greil
- Department of Materials Science and Engineering, Institute of Glass and Ceramics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Thomas Scheibel
- Department for Biomaterials, Faculty of Engineering Science, University of Bayreuth, Bayreuth, Germany
- Bayreuth Center for Colloids and Interfaces, University of Bayreuth, Bayreuth, Germany
- Bavarian Polymer Institute, University of Bayreuth, Bayreuth, Germany
- Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), University of Bayreuth, Bayreuth, Germany
- Bayreuther Materialzentrum (BayMAT), University of Bayreuth, Bayreuth, Germany
| | - Raymund E. Horch
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
7
|
Wong R, Donno R, Leon-Valdivieso CY, Roostalu U, Derby B, Tirelli N, Wong JK. Angiogenesis and tissue formation driven by an arteriovenous loop in the mouse. Sci Rep 2019; 9:10478. [PMID: 31324837 PMCID: PMC6642172 DOI: 10.1038/s41598-019-46571-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/19/2019] [Indexed: 01/09/2023] Open
Abstract
The rapid vascularisation of biomaterials and artificial tissues is a key determinant for their in vivo viability and ultimately for their integration in a host; therefore promoting angiogenesis and maintaining the newly formed vascular beds has become a major goal of tissue engineering. The arteriovenous loop (AVL) has been an extensively studied platform which integrates microsurgery with cells scaffolds and growth factors to form neotissues. Most AVL studies to date are limited to larger animal models, which are surgically easier to perform, but have inherent limits for the understanding and interrogation of the underlying in vivo mechanisms due the paucity of transgenic models. Here, we demonstrate for the first time in a mouse model the utility of the AVL in the de novo production of vascularized tissue. We also present the combined use of the model with 3D printed chambers, which allow us to dictate size and shape of the tissues formed. This novel platform will allow for an understanding of the fundamental mechanisms involved in tissue generation de novo.
Collapse
Affiliation(s)
- Richard Wong
- Division of Cell Matrix and Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| | - Roberto Donno
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.
| | - Christopher Y Leon-Valdivieso
- School of Materials, University of Manchester, Manchester, M13 9PL, UK.,Roberval Laboratory for Mechanics, Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr. Schweitzer, 60200, Compiègne, France
| | - Urmas Roostalu
- Division of Cell Matrix and Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK.,Gubra, Horsholm, Denmark
| | - Brian Derby
- School of Materials, University of Manchester, Manchester, M13 9PL, UK.,Roberval Laboratory for Mechanics, Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr. Schweitzer, 60200, Compiègne, France
| | - Nicola Tirelli
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.,Division of Pharmacy & Optometry, School of Health Science, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Jason K Wong
- Division of Cell Matrix and Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK. .,Department of Burns and Plastic Surgery, Manchester University Foundation Trust, Manchester Academic Health Science Centre, Wythenshawe Hospital, Southmoor Road, Manchester, M23 9LT, UK.
| |
Collapse
|
8
|
Geven MA, Grijpma DW. Additive manufacturing of composite structures for the restoration of bone tissue. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/2399-7532/ab201f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Didekhani R, Sohrabi MR, Soleimani M, Seyedjafari E, Hanaee-Ahvaz H. Incorporating PCL nanofibers with oyster shell to improve osteogenic differentiation of mesenchymal stem cells. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02750-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Sudheesh Kumar P, Hashimi S, Saifzadeh S, Ivanovski S, Vaquette C. Additively manufactured biphasic construct loaded with BMP-2 for vertical bone regeneration: A pilot study in rabbit. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:554-564. [DOI: 10.1016/j.msec.2018.06.071] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 05/29/2018] [Accepted: 06/30/2018] [Indexed: 12/18/2022]
|
11
|
Enhanced osteodifferentiation of MSC spheroids on patterned electrospun fiber mats - An advanced 3D double strategy for bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:703-712. [PMID: 30423757 DOI: 10.1016/j.msec.2018.10.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/30/2018] [Accepted: 10/04/2018] [Indexed: 01/29/2023]
Abstract
2D cell culture has been widely developed with various micropatterning and microfabrication techniques over the past few decades for creating and controlling cellular microenvironments including cell-matrix interactions, cell-cell interactions, and bio-mimicking the in-vivo tissue hierarchy and functions. However, the drawbacks of 2D culture have currently paved the way to 3D cell culture which is considered clinically and biologically more relevant. Here we report a 3D double strategy for osteodifferentiation of MSC spheroids on nano- and micro-patterned PLGA/Collagen/nHAp electrospun fiber mats. A comparison of cell alignment, proliferation and differentiation of 2D and 3D MSCs on patterned and non-patterned substrate was done. The study demonstrates the synergistic effect of geometric cues and 3D culture on differentiation of MSC spheroids into osteogenic lineage even in absence of osteoinduction medium.
Collapse
|
12
|
Li B, Ruan C, Ma Y, Huang Z, Huang Z, Zhou G, Zhang J, Wang H, Wu Z, Qiu G. Fabrication of Vascularized Bone Flaps with Sustained Release of Recombinant Human Bone Morphogenetic Protein-2 and Arteriovenous Bundle. Tissue Eng Part A 2018; 24:1413-1422. [PMID: 29676206 DOI: 10.1089/ten.tea.2018.0002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Bo Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Department of Orthopedic Surgery, Fourth Clinical Medical College of Peking University, Beijing Jishuitan Hospital, Beijing, China
| | - Changshun Ruan
- Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yufei Ma
- Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhifeng Huang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Department of Orthopedic Surgery, Fourth Clinical Medical College of Peking University, Beijing Jishuitan Hospital, Beijing, China
| | - Zhenfei Huang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Zhou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jing Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Hai Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Bone and Joint Disease, Beijing, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Sankar S, Kakunuri M, D. Eswaramoorthy S, Sharma CS, Rath SN. Effect of patterned electrospun hierarchical structures on alignment and differentiation of mesenchymal stem cells: Biomimicking bone. J Tissue Eng Regen Med 2018; 12:e2073-e2084. [DOI: 10.1002/term.2640] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/30/2017] [Accepted: 01/02/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Sharanya Sankar
- Department of Biomedical EngineeringIndian Institute of Technology Hyderabad Telangana India
| | - Manohar Kakunuri
- Department of Material Science and engineeringIndian Institute of Technology Hyderabad Telangana India
- Creative & Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical EngineeringIndian Institute of Technology Hyderabad Telangana India
| | | | - Chandra S. Sharma
- Creative & Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical EngineeringIndian Institute of Technology Hyderabad Telangana India
| | - Subha N. Rath
- Department of Biomedical EngineeringIndian Institute of Technology Hyderabad Telangana India
| |
Collapse
|
14
|
Sankar S, Sharma CS, Rath SN, Ramakrishna S. Electrospun nanofibres to mimic natural hierarchical structure of tissues: application in musculoskeletal regeneration. J Tissue Eng Regen Med 2017; 12:e604-e619. [DOI: 10.1002/term.2335] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/26/2016] [Accepted: 09/26/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Sharanya Sankar
- Department of Biomedical Engineering; Indian Institute of Technology; Telangana Hyderabad India
| | - Chandra S. Sharma
- Department of Chemical Engineering; Indian Institute of Technology; Telangana Hyderabad India
| | - Subha N. Rath
- Department of Biomedical Engineering; Indian Institute of Technology; Telangana Hyderabad India
| | - Seeram Ramakrishna
- Center for Nanofibres & Nanotechnology; National University of Singapore; Singapore
| |
Collapse
|
15
|
Soluble eggshell membrane: A natural protein to improve the properties of biomaterials used for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:807-821. [DOI: 10.1016/j.msec.2016.05.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 04/18/2016] [Accepted: 05/01/2016] [Indexed: 02/07/2023]
|
16
|
Huang RL, Kobayashi E, Liu K, Li Q. Bone Graft Prefabrication Following the In Vivo Bioreactor Principle. EBioMedicine 2016; 12:43-54. [PMID: 27693103 PMCID: PMC5078640 DOI: 10.1016/j.ebiom.2016.09.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/11/2016] [Accepted: 09/16/2016] [Indexed: 01/31/2023] Open
Abstract
Large bone defect treatment represents a great challenge due to the difficulty of functional and esthetic reconstruction. Tissue-engineered bone grafts created by in vitro manipulation of bioscaffolds, seed cells, and growth factors have been considered potential treatments for bone defect reconstruction. However, a significant gap remains between experimental successes and clinical translation. An emerging strategy for bridging this gap is using the in vivo bioreactor principle and flap prefabrication techniques. This principle focuses on using the body as a bioreactor to cultivate the traditional triad (bioscaffolds, seed cells, and growth factors) and leveraging the body's self-regenerative capacity to regenerate new tissue. Additionally, flap prefabrication techniques allow the regenerated bone grafts to be transferred as prefabricated bone flaps for bone defect reconstruction. Such a strategy has been used successfully for reconstructing critical-sized bone defects in animal models and humans. Here, we highlight this concept and provide some perspective on how to translate current knowledge into clinical practice. The in vivo bioreactor principle and flap prefabrication technique is a promising strategy for bone defect reconstruction. The in vivo bioreactor principle focuses on using the body’s self-regenerative capacity to regenerate new tissue. This strategy has been successfully used to reconstruct critical-sized bone defects in humans.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Eiji Kobayashi
- Department of Organ Fabrication, Keio University School of Medicine, Tokyo, Japan
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China.
| |
Collapse
|
17
|
Kim DY, Kwon DY, Kwon JS, Kim JH, Min BH, Kim MS. Stimuli-Responsive InjectableIn situ-Forming Hydrogels for Regenerative Medicines. POLYM REV 2015. [DOI: 10.1080/15583724.2014.983244] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Development of a new pre-vascularized tissue-engineered construct using pre-differentiated rADSCs, arteriovenous vascular bundle and porous nano-hydroxyapatide-polyamide 66 scaffold. BMC Musculoskelet Disord 2013; 14:318. [PMID: 24209783 PMCID: PMC3826526 DOI: 10.1186/1471-2474-14-318] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 11/05/2013] [Indexed: 01/22/2023] Open
Abstract
Background Development of a pre-vascularized tissue-engineered construct with intrinsic vascular system for cell growth and tissue formation still faces many difficulties due to the complexity of the vascular network of natural bone tissue. The present study was to design and form a new vascularized tissue-engineered construct using pre-differentiated rADSCs, arteriovenous vascular bundle and porous nHA-PA 66 scaffold. Methods rADSCs were pre-differentiated to endothelial cells (rADSCs-Endo) and then incorporated in nHA-PA 66 scaffolds in vitro. Subsequently, in vivo experiments were carried out according to the following groups: Group A (rADSCs-Endo/nHA-PA 66 scaffold with arteriovenous vascular bundle), Group B (rADSCs/nHA-PA 66 scaffold with arteriovenous vascular bundle); Group C (nHA-PA66 scaffold with arteriovenous vascular bundle), Group D (nHA-PA 66 scaffold only). The vessel density and vessel diameter were measured based on histological and immunohistochemical evaluation, furthermore, the VEGF-C, FGF-2 and BMP-2 protein expressions were also evaluated by western blot analysis. Results The results of in vivo experiments showed that the vessel density and vessel diameter in group A were significantly higher than the other three groups. Between Group B and C, no statistical difference was observed at each time point. In accordance with the results, there were dramatically higher expressions of VEGF-C and FGF-2 protein in Group A than that of Group B, C and D at 2 or 4 weeks. Statistical differences were not observed in VEGF-C and FGF-2 expression between Group B and C. BMP-2 was not expressed in any group at each time point. Conclusions Compared with muscular wrapping method, arteriovenous vascular bundle implantation could promote vascularization of the scaffold; and the angiogenesis of the scaffold was significantly accelerated when pre-differentiated rADSCs (endothelial differentiation) were added. These positive results implicate the combination of pre-differentiated rADSCs (endothelial differentiation) and arteriovenous vascular bundle may achieve rapidly angiogenesis of biomaterial scaffold.
Collapse
|
19
|
Mastoid obliteration using 3D PCL scaffold in combination with alginate and rhBMP-2. Int J Biol Macromol 2013; 62:614-22. [DOI: 10.1016/j.ijbiomac.2013.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 09/27/2013] [Accepted: 10/11/2013] [Indexed: 11/19/2022]
|
20
|
See EYS, Kulkarni M, Pandit A. Regeneration of the limb: opinions on the reality. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:2627-2633. [PMID: 24077993 DOI: 10.1007/s10856-013-5044-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 08/30/2013] [Indexed: 06/02/2023]
Abstract
Whenever the topic of re-growing human limbs is posed for discussion, it is often argued that ‘if a newt can do it, then so can we’. This notion, albeit promising, is somewhat like watching a science-fiction film; the individual components are currently available but we are far from realizing the complete picture. Today’s reality is that if we are faced with a limb-severing injury, any regenerative attempt would endeavour to accelerate the pace at which the tissue heals to a clinically relevant/functional state. The science of limb regeneration can be approached from three different angles, developmental biology; regenerative medicine; and tissue engineering. This opinion piece describes how each approach can be used to understand the concepts behind regeneration, how far each approach has advanced and the hurdles faced by each of the approaches.
Collapse
|
21
|
Rath SN, Strobel LA, Arkudas A, Beier JP, Maier AK, Greil P, Horch RE, Kneser U. Osteoinduction and survival of osteoblasts and bone-marrow stromal cells in 3D biphasic calcium phosphate scaffolds under static and dynamic culture conditions. J Cell Mol Med 2013; 16:2350-61. [PMID: 22304383 PMCID: PMC3823428 DOI: 10.1111/j.1582-4934.2012.01545.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In many tissue engineering approaches, the basic difference between in vitro and in vivo conditions for cells within three-dimensional (3D) constructs is the nutrition flow dynamics. To achieve comparable results in vitro, bioreactors are advised for improved cell survival, as they are able to provide a controlled flow through the scaffold. We hypothesize that a bioreactor would enhance long-term differentiation conditions of osteogenic cells in 3D scaffolds. To achieve this either primary rat osteoblasts or bone marrow stromal cells (BMSC) were implanted on uniform-sized biphasic calcium phosphate (BCP) scaffolds produced by a 3D printing method. Three types of culture conditions were applied: static culture without osteoinduction (Group A); static culture with osteoinduction (Group B); dynamic culture with osteoinduction (Group C). After 3 and 6 weeks, the scaffolds were analysed by alkaline phosphatase (ALP), dsDNA amount, SEM, fluorescent labelled live-dead assay, and real-time RT-PCR in addition to weekly alamarBlue assays. With osteoinduction, increased ALP values and calcium deposition are observed; however, under static conditions, a significant decrease in the cell number on the biomaterial is observed. Interestingly, the bioreactor system not only reversed the decreased cell numbers but also increased their differentiation potential. We conclude from this study that a continuous flow bioreactor not only preserves the number of osteogenic cells but also keeps their differentiation ability in balance providing a suitable cell-seeded scaffold product for applications in regenerative medicine.
Collapse
Affiliation(s)
- Subha N Rath
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Weyers A, Linhardt RJ. Neoproteoglycans in tissue engineering. FEBS J 2013; 280:2511-22. [PMID: 23399318 DOI: 10.1111/febs.12187] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 02/01/2013] [Accepted: 02/06/2013] [Indexed: 01/12/2023]
Abstract
Proteoglycans, comprised of a core protein to which glycosaminoglycan chains are covalently linked, are an important structural and functional family of macromolecules found in the extracellular matrix. Advances in our understanding of biological interactions have lead to a greater appreciation for the need to design tissue engineering scaffolds that incorporate mimetics of key extracellular matrix components. A variety of synthetic and semisynthetic molecules and polymers have been examined by tissue engineers that serve as structural, chemical and biological replacements for proteoglycans. These proteoglycan mimetics have been referred to as neoproteoglycans and serve as functional and therapeutic replacements for natural proteoglycans that are often unavailable for tissue engineering studies. Although neoproteoglycans have important limitations, such as limited signaling ability and biocompatibility, they have shown promise in replacing the natural activity of proteoglycans through cell and protein binding interactions. This review focuses on the recent in vivo and in vitro tissue engineering applications of three basic types of neoproteoglycan structures, protein-glycosaminoglycan conjugates, nano-glycosaminoglycan composites and polymer-glycosaminoglycan complexes.
Collapse
Affiliation(s)
- Amanda Weyers
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | |
Collapse
|
23
|
Composition of fibrin glues significantly influences axial vascularization and degradation in isolation chamber model. Blood Coagul Fibrinolysis 2013; 23:419-27. [PMID: 22576289 DOI: 10.1097/mbc.0b013e3283540c0f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study, different fibrin sealants with varying concentrations of the fibrin components were evaluated in terms of matrix degradation and vascularization in the arteriovenous loop (AVL) model of the rat. An AVL was placed in a Teflon isolation chamber filled with 500 μl fibrin gel. The matrix was composed of commercially available fibrin gels, namely Beriplast (Behring GmbH, Marburg, Germany) (group A), Evicel (Omrix Biopharmaceuticals S.A., Somerville, New Jersey, USA) (group B), Tisseel VH S/D (Baxter, Vienna, Austria) with a thrombin concentration of 4 IU/ml and a fibrinogen concentration of 80 mg/ml [Tisseel S F80 (Baxter), group C] and with an fibrinogen concentration of 20 mg/ml [Tisseel S F20 (Baxter), group D]. After 2 and 4 weeks, five constructs per group and time point were investigated using micro-computed tomography, and histological and morphometrical analysis techniques. The aprotinin, factor XIII and thrombin concentration did not affect the degree of clot degradation. An inverse relationship was found between fibrin matrix degradation and sprouting of blood vessels. By reducing the fibrinogen concentration in group D, a significantly decreased construct weight and an increased generation of vascularized connective tissue were detected. There was an inverse relationship between matrix degradation and vascularization detectable. Fibrinogen as the major matrix component showed a significant impact on the matrix properties. Alteration of fibrin gel properties might optimize formation of blood vessels.
Collapse
|
24
|
Beloti MM, Sicchieri LG, de Oliveira PT, Rosa AL. The Influence of Osteoblast Differentiation Stage on Bone Formation in Autogenously Implanted Cell-Based Poly(Lactide-Co-Glycolide) and Calcium Phosphate Constructs. Tissue Eng Part A 2012; 18:999-1005. [DOI: 10.1089/ten.tea.2011.0405] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Marcio M. Beloti
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Luciana G. Sicchieri
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Paulo T. de Oliveira
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Adalberto Luiz Rosa
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
|
26
|
Abstract
There remains a substantial shortfall in the treatment of severe skeletal injuries. The current gold standard of autologous bone grafting from the same patient has many undesirable side effects associated such as donor site morbidity. Tissue engineering seeks to offer a solution to this problem. The primary requirements for tissue-engineered scaffolds have already been well established, and many materials, such as polyesters, present themselves as potential candidates for bone defects; they have comparable structural features, but they often lack the required osteoconductivity to promote adequate bone regeneration. By combining these materials with biological growth factors, which promote the infiltration of cells into the scaffold as well as the differentiation into the specific cell and tissue type, it is possible to increase the formation of new bone. However due to the cost and potential complications associated with growth factors, controlling the rate of release is an important design consideration when developing new bone tissue engineering strategies. This paper will cover recent research in the area of encapsulation and release of growth factors within a variety of different polymeric scaffolds.
Collapse
|