1
|
Chai P, Geng X, Zhu R, Wu W, Wang X, Li J, Fu L, Wang H, Liu W, Chen L, Song Z. Fabrication and application of molecularly imprinted polymer doped carbon dots coated silica stationary phase. Anal Chim Acta 2023; 1275:341611. [PMID: 37524474 DOI: 10.1016/j.aca.2023.341611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023]
Abstract
Facing the difficulties in chromatographic separation of polar compounds, this investigation devotes to developing novel stationary phase. Molecularly imprinted polymers (MIPs) have aroused wide attention, owing to their outstanding selectivity, high stability, and low cost. In this work, a novel stationary phase based on carbon dots (CDs), MIP layer, and silica beads was synthesized to exploit high selectivity of MIPs, excellent physicochemical property of CDs, and outstanding chromatographic performances of silica microspheres simultaneously. The MIP doped CDs coated silica (MIP-CDs/SiO2) stationary phase was systematically characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area measurement, and carbon elemental analysis. Furthermore, the chromatographic performance of the MIP-CDs/SiO2 column was thoroughly assessed by using a wide variety of compounds (including nucleosides, sulfonamides, benzoic acids, and some other antibiotics). Meanwhile, the separation efficiency of the MIP-CDs/SiO2 stationary phase was superior to other kinds of stationary phases (e.g. nonimprinted NIP-CDs/SiO2, MIP/SiO2, and C18-SiO2). The results demonstrated that MIP-CDs/SiO2 column exhibited best performance in terms of chromatographic separation. For all tested compounds, the resolution value was not less than 1.60, and the column efficiency of MIP-CDs/SiO2 for thymidine was 22,740 plates/m. The results further indicate that the MIP-CDs/SiO2 column can combine the good properties of MIP, CDs, with those of silica microbeads. Therefore, the developed MIP-CDs/SiO2 stationary phase can be applied in the separation science and chromatography-based techniques.
Collapse
Affiliation(s)
- Peijun Chai
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Xuhui Geng
- Department of Instrumentation & Analytical Chemistry, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Key Laboratory of Deep-sea Composition Detection Technology of Liaoning Province, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
| | - Ruirui Zhu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Wenpu Wu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Xuesong Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Longwen Fu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Hongdan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Wanhui Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
2
|
Nodoushan RM, Shekarriz S, Shariatinia Z, Montazer M, Heydari A. Novel photo and bio-active greyish-black cotton fabric through air- and nitrogen- carbonized zinc-based MOF for developing durable functional textiles. Int J Biol Macromol 2023; 247:125576. [PMID: 37385318 DOI: 10.1016/j.ijbiomac.2023.125576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/10/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
This study explores the potential of using the carbonization of Zn-based metal-organic frameworks (Zn-MOF-5) under N2 and air to modify zinc oxide (ZnO) nanoparticle for the production of various photo and bio-active greyish-black cotton fabrics. The MOF-derived ZnO under N2 demonstrated a significantly higher specific surface area (259 m2g-1) compared to ZnO (12 m2g-1) and MOF-derived ZnO under air (41.6 m2 g-1). The products were characterized using various techniques, including FTIR, XRD, XPS, FE-SEM, TEM, HRTEM, TGA, DLS, and EDS. The tensile strength and dye degradation properties of the treated fabrics were also investigated. The results indicate that the high dye degradation capability of MOF-derived ZnO under N2 is likely due to the lower ZnO band gap energy and improvement in electron-hole pair stability. Additionally, the antibacterial activities of the treated fabrics against Staphylococcus and Pseudomonas aeruginosa were investigated. The cytotoxicity of the fabrics was studied on human fibroblast cell lines using an MTT assay. The study findings demonstrate that the cotton fabric covered with carbonized Zn-MOF under N2 is human-cell compatible while showing high antibacterial activities and stability against washing, highlighting its potential for use in developing functional textiles with enhanced properties.
Collapse
Affiliation(s)
- Roya Mohammadipour Nodoushan
- Color and Polymer Research Centre, Amirkabir University of Technology (Tehran Polytechnic), 15875-4413 Tehran, Iran
| | - Shahla Shekarriz
- Color and Polymer Research Centre, Amirkabir University of Technology (Tehran Polytechnic), 15875-4413 Tehran, Iran.
| | - Zahra Shariatinia
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), 15875-4413 Tehran, Iran
| | - Majid Montazer
- Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), 15875-4413, Tehran, Iran.
| | - Abolfazl Heydari
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| |
Collapse
|
3
|
Nanicuacua DM, Gorla FA, de Almeida Silva M, Segatelli MG, Tarley CRT. Synthesis of a novel bifunctional hybrid molecularly imprinted poly(methacrylic acid-phenyltrimetoxysilane) for highly effective adsorption of diuron from aqueous medium. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
4
|
|
5
|
Sarıkaya M, Ulusoy HI, Morgul U, Ulusoy S, Tartaglia A, Yılmaz E, Soylak M, Locatelli M, Kabir A. Sensitive determination of Fluoxetine and Citalopram antidepressants in urine and wastewater samples by liquid chromatography coupled with photodiode array detector. J Chromatogr A 2021; 1648:462215. [PMID: 34000593 DOI: 10.1016/j.chroma.2021.462215] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/18/2021] [Accepted: 04/26/2021] [Indexed: 01/21/2023]
Abstract
A new analyte separation and preconcentration method for the trace determination of antidepressant drugs, Fluoxetine (FLU) and Citalopram (CIT) in urine and wastewaters, was developed based on HPLC-DAD analysis after magnetic solid phase extraction (MSPE). In the proposed method, FLU and CIT were retained on the newly synthetized magnetic sorbent (Fe3O4@PPy-GO) in the presence of buffer (pH 10.0) and then were desorbed into a lower volume of acetonitrile prior to the chromatographic determinations. Before HPLC analysis, all samples were filtered through a 0.45 µm PTFE filter. Experimental parameters such as interaction time, desorption solvent and volume, and pH were studied and optimized in order to establish the detection limit, linearity, enrichment factor and other analytical figures of merit under optimum operation conditions. In the developed method, FLU and CIT were analyzed by diode array detector at the corresponding maximum wavelengths of 227 and 238 nm, respectively, by using an isocratic elution of 60% pH 3.0 buffer, 30% acetonitrile, and 10% methanol. By using the optimum conditions, limit of detections for FLU and CIT were 1.58 and 1.43 ng mL-1, respectively, while the limit of quantifications was 4.82 and 4.71 ng mL-1, respectively. Relative standard deviations (RSD%) for triplicate analyses of model solutions containing 100 ng mL-1 target molecules were found to be less than 5.0 %. Finally, the method was successfully applied to urine (both simulated and real healthy human) and wastewater samples, and quantitative results were obtained in recovery experiments.
Collapse
Affiliation(s)
- Merve Sarıkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Halil Ibrahim Ulusoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey.
| | - Ummugulsum Morgul
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Songül Ulusoy
- Department of Pharmacy, Vocational School of Health Service, Sivas Cumhuriyet University, 58140, Sivas , Turkey
| | - Angela Tartaglia
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Erkan Yılmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey; ERNAM Erciyes University, Nanotechnology Application and Research Center, 38039, Kayseri, Turkey; Technology Research and Application Center (TAUM), Erciyes University, 38039, Kayseri, Turkey
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, 38039, Turkey; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkey
| | - Marcello Locatelli
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| |
Collapse
|
6
|
A new molecularly imprinted polymer for selective extraction and pre‐concentration of guaifenesin in different samples: Adsorption studies and kinetic modeling. J Sep Sci 2020; 43:1164-1172. [DOI: 10.1002/jssc.201900940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 01/20/2023]
|
7
|
Yu H, Yao R, Shen S. Development of a novel assay of molecularly imprinted membrane by design-based gaussian pattern for vancomycin determination. J Pharm Biomed Anal 2019; 175:112789. [DOI: 10.1016/j.jpba.2019.112789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/18/2019] [Accepted: 07/23/2019] [Indexed: 01/03/2023]
|
8
|
Attallah OA, Al-Ghobashy MA, Ayoub AT, Nebsen M. Magnetic molecularly imprinted polymer nanoparticles for simultaneous extraction and determination of 6-mercaptopurine and its active metabolite thioguanine in human plasma. J Chromatogr A 2018; 1561:28-38. [PMID: 29798806 DOI: 10.1016/j.chroma.2018.05.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/10/2018] [Accepted: 05/17/2018] [Indexed: 11/27/2022]
Abstract
Cytotoxic drugs used in cancer chemotherapy require the continuous monitoring of their plasma concentration levels for dose adjustment purposes. Such condition necessitates the presence of a sensitive technique for accurate extraction and determination of these drugs together with their active metabolites. In this study a novel solid phase extraction technique using magnetic molecularly imprinted nanoparticles (MMI-SPE) is combined with liquid chromatography tandem mass spectrometry (LC-MS/MS) to extract and determine the anti-leukemic agent; 6-mercaptopurine (6-MP) and its active metabolite thioguanine (TG) in human plasma. The magnetic molecularly imprinted nanoparticles (Fe3O4@MIP NPs) were synthesized via precipitation polymerization technique and were characterized using different characterization methods A computational approach was adopted to help in the choice of the monomer used in the fabrication process. The Fe3O4@MIPs NPs possessed a highly improved imprinting efficiency, fast adsorption kinetics following 2nd order kinetics and good adsorption capacity of 1.0 mg/g. The presented MMI-SPE provided the optimum approach in comparison to other reported ones to achieve good extraction recovery and matrix effect of trace levels of 6-MP and TG from plasma. Chromatographic separation was carried out using a validated LC-MS/MS assay and recovery, matrix effect and process efficiency were evaluated. Recovery of 6-MP and TG was in the range of 85.94-103.03%, while, matrix effect showed a mean percentage recovery of 85.94-97.62% and process efficiency of 85.54-96.18%. The proposed extraction technique is simple, effective and can be applicable to the extraction and analysis of other pharmaceutical compounds in complex matrices for therapeutic drug monitoring applications.
Collapse
Affiliation(s)
- Olivia A Attallah
- Pharmaceutical Chemistry Department, Heliopolis University, Cairo-Belbeis Desert Rd., El-Nahda, El-Salam, Cairo Governorate, 11777, Egypt
| | - Medhat A Al-Ghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt; Bioanalysis Research Group, School of Pharmacy, Newgiza University, Egypt
| | - Ahmed Taha Ayoub
- Pharmaceutical Chemistry Department, Heliopolis University, Cairo-Belbeis Desert Rd., El-Nahda, El-Salam, Cairo Governorate, 11777, Egypt
| | - Marianne Nebsen
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
9
|
Attallah OA, Al-Ghobashy MA, Ayoub AT, Tuszynski JA, Nebsen M. Computer-aided design of magnetic molecularly imprinted polymer nanoparticles for solid-phase extraction and determination of levetiracetam in human plasma. RSC Adv 2018; 8:14280-14292. [PMID: 35540735 PMCID: PMC9079875 DOI: 10.1039/c8ra02379d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 04/12/2018] [Indexed: 11/21/2022] Open
Abstract
Analytical methods should be accurate and specific to measure plasma drug concentration. Nevertheless, current sample preparation techniques suffer from limitations, including matrix interference and intensive sample preparation. In this study, a novel technique was proposed for the synthesis of a molecularly imprinted polymer (MIP) on magnetic Fe3O4 nanoparticles (NPs) with uniform core–shell structure. The Fe3O4@MIPs NPs were then applied to separate and enrich an antiepileptic drug, levetiracetam, from human plasma. A computational approach was developed to screen the functional monomers and polymerization solvents to provide a suitable design for the synthesized MIP. Different analysis techniques and re-binding experiments were performed to characterize the Fe3O4@MIP NPs, as well as to identify optimal conditions for the extraction process. Adsorption isotherms were best fitted to the Langmuir model and adsorption kinetics were modeled with pseudo-second-order kinetics. The Fe3O4@MIP NPs showed reasonable adsorption capacity and improved imprinting efficiency. A validated colorimetric assay was introduced as a comparable method to a validated HPLC assay for the quantitation of levetiracetam in plasma in the range of 10–80 μg mL−1 after extraction. The results from the HPLC and colorimetric assays showed good precision (between 1.08% and 9.87%) and recoveries (between 94% and 106%) using the Fe3O4@MIP NPs. The limit of detection and limit of quantification were estimated to be 2.58 μg mL−1 and 7.81 μg mL−1, respectively for HPLC assay and 2.32 μg mL−1 and 7.02 μg mL−1, respectively for colorimetric assay. It is believed that synthesized Fe3O4@MIP NPs as a sample clean-up technique combined with the proposed assays can be used for determination of levetiracetam in plasma. A novel molecularly imprinted polymer on Fe3O4 nanoparticles was applied to extract antiepileptic drug; levetiracetam from plasma for TDM purposes.![]()
Collapse
Affiliation(s)
| | | | - Ahmed Taha Ayoub
- Pharmaceutical Chemistry Department
- Heliopolis University
- El-Salam
- Egypt
| | | | - Marianne Nebsen
- Analytical Chemistry Department
- Faculty of Pharmacy
- Cairo University
- Cairo 11562
- Egypt
| |
Collapse
|
10
|
Pirdadeh-Beiranvand M, Afkhami A, Madrakian T. Cloud point-magnetic dispersive solid phase extraction for the spectrofluorometric determination of citalopram. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.05.139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
De Middeleer G, Dubruel P, De Saeger S. Molecularly imprinted polymers immobilized on 3D printed scaffolds as novel solid phase extraction sorbent for metergoline. Anal Chim Acta 2017; 986:57-70. [DOI: 10.1016/j.aca.2017.07.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 12/21/2022]
|
12
|
Application of dispersive liquid–liquid microextraction with alcoholic solvents followed by HPLC–UV as a sensitive and efficient method for the extraction and determination of citalopram in biological samples using an experimental design. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1048-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Miranda LFC, Domingues DS, Queiroz MEC. Selective solid-phase extraction using molecularly imprinted polymers for analysis of venlafaxine, O-desmethylvenlafaxine, and N-desmethylvenlafaxine in plasma samples by liquid chromatography–tandem mass spectrometry. J Chromatogr A 2016; 1458:46-53. [DOI: 10.1016/j.chroma.2016.06.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/17/2016] [Accepted: 06/06/2016] [Indexed: 01/19/2023]
|
14
|
Kazemi S, Daryani AS, Abdouss M, Shariatinia Z. DFT computations on the hydrogen bonding interactions between methacrylic acid-trimethylolpropane trimethacrylate copolymers and letrozole as drug delivery systems. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2016. [DOI: 10.1142/s0219633616500152] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The hydrogen bonding interactions between letrozole (Let) anticancer drug and three copolymers of methacrylic acid-trimethylolpropane trimethacrylate (M1–M3 as molecular imprinted polymers) were studied using density functional theory (DFT) at both B3LYP and B3PW91 levels. The binding energies were corrected for the basis set superposition error (BSSE) and zero-point vibrational energies (ZPVE) so that the most negative [Formula: see text] were measured for compounds 7 and 8 formed between M1 copolymer and endocyclic N1 and N2 atoms of drug, respectively. Also, among complexes 13–15 in which two copolymers were contributed in the formation of O–H[Formula: see text]N bonds with the drug, compound 13 (containing two M1 copolymers) showed the highest [Formula: see text] value. The interactions of all copolymers with drug were exergonic (spontaneous interaction) and exothermic. The QTAIM data supported the covalent character of the C–N, C–H, N–N, C–O, O–H and O–H[Formula: see text]N bonds, the intermediate nature of C[Formula: see text]N and C[Formula: see text]O bonds while the electrostatic character of C–H[Formula: see text]O, HC[Formula: see text]HC and CH[Formula: see text]N interactions. According to the [Formula: see text], [Formula: see text] and [Formula: see text] values, it was suggested that t complexes 7 and 8 (among two particles systems) as well as complex 13 (among three particles systems) can be the most promising drug delivery systems.
Collapse
Affiliation(s)
- Saeedeh Kazemi
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), P. O. Box: 15875-4413, Tehran, Iran
| | - Aliasghar Sarabi Daryani
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology (Tehran Polytechnic), P. O. Box: 15875-4413, Tehran, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), P. O. Box: 15875-4413, Tehran, Iran
| | - Zahra Shariatinia
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), P. O. Box: 15875-4413, Tehran, Iran
| |
Collapse
|
15
|
Ndunda EN, Mizaikoff B. Synthesis of stationary phases that provide group recognition for polychlorinated biphenyls by porogenic fragment template imprinting. J Sep Sci 2016; 39:939-46. [DOI: 10.1002/jssc.201500960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Elizabeth N. Ndunda
- Institut für Analytische und Bioanalytische Chemie; Universität Ulm; Ulm Germany
| | - Boris Mizaikoff
- Institut für Analytische und Bioanalytische Chemie; Universität Ulm; Ulm Germany
| |
Collapse
|
16
|
De Middeleer G, Dubruel P, De Saeger S. Characterization of MIP and MIP functionalized surfaces: Current state-of-the-art. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Atlabachew M, Torto N, Chandravanshi BS, Redi-Abshiro M, Chigome S, Mothibedi K, Combrinck S. A (−)-norephedrine-based molecularly imprinted polymer for the solid-phase extraction of psychoactive phenylpropylamino alkaloids from Khat (Catha edulisVahl. Endl.) chewing leaves. Biomed Chromatogr 2015; 30:1007-1015. [DOI: 10.1002/bmc.3643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/27/2015] [Accepted: 10/30/2015] [Indexed: 01/02/2023]
Affiliation(s)
- Minaleshewa Atlabachew
- Tshwane University of Technology; Department of Chemistry; Pretoria South Africa
- Bahir Dar University; Department of Chemistry; Bahir Dar Ethiopia
| | - Nelson Torto
- Rhodes University; Department of Chemistry; Grahamstown South Africa
| | | | - Mesfin Redi-Abshiro
- Addis Ababa University, College of Natural Sciences; Department of Chemistry; Addis Ababa Ethiopia
| | - Samuel Chigome
- Rhodes University; Department of Chemistry; Grahamstown South Africa
| | | | - Sandra Combrinck
- Tshwane University of Technology; Department of Chemistry; Pretoria South Africa
| |
Collapse
|
18
|
Azodi-Deilami S, Abdouss M, Asadi E, Hassani Najafabadi A, Sadeghi S, Farzaneh S, Asadi S. Magnetic molecularly imprinted polymer nanoparticles coupled with high performance liquid chromatography for solid-phase extraction of carvedilol in serum samples. J Appl Polym Sci 2014. [DOI: 10.1002/app.41209] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Majid Abdouss
- Department of Chemistry; Amirkabir University of Technology; Tehran Iran
| | - Ebadullah Asadi
- Department of Chemistry; Amirkabir University of Technology; Tehran Iran
| | | | - Sadegh Sadeghi
- Department of Chemistry; Tarbiat Modares University; Tehran Iran
| | - Sina Farzaneh
- Department of Polymer Engineering, South Tehran Branch; Islamic Azad University; Tehran Iran
| | - Somayeh Asadi
- Student Research Committee; Kermanshah University of Medical Sciences; Kermanshah Iran
| |
Collapse
|
19
|
Recent advances in solid-phase sorbents for sample preparation prior to chromatographic analysis. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.03.011] [Citation(s) in RCA: 280] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Lu XF, Shi YF, Lv HL, Fu YY, Ma D, Xue W. Preparation and characterization of molecularly imprinted poly(hydroxyethyl methacrylate) microspheres for sustained release of gatifloxacin. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1461-1469. [PMID: 24652594 DOI: 10.1007/s10856-014-5191-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/08/2014] [Indexed: 06/03/2023]
Abstract
Molecularly imprinted poly(hydroxyethyl methacrylate) microspheres (PHEMA MIPMs) were prepared via precipitation polymerization in this article, using gatifloxacin (GFLX), hydroxyethyl methacrylate (HEMA), and ethylene glycol dimethacrylate (EGDMA) as template molecule, functional monomer and cross-linker, respectively. The effects of reaction medium, initial total monomers, cross-linker and molecular imprinting on the polymerization were investigated systematically. The interaction between GFLX and HEMA in pre-solution was studied by UV-Visible spectrophotometer, both size and morphology of products were characterized by a scanning electron microscope. When the total initial monomer concentration was 1 vol%, EGDMA content was 70 mol%, a group of uniform PHEMA MIPMs were prepared at different GFLX/MAA molar ratios, with diameter range from 2.06 ± 0.07 to 2.82 ± 0.20 μm. The results of drug loading and in vitro release experiments demonstrated that PHEMA MIPMs could achieve a higher GFLX loading content and a more acceptable sustained release than non-imprinted ones.
Collapse
Affiliation(s)
- Xue-Fei Lu
- Institute of Biomedical Engineering, Jinan University, Guangzhou, 510632, People's Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Ganjali MR, Faridbod F, Norouzi P. Biomimetic Molecularly Imprinted Polymers as Smart Materials and Future Perspective in Health Care. Adv Healthc Mater 2014. [DOI: 10.1002/9781118774205.ch13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Magnetic molecularly imprinted polymer nanoparticles for the solid-phase extraction of paracetamol from plasma samples, followed its determination by HPLC. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1230-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Zhao K, Lin B, Cui W, Feng L, Chen T, Wei J. Preparation and adsorption of bovine serum albumin-imprinted polyacrylamide hydrogel membrane grafted on non-woven polypropylene. Talanta 2014; 121:256-62. [DOI: 10.1016/j.talanta.2014.01.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 10/25/2022]
|
24
|
Azodi-Deilami S, Abdouss M, Kordestani D, Shariatinia Z. Preparation of N,N-p-phenylene bismethacryl amide as a novel cross-link agent for synthesis and characterization of the core-shell magnetic molecularly imprinted polymer nanoparticles. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:645-656. [PMID: 24338334 DOI: 10.1007/s10856-013-5118-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/29/2013] [Indexed: 06/03/2023]
Abstract
Novel magnetic molecularly imprinted nanoparticles (MMIPs) using N,N-p-phenylene bismethacryl amide as a cross linker and super paramagnetic core-shell nanoparticle as a supporter for use in controlled release were prepared by precipitation polymerization. Novel cross-linking agents were synthesized by the reaction of methacryloyl chloride with p-phenylenediamine. Then, the Fe3O4 nanoparticles were encapsulated with a SiO2 shell and functionalized with -CH=CH2 and MMIPs were further prepared by using methacrylic acid as a functional monomer, N,N-p-phenylene bismethacryl amide as a cross-linking agent and betamethasone as template. Magnetic non-MIPs were also prepared with the same synthesis procedure as with MMIPs only without the presence of the template. The obtained MMIPs were characterized by using transmission electron microscopy, Fourier transform infrared spectrum, X-ray diffraction, energy-dispersive X-ray spectroscopy, and the vibrating sample magnetometer. The performance of the MMIPs for the controlled release of betamethasone was assessed and results indicated that the magnetic MIPs also had potential applications in drug controlled release.
Collapse
|
25
|
Synthesis and characterization of the magnetic molecularly imprinted polymer nanoparticles using N, N-bis methacryloyl ethylenediamine as a new cross-linking agent for controlled release of meloxicam. Appl Biochem Biotechnol 2014; 172:3271-86. [PMID: 24510441 DOI: 10.1007/s12010-014-0769-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 12/29/2013] [Indexed: 10/25/2022]
Abstract
The novel magnetic molecularly imprinted polymers (MMIPs) had been synthesized using N,N-bis methacryloyl ethylenediamine as a cross-linker for the controlled release of meloxicam at a pH of 1.0 (simulated gastric fluid), at a pH of 6.8 (simulated intestinal fluid) and at a pH of 7.4 (simulated biological fluids). The MMIPs were prepared via precipitation polymerization, using Fe3O4 as a magnetic component, meloxicam as a template molecule, methacrylic acid (MAA) as a functional monomer and N,N-bis methacryloyl ethylenediamine as a new cross-linker in acetonitrile/dimethyl sulfoxide porogen. Magnetic non-molecularly imprinted polymers (MNIPs) were also prepared with the same synthesis procedure as with MMIPs only without the presence of the template. The obtained MMIPs were characterized using transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR), dynamic light scattering (DLS), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX) and vibrating sample magnetometer (VSM). The performance of the MMIPs for the controlled release of meloxicam was assessed, and the results indicated that the magnetic MIPs also had potential applications in drug controlled release.
Collapse
|
26
|
Dramou P, Zuo P, He H, Pham-Huy LA, Zou W, Xiao D, Pham-Huy C. Development of novel amphiphilic magnetic molecularly imprinted polymers compatible with biological fluids for solid phase extraction and physicochemical behavior study. J Chromatogr A 2013; 1317:110-20. [DOI: 10.1016/j.chroma.2013.07.075] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/03/2013] [Accepted: 07/19/2013] [Indexed: 11/26/2022]
|
27
|
Noee S, Salimraftar N, Abdouss M, Riazi G. Imprinted microspheres and nanoparticles with diclofenac sodium: effect of solvent on the morphology and recognition properties. POLYM INT 2013. [DOI: 10.1002/pi.4471] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Saeed Noee
- Department of Science; Payame Noor University; PO Box 878 Qazvin Iran
| | - Nasim Salimraftar
- Department of Chemistry; Amirkabir University of Technology; Hafez 424, PO Box 15875-4413 Tehran Iran
| | - Majid Abdouss
- Department of Chemistry; Amirkabir University of Technology; Hafez 424, PO Box 15875-4413 Tehran Iran
| | - Gholamhossein Riazi
- Institute of Biochemistry and Biophysics (IBB); Tehran University; Tehran Iran
| |
Collapse
|
28
|
Soleimani M, Afshar MG, Shafaat A, Crespo GA. High-Selective Tramadol Sensor Based on Modified Molecularly Imprinted PolymerCarbon Paste Electrode with Multiwalled Carbon Nanotubes. ELECTROANAL 2013. [DOI: 10.1002/elan.201200601] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|