1
|
Govindaraju DT, Chen CH, Shalumon KT, Kao HH, Chen JP. Bioactive Nanostructured Scaffold-Based Approach for Tendon and Ligament Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1847. [PMID: 37368277 DOI: 10.3390/nano13121847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
An effective therapeutic strategy to treat tendon or ligament injury continues to be a clinical challenge due to the limited natural healing capacity of these tissues. Furthermore, the repaired tendons or ligaments usually possess inferior mechanical properties and impaired functions. Tissue engineering can restore the physiological functions of tissues using biomaterials, cells, and suitable biochemical signals. It has produced encouraging clinical outcomes, forming tendon or ligament-like tissues with similar compositional, structural, and functional attributes to the native tissues. This paper starts by reviewing tendon/ligament structure and healing mechanisms, followed by describing the bioactive nanostructured scaffolds used in tendon and ligament tissue engineering, with emphasis on electrospun fibrous scaffolds. The natural and synthetic polymers for scaffold preparation, as well as the biological and physical cues offered by incorporating growth factors in the scaffolds or by dynamic cyclic stretching of the scaffolds, are also covered. It is expected to present a comprehensive clinical, biological, and biomaterial insight into advanced tissue engineering-based therapeutics for tendon and ligament repair.
Collapse
Affiliation(s)
- Darshan Tagadur Govindaraju
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan City 33302, Taiwan
| | - Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Chang Gung University College of Medicine, Anle, Keelung 20401, Taiwan
- Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan City 33305, Taiwan
| | - K T Shalumon
- Department of Chemistry, Sacred Heart College, Mahatma Gandhi University, Kochi 682013, India
| | - Hao-Hsi Kao
- Division of Nephrology, Chang Gung Memorial Hospital at Keelung, Chang Gung University College of Medicine, Anle, Keelung 20401, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan City 33302, Taiwan
- Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan City 33305, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan City 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Taoyuan City 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
2
|
Ning C, Li P, Gao C, Fu L, Liao Z, Tian G, Yin H, Li M, Sui X, Yuan Z, Liu S, Guo Q. Recent advances in tendon tissue engineering strategy. Front Bioeng Biotechnol 2023; 11:1115312. [PMID: 36890920 PMCID: PMC9986339 DOI: 10.3389/fbioe.2023.1115312] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Tendon injuries often result in significant pain and disability and impose severe clinical and financial burdens on our society. Despite considerable achievements in the field of regenerative medicine in the past several decades, effective treatments remain a challenge due to the limited natural healing capacity of tendons caused by poor cell density and vascularization. The development of tissue engineering has provided more promising results in regenerating tendon-like tissues with compositional, structural and functional characteristics comparable to those of native tendon tissues. Tissue engineering is the discipline of regenerative medicine that aims to restore the physiological functions of tissues by using a combination of cells and materials, as well as suitable biochemical and physicochemical factors. In this review, following a discussion of tendon structure, injury and healing, we aim to elucidate the current strategies (biomaterials, scaffold fabrication techniques, cells, biological adjuncts, mechanical loading and bioreactors, and the role of macrophage polarization in tendon regeneration), challenges and future directions in the field of tendon tissue engineering.
Collapse
Affiliation(s)
- Chao Ning
- Chinese PLA Medical School, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Pinxue Li
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Cangjian Gao
- Chinese PLA Medical School, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Liwei Fu
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Zhiyao Liao
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Guangzhao Tian
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Han Yin
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Muzhe Li
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xiang Sui
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuyun Liu
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Quanyi Guo
- Chinese PLA Medical School, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Amini M, Venkatesan JK, Liu W, Leroux A, Nguyen TN, Madry H, Migonney V, Cucchiarini M. Advanced Gene Therapy Strategies for the Repair of ACL Injuries. Int J Mol Sci 2022; 23:ijms232214467. [PMID: 36430947 PMCID: PMC9695211 DOI: 10.3390/ijms232214467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
The anterior cruciate ligament (ACL), the principal ligament for stabilization of the knee, is highly predisposed to injury in the human population. As a result of its poor intrinsic healing capacities, surgical intervention is generally necessary to repair ACL lesions, yet the outcomes are never fully satisfactory in terms of long-lasting, complete, and safe repair. Gene therapy, based on the transfer of therapeutic genetic sequences via a gene vector, is a potent tool to durably and adeptly enhance the processes of ACL repair and has been reported for its workability in various experimental models relevant to ACL injuries in vitro, in situ, and in vivo. As critical hurdles to the effective and safe translation of gene therapy for clinical applications still remain, including physiological barriers and host immune responses, biomaterial-guided gene therapy inspired by drug delivery systems has been further developed to protect and improve the classical procedures of gene transfer in the future treatment of ACL injuries in patients, as critically presented here.
Collapse
Affiliation(s)
- Mahnaz Amini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Jagadeesh K. Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Amélie Leroux
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Tuan Ngoc Nguyen
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Véronique Migonney
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
- Correspondence: or
| |
Collapse
|
4
|
Tuwalska A, Grabska-Zielińska S, Sionkowska A. Chitosan/Silk Fibroin Materials for Biomedical Applications-A Review. Polymers (Basel) 2022; 14:polym14071343. [PMID: 35406217 PMCID: PMC9003105 DOI: 10.3390/polym14071343] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 01/21/2023] Open
Abstract
This review provides a report on recent advances in the field of chitosan (CTS) and silk fibroin (SF) biopolymer blends as new biomaterials. Chitosan and silk fibroin are widely used to obtain biomaterials. However, the materials based on the blends of these two biopolymers have not been summarized in a review paper yet. As these materials can attract both academic and industrial attention, we propose this review paper to showcase the latest achievements in this area. In this review, the latest literature regarding the preparation and properties of chitosan and silk fibroin and their blends has been reviewed.
Collapse
Affiliation(s)
- Anna Tuwalska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland;
| | - Sylwia Grabska-Zielińska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland;
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland;
- Correspondence:
| |
Collapse
|
5
|
Poddar D, Majood M, Singh A, Mohanty S, Jain P. Chitosan-coated pore wall polycaprolactone three-dimensional porous scaffolds fabricated by porogen leaching method for bone tissue engineering: a comparative study on blending technique to fabricate scaffolds. Prog Biomater 2021; 10:281-297. [PMID: 34825346 PMCID: PMC8633273 DOI: 10.1007/s40204-021-00172-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/06/2021] [Indexed: 01/21/2023] Open
Abstract
One of the significant challenges in the fabrication of scaffolds for tissue engineering lies in the direct interaction of bioactive agents with cells in the scaffolds matrix, which curbs the effectiveness of bioactive agents resulting in diminished cell recognition and attachment ability of the scaffolds. Here, three-dimensional porous scaffolds were fabricated using polycaprolactone (PCL) and chitosan, by two approaches, i.e., blending and surface coating to compare their overall effectiveness. Blended scaffolds (Chi-PCL) were compared with the scaffolds fabricated using surface coating technique, where chitosan was coated on the pore wall of PCL scaffolds (C-PCL). The C-PCL exhibited a collective improvement in bioactivities of the stem cell on the scaffold, because of the cell compatible environment provided by the presence of chitosan over the scaffolds interface. The C-PCL showed the enhanced cell attachment and proliferation behavior of the scaffolds along with two-fold increase in hemolysis compatibility compared to Chi-PCL. Furthermore, the compression strength in C-PCL increased by 24.52% and 8.62% increase in total percentage porosity compared to Chi-PCL was attained. Along with this, all the bone markers showed significant upregulation in C-PCL scaffolds, which supported the surface coating technique over the conventional methods, even though the pore size of C-PCL was compromised by 19.98% compared with Chi-PCL.
Collapse
Affiliation(s)
- Deepak Poddar
- Department of Chemistry, Netaji Subhas Institute of Technology, University of Delhi, Dwarka Sector 3, New Delhi, 110078 India
| | - Misba Majood
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Ankita Singh
- Department of Chemistry, Netaji Subhas Institute of Technology, University of Delhi, Dwarka Sector 3, New Delhi, 110078 India
| | - Sujata Mohanty
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Purnima Jain
- Department of Chemistry, Netaji Subhas Institute of Technology, University of Delhi, Dwarka Sector 3, New Delhi, 110078 India
| |
Collapse
|
6
|
|
7
|
Silk Fibroin/Spidroin Electrospun Scaffolds for Full-Thickness Skin Wound Healing in Rats. Pharmaceutics 2021; 13:pharmaceutics13101704. [PMID: 34683996 PMCID: PMC8539429 DOI: 10.3390/pharmaceutics13101704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
The main goal of our research was to fabricate electrospun scaffolds from three different silk proteins—silk fibroin from Bombyx mori silkworm cocoons and two recombinant spidroins, rS2/12 and rS2/12-RGDS—and to perform a comparative analysis of the structure, biological properties, and regenerative potential of the scaffolds in a full-thickness rat skin wound model. The surface and internal structures were investigated using scanning electron microscopy and scanning probe nanotomography. The structures of the scaffolds were similar. The average fiber diameter of the scaffolds was 315 ± 26 nm, the volume porosity was 94.5 ± 1.4%, the surface-to-volume ratio of the scaffolds was 25.4 ± 4.2 μm−1 and the fiber surface roughness was 3.8 ± 0.6 nm. The scaffolds were characterized by a non-cytotoxicity effect and a high level of cytocompatibility with cells. The scaffolds also had high regenerative potential—the healing of the skin wound was accelerated by 19 days compared with the control. A histological analysis did not reveal any fragments of the experimental constructions or areas of inflammation. Thus, novel data on the structure and biological properties of the silk fibroin/spidroin electrospun scaffolds were obtained.
Collapse
|
8
|
A Comparative Analysis of the Structure and Biological Properties of Films and Microfibrous Scaffolds Based on Silk Fibroin. Pharmaceutics 2021; 13:pharmaceutics13101561. [PMID: 34683854 PMCID: PMC8541150 DOI: 10.3390/pharmaceutics13101561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 01/01/2023] Open
Abstract
A comparative analysis of the structure and biological properties of silk fibroin constructions was performed. Three groups of constructions were obtained: films obtained by casting an aqueous solution of silk fibroin and electrospun microfibrous scaffolds based on silk fibroin, with the addition of 30% gelatin per total protein weight. The internal structures of the films and single fibers of the microfibrous scaffolds consisted of densely packed globule structures; the surface area to volume ratios and volume porosities of the microfibrous scaffolds were calculated. All constructions were non-toxic for cells and provide high levels of adhesion and proliferation. The high regenerative potential of the constructions was demonstrated in a rat full-thickness skin wound healing model. The constructions accelerated healing by an average of 15 days and can be considered to be promising constructions for various tasks of tissue engineering and regenerative medicine.
Collapse
|
9
|
Single-cell RNA-seq reveals functionally distinct biomaterial degradation-related macrophage populations. Biomaterials 2021; 277:121116. [PMID: 34478932 DOI: 10.1016/j.biomaterials.2021.121116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 12/31/2022]
Abstract
Macrophages play crucial roles in host tissue reaction to biomaterials upon implantation in vivo. However, the complexity of biomaterial degradation-related macrophage subpopulations that accumulate around the implanted biomaterials in situ is not fully understood. Here, using single cell RNA-seq, we analyze the transcriptome profiles of the various cell types around the scaffold to map the scaffold-induced reaction, in an unbiased approach. This enables mapping of all biomaterial degradation-associated cells at high resolution, revealing distinct subpopulations of tissue-resident macrophages as the major cellular sources of biomaterial degradation in situ. We also find that scaffold architecture can affect the mechanotransduction and catabolic activity of specific material degradation-related macrophage subpopulations in an Itgav-Mapk1-Stat3 dependent manner, eventually leading to differences in scaffold degradation rate in vivo. Our work dissects unanticipated aspects of the cellular and molecular basis of biomaterial degradation at the single-cell level, and provides a conceptual framework for developing functional tissue engineering scaffolds in future.
Collapse
|
10
|
Safonova LA, Bobrova MM, Efimov AE, Agapova OI, Agapov II, Gautier SV. Surface Modification of Alginate Microcarriers for Improvement of Their Biological Properties. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2021; 499:97-98. [PMID: 34462834 DOI: 10.1134/s0012496621040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 11/22/2022]
Abstract
The obtaining of microcarriers for the cell culture and delivery is an urgent task of tissue engineering and regenerative medicine. The novel method of surface modification of alginate microcarriers in the form of microspheres with a diameter of 200-300 μm was developed. The described method consists in covalent crosslinking between collagen and surface of alginate microcarriers. It was shown that the method makes it possible to completely modify the surface of the alginate microcarrier, which can be used to improve the biological properties of the microcarrier. Such microcarriers with improved biological properties can be considered as effective systems for cell delivery and culture.
Collapse
Affiliation(s)
- L A Safonova
- Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - M M Bobrova
- Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - A E Efimov
- Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - O I Agapova
- Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - I I Agapov
- Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia.
| | - S V Gautier
- Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia.,Sechenov University, Moscow, Russia
| |
Collapse
|
11
|
Rinoldi C, Kijeńska-Gawrońska E, Khademhosseini A, Tamayol A, Swieszkowski W. Fibrous Systems as Potential Solutions for Tendon and Ligament Repair, Healing, and Regeneration. Adv Healthc Mater 2021; 10:e2001305. [PMID: 33576158 PMCID: PMC8048718 DOI: 10.1002/adhm.202001305] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Tendon and ligament injuries caused by trauma and degenerative diseases are frequent and affect diverse groups of the population. Such injuries reduce musculoskeletal performance, limit joint mobility, and lower people's comfort. Currently, various treatment strategies and surgical procedures are used to heal, repair, and restore the native tissue function. However, these strategies are inadequate and, in some cases, fail to re-establish the lost functionality. Tissue engineering and regenerative medicine approaches aim to overcome these disadvantages by stimulating the regeneration and formation of neotissues. Design and fabrication of artificial scaffolds with tailored mechanical properties are crucial for restoring the mechanical function of tendons. In this review, the tendon and ligament structure, their physiology, and performance are presented. On the other hand, the requirements are focused for the development of an effective reconstruction device. The most common fiber-based scaffolding systems are also described for tendon and ligament tissue regeneration like strand fibers, woven, knitted, braided, and braid-twisted fibrous structures, as well as electrospun and wet-spun constructs, discussing critically the advantages and limitations of their utilization. Finally, the potential of multilayered systems as the most effective candidates for tendon and ligaments tissue engineering is pointed out.
Collapse
Affiliation(s)
- Chiara Rinoldi
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| | - Ewa Kijeńska-Gawrońska
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Warsaw, 02-822, Poland
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Department of Radiology, California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| | - Wojciech Swieszkowski
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| |
Collapse
|
12
|
Davoodi E, Zhianmanesh M, Montazerian H, Milani AS, Hoorfar M. Nano-porous anodic alumina: fundamentals and applications in tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:60. [PMID: 32642974 DOI: 10.1007/s10856-020-06398-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Recently, nanomaterials have been widely utilized in tissue engineering applications due to their unique properties such as the high surface to volume ratio and diversity of morphology and structure. However, most methods used for the fabrication of nanomaterials are rather complicated and costly. Among different nanomaterials, anodic aluminum oxide (AAO) is a great example of nanoporous structures that can easily be engineered by changing the electrolyte type, anodizing potential, current density, temperature, acid concentration and anodizing time. Nanoporous anodic alumina has often been used for mammalian cell culture, biofunctionalization, drug delivery, and biosensing by coating its surface with biocompatible materials. Despite its wide application in tissue engineering, thorough in vivo and in vitro studies of AAO are still required to enhance its biocompatibility and thereby pave the way for its application in tissue replacements. Recognizing this gap, this review article aims to highlight the biomedical potentials of AAO for applications in tissue replacements along with the mechanism of porous structure formation and pore characteristics in terms of fabrication parameters.
Collapse
Affiliation(s)
- Elham Davoodi
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Masoud Zhianmanesh
- Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Shabanloo Street, Tehran, 16788, Iran
| | - Hossein Montazerian
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Abbas S Milani
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
13
|
Looney AM, Leider JD, Horn AR, Bodendorfer BM. Bioaugmentation in the surgical treatment of anterior cruciate ligament injuries: A review of current concepts and emerging techniques. SAGE Open Med 2020; 8:2050312120921057. [PMID: 32435488 PMCID: PMC7222656 DOI: 10.1177/2050312120921057] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/22/2020] [Indexed: 12/27/2022] Open
Abstract
Injuries involving the anterior cruciate ligament are among the most common athletic injuries, and are the most common involving the knee. The anterior cruciate ligament is a key translational and rotational stabilizer of the knee joint during pivoting and cutting activities. Traditionally, surgical intervention in the form of anterior cruciate ligament reconstruction has been recommended for those who sustain an anterior cruciate ligament rupture and wish to remain active and return to sport. The intra-articular environment of the anterior cruciate ligament makes achieving successful healing following repair challenging. Historically, results following repair were poor, and anterior cruciate ligament reconstruction emerged as the gold-standard for treatment. While earlier literature reported high rates of return to play, the results of more recent studies with longer follow-up have suggested that anterior cruciate ligament reconstruction may not be as successful as once thought: fewer athletes are able to return to sport at their preinjury level, and many still go on to develop osteoarthritis of the knee at a relatively younger age. The four principles of tissue engineering (cells, growth factors, scaffolds, and mechanical stimuli) combined in various methods of bioaugmentation have been increasingly explored in an effort to improve outcomes following surgical treatment of anterior cruciate ligament injuries. Newer technologies have also led to the re-emergence of anterior cruciate ligament repair as an option for select patients. The different biological challenges associated with anterior cruciate ligament repair and reconstruction each present unique opportunities for targeted bioaugmentation strategies that may eventually lead to better outcomes with better return-to-play rates and fewer revisions.
Collapse
Affiliation(s)
| | - Joseph Daniel Leider
- Department of Orthopaedic Surgery, Georgetown University Medical Center, Washington, DC, USA
| | - Andrew Ryan Horn
- Department of Orthopaedic Surgery, Georgetown University Medical Center, Washington, DC, USA
| | | |
Collapse
|
14
|
Wu Y, Han Y, Wong YS, Fuh JYH. Fibre-based scaffolding techniques for tendon tissue engineering. J Tissue Eng Regen Med 2018; 12:1798-1821. [DOI: 10.1002/term.2701] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 04/22/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Yang Wu
- Engineering Science and Mechanics Department; Penn State University; University Park PA USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park PA USA
| | - Yi Han
- Department of Preventive Medicine; USC Keck School of Medicine; Los Angeles CA USA
| | - Yoke San Wong
- Department of Mechanical Engineering; National University of Singapore; Singapore Singapore
| | - Jerry Ying Hsi Fuh
- Department of Mechanical Engineering; National University of Singapore; Singapore Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou Industrial Park; Suzhou China
| |
Collapse
|
15
|
Casali DM, Yost MJ, Matthews MA. Eliminating glutaraldehyde from crosslinked collagen films using supercritical CO2. J Biomed Mater Res A 2017; 106:86-94. [DOI: 10.1002/jbm.a.36209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/07/2017] [Accepted: 08/10/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Dominic M. Casali
- Department of Chemical Engineering; University of South Carolina; Columbia South Carolina 29208
| | - Michael J. Yost
- Department of Surgery; Medical University of South Carolina; Charleston South Carolina 29425
| | - Michael A. Matthews
- Department of Chemical Engineering; University of South Carolina; Columbia South Carolina 29208
- Biomedical Engineering Program; University of South Carolina; Columbia South Carolina 29208
| |
Collapse
|
16
|
Tatu RF, Hurmuz M, Miu CA. ACL Primary Repair with Bone Marrow Stimulation and Growth Factors. A Review of Literature. JOURNAL OF INTERDISCIPLINARY MEDICINE 2017. [DOI: 10.1515/jim-2017-0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Anterior cruciate ligament (ACL) ruptures represent a common pathology, especially in young and active patients. Spontaneous repair, although reported in some studies, is altered by local conditions, thus emerges the need to perform reconstruction of the ACL. It is reported that 3,430 primary reconstructions and around 267 revisions are performed yearly in Sweden. Some reconstructions result in biological failure, which represents the inability of the graft to incorporate and remodel in order to perform its role as a knee stabilizer. Orthobiology, a new concept that includes growths factors, stem cells, and different scaffolds, could represent a solution to a better outcome of this procedure. This manuscript is a review of different therapeutic strategies used for enabling ACL regeneration, including in vitro ACL-bio-enhanced repair that is currently being developed. Substantial progress is to be expected in the area of ACL surgery.
Collapse
Affiliation(s)
- Romulus Fabian Tatu
- XVth Department , “Victor Babeș” University of Medicine and Pharmacy , Timișoara , Romania
| | - Mihai Hurmuz
- XVth Department , “Victor Babeș” University of Medicine and Pharmacy , Timișoara , Romania
| | - Cătălin Adrian Miu
- XVth Department , “Victor Babeș” University of Medicine and Pharmacy , Timișoara , Romania
| |
Collapse
|
17
|
Wu Y, Wong YS, Fuh JYH. Degradation behaviors of geometric cues and mechanical properties in a 3D scaffold for tendon repair. J Biomed Mater Res A 2017; 105:1138-1149. [DOI: 10.1002/jbm.a.35966] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/04/2016] [Accepted: 11/23/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Yang Wu
- Department of Mechanical Engineering; National University of Singapore; Singapore 117576 Singapore
| | - Yoke San Wong
- Department of Mechanical Engineering; National University of Singapore; Singapore 117576 Singapore
| | - Jerry Ying Hsi Fuh
- Department of Mechanical Engineering; National University of Singapore; Singapore 117576 Singapore
- National University of Singapore (Suzhou) Research Institute; Suzhou Industrial Park Suzhou 215123 People's Republic of China
| |
Collapse
|
18
|
Li H, Fan J, Sun L, Liu X, Cheng P, Fan H. Functional regeneration of ligament-bone interface using a triphasic silk-based graft. Biomaterials 2016; 106:180-92. [PMID: 27566867 DOI: 10.1016/j.biomaterials.2016.08.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 01/14/2023]
Abstract
The biodegradable silk-based scaffold with unique mechanical property and biocompatibility represents a favorable ligamentous graft for tissue-engineering anterior cruciate ligament (ACL) reconstruction. However, the low efficiency of ligament-bone interface restoration barriers the isotropic silk graft to common ACL therapeutics. To enhance the regeneration of the silk-mediated interface, we developed a specialized stratification approach implementing a sequential modification on isotropic silk to constitute a triphasic silk-based graft in which three regions respectively referring to ligament, cartilage and bone layers of interface were divided, followed by respective biomaterial coating. Furthermore, three types of cells including bone marrow mesenchymal stem cells (BMSCs), chondrocytes and osteoblasts were respectively seeded on the ligament, cartilage and bone region of the triphasic silk graft, and the cell/scaffold complex was rolled up as a multilayered graft mimicking the stratified structure of native ligament-bone interface. In vitro, the trilineage cells loaded on the triphasic silk scaffold revealed a high proliferative capacity as well as enhanced differentiation ability into their corresponding cell lineage. 24 weeks postoperatively after the construct was implanted to repair the ACL defect in rabbit model, the silk-based ligamentous graft exhibited the enhancement of osseointegration detected by a robust pullout force and formation of three-layered structure along with conspicuously corresponding matrix deposition via micro-CT and histological analysis. These findings potentially broaden the application of silk-based ligamentous graft for ACL reconstruction and further large animal study.
Collapse
Affiliation(s)
- Hongguo Li
- Institute of Orthopedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China; Department of Orthopaedics, 513 Hospital of PLA, Lanzhou, 732750, China
| | - Jiabing Fan
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, United States
| | - Liguo Sun
- Institute of Orthopedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xincheng Liu
- Institute of Orthopedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Pengzhen Cheng
- Institute of Orthopedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hongbin Fan
- Institute of Orthopedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
19
|
Miranda-Nieves D, Chaikof EL. Collagen and Elastin Biomaterials for the Fabrication of Engineered Living Tissues. ACS Biomater Sci Eng 2016; 3:694-711. [PMID: 33440491 DOI: 10.1021/acsbiomaterials.6b00250] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Collagen and elastin represent the two most predominant proteins in the body and are responsible for modulating important biological and mechanical properties. Thus, the focus of this review is the use of collagen and elastin as biomaterials for the fabrication of living tissues. Considering the importance of both biomaterials, we first propose the notion that many tissues in the human body represent a reinforced composite of collagen and elastin. In the rest of the review, collagen and elastin biosynthesis and biophysics, as well as molecular sources and biomaterial fabrication methodologies, including casting, fiber spinning, and bioprinting, are discussed. Finally, we summarize the current attempts to fabricate a subset of living tissues and, based on biochemical and biomechanical considerations, suggest that future tissue-engineering efforts consider direct incorporation of collagen and elastin biomaterials.
Collapse
Affiliation(s)
- David Miranda-Nieves
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Elliot L Chaikof
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
| |
Collapse
|
20
|
Teuschl A, Heimel P, Nürnberger S, van Griensven M, Redl H, Nau T. A Novel Silk Fiber-Based Scaffold for Regeneration of the Anterior Cruciate Ligament: Histological Results From a Study in Sheep. Am J Sports Med 2016; 44:1547-57. [PMID: 26957219 DOI: 10.1177/0363546516631954] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Because of ongoing problems with anterior cruciate ligament (ACL) reconstruction, new approaches in the treatment of ACL injuries, particularly strategies based on tissue engineering, have gained increasing research interest. To allow for ACL regeneration, a structured scaffold that provides a mechanical basis, has cells from different sources, and comprises mechanical as well as biological factors is needed. Biological materials, biodegradable polymers, and composite materials are being used and tested as scaffolds. The optimal scaffold for ACL regeneration should be biocompatible and biodegradable to allow tissue ingrowth but also needs to have the right mechanical properties to provide immediate mechanical stability. HYPOTHESES The study hypotheses were that (1) a novel degradable silk fiber-based scaffold with mechanical properties similar to the native ACL will be able to initiate ligament regeneration after ACL resection and reconstruction under in vivo conditions and (2) additional cell seeding of the scaffold with autologous stromal vascular fraction-containing adipose-derived stem cells will increase regenerative activity. STUDY DESIGN Controlled laboratory study. METHODS A total of 33 mountain sheep underwent ACL resection and randomization to 2 experimental groups: (1) ACL reconstruction with a scaffold alone and (2) ACL reconstruction with a cell-seeded scaffold. Histological evaluation of the intra-articular portion of the reconstructed/regenerated ligament was performed after 6 and 12 months. RESULTS After 6 months, connective tissue surrounded the silk scaffold with ingrowth in some areas. The cell-seeded scaffolds had a significant lower silk content compared with the unseeded scaffolds and demonstrated a higher content of newly formed tissue. After 12 months, the density of the silk fibers decreased significantly, and the ingrowth of newly formed tissue increased in both groups. No differences between the 2 groups regarding silk fiber degradation and regenerated tissue were detected at 12 months. CONCLUSION The novel silk fiber-based scaffold was able to stimulate ACL regeneration under in vivo conditions. Additional cell seeding led to increased tissue regeneration and decreased silk fiber content at 6 months, whereas these differences were not present at 12 months. CLINICAL RELEVANCE ACL regeneration using a silk fiber-based scaffold with and without additional cell seeding may provide a new treatment option after joint injuries.
Collapse
Affiliation(s)
- Andreas Teuschl
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Patrick Heimel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Medical University of Vienna, Vienna, Austria
| | - Silvia Nürnberger
- Austrian Cluster for Tissue Regeneration, Vienna, Austria Department of Traumatology, Medical University of Vienna, Vienna, Austria
| | - Martijn van Griensven
- Department of Experimental Trauma Surgery, Technical University of Munich, Munich, Germany
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Thomas Nau
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
21
|
Negahi Shirazi A, Chrzanowski W, Khademhosseini A, Dehghani F. Anterior Cruciate Ligament: Structure, Injuries and Regenerative Treatments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 881:161-86. [PMID: 26545750 DOI: 10.1007/978-3-319-22345-2_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Anterior cruciate ligament (ACL) is one of the most vulnerable ligaments of the knee. ACL impairment results in episodic instability, chondral and meniscal injury and early osteoarthritis. The poor self-healing capacity of ACL makes surgical treatment inevitable. Current ACL reconstructions include a substitution of torn ACL via biological grafts such as autograft, allograft. This review provides an insight of ACL structure, orientation and properties followed by comparing the performance of various constructs that have been used for ACL replacement. New approaches, undertaken to induce ACL regeneration and fabricate biomimetic scaffolds, are also discussed.
Collapse
Affiliation(s)
- Ali Negahi Shirazi
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, 2006, Australia
| | | | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, 2006, Australia. .,Department of Bioengineering, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
22
|
Li G, Li Y, Chen G, He J, Han Y, Wang X, Kaplan DL. Silk-based biomaterials in biomedical textiles and fiber-based implants. Adv Healthc Mater 2015; 4:1134-51. [PMID: 25772248 PMCID: PMC4456268 DOI: 10.1002/adhm.201500002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 02/04/2015] [Indexed: 01/25/2023]
Abstract
Biomedical textiles and fiber-based implants (BTFIs) have been in routine clinical use to facilitate healing for nearly five decades. Amongst the variety of biomaterials used, silk-based biomaterials (SBBs) have been widely used clinically viz. sutures for centuries and are being increasingly recognized as a prospective material for biomedical textiles. The ease of processing, controllable degradability, remarkable mechanical properties and biocompatibility have prompted the use of SBBs for various BTFIs for extracorporeal implants, soft tissue repair, healthcare/hygiene products and related needs. The present Review focuses on BTFIs from the perspective of types and physical and biological properties, and this discussion is followed with an examination of the advantages and limitations of BTFIs from SBBs. The Review covers progress in surface coatings, physical and chemical modifications of SBBs for BTFIs and identifies future needs and opportunities for the further development for BTFIs using SBBs.
Collapse
Affiliation(s)
- Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P.R. China
| | - Yi Li
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Guoqiang Chen
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P.R. China
| | - Jihuan He
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P.R. China
| | - Yifan Han
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P.R. China
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Room 153, Medford, MA 02155, USA
| |
Collapse
|
23
|
Dlaska CE, Andersson G, Brittberg M, Suedkamp NP, Raschke MJ, Schuetz MA. Clinical Translation in Tissue Engineering—The Surgeon’s View. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40610-015-0013-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
LI ZHENG, HE JIANKANG, LI XIANG, BIAN WEIGUO, ZHANG WENYOU, LI DICHEN, JIN ZHONGMIN, QIU YUSHENG, SNEDEKER JESSG. REGENERATION OF ANTERIOR CRUCIATE LIGAMENT WITH SILK-BASED SCAFFOLD IN PORCINE MODEL. J MECH MED BIOL 2015. [DOI: 10.1142/s0219519415500062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Silk was widely investigated as a promising scaffold material in ligament tissue engineering. Although a variety of silk scaffolds were developed for the regeneration of anterior cruciate ligament (ACL) in vitro and in vivo, more investigations should be performed in large animals to translate these findings into clinical applications. The aim of this study is to evaluate the feasibility of using silk-based ACL scaffolds to regenerate damaged ACLs in porcine model. The microstructural organization, tissue regeneration as well as ligament-bone interface of silk implants were evaluated with scanning electron microscopy, micro-computerized tomography, histological and immunohistochemical staining at three and six months postoperatively. The results demonstrated that silk fibers in the ACL scaffolds organized in parallel similar with collagen fibers in native ligaments, which facilitated and guided the penetration of newly regenerated tissue into the pores among silk fibers. Collagen production especially collagen I in silk implants significantly increased from three to six months, and was gradually close to the level of native ligaments. At implant-bone interface, indirect ligament-bone insertion was observed at three months and substantial Sharpey's fibers formed at six months. The results indicated that the silk-based ACL scaffold provides a promising tissue engineering approach for ACL regeneration.
Collapse
Affiliation(s)
- ZHENG LI
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Department of Orthopaedics Surgery, the First Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - JIANKANG HE
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - XIANG LI
- University Hospital Balgrist, Zürich, Switzerland
- Institute for Biomechanics, ETH Zürich, Switzerland
| | - WEIGUO BIAN
- Department of Orthopaedics Surgery, the First Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - WENYOU ZHANG
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - DICHEN LI
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - ZHONGMIN JIN
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - YUSHENG QIU
- Department of Orthopaedics Surgery, the First Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - JESS G. SNEDEKER
- University Hospital Balgrist, Zürich, Switzerland
- Institute for Biomechanics, ETH Zürich, Switzerland
| |
Collapse
|
25
|
Nau T, Teuschl A. Regeneration of the anterior cruciate ligament: Current strategies in tissue engineering. World J Orthop 2015; 6:127-136. [PMID: 25621217 PMCID: PMC4303781 DOI: 10.5312/wjo.v6.i1.127] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/19/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023] Open
Abstract
Recent advancements in the field of musculoskeletal tissue engineering have raised an increasing interest in the regeneration of the anterior cruciate ligament (ACL). It is the aim of this article to review the current research efforts and highlight promising tissue engineering strategies. The four main components of tissue engineering also apply in several ACL regeneration research efforts. Scaffolds from biological materials, biodegradable polymers and composite materials are used. The main cell sources are mesenchymal stem cells and ACL fibroblasts. In addition, growth factors and mechanical stimuli are applied. So far, the regenerated ACL constructs have been tested in a few animal studies and the results are encouraging. The different strategies, from in vitro ACL regeneration in bioreactor systems to bio-enhanced repair and regeneration, are under constant development. We expect considerable progress in the near future that will result in a realistic option for ACL surgery soon.
Collapse
|
26
|
Li X, He J, Bian W, Li Z, Zhang W, Li D, Snedeker JG. A novel silk-based artificial ligament and tricalcium phosphate/polyether ether ketone anchor for anterior cruciate ligament reconstruction - safety and efficacy in a porcine model. Acta Biomater 2014; 10:3696-704. [PMID: 24874651 DOI: 10.1016/j.actbio.2014.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 02/06/2023]
Abstract
Loss of ligament graft tension in early postoperative stages following anterior cruciate ligament (ACL) reconstruction can come from a variety of factors, with slow graft integration to bone being widely viewed as a chief culprit. Toward an off-the-shelf ACL graft that can rapidly integrate to host tissue, we have developed a silk-based ACL graft combined with a tricalcium phosphate (TCP)/polyether ether ketone anchor. In the present study we tested the safety and efficacy of this concept in a porcine model, with postoperative assessments at 3months (n=10) and 6months (n=4). Biomechanical tests were performed after euthanization, with ultimate tensile strengths at 3months of ∼370N and at 6months of ∼566N - comparable to autograft and allograft performance in this animal model. Comprehensive histological observations revealed that TCP substantially enhanced silk graft to bone attachment. Interdigitation of soft and hard tissues was observed, with regenerated fibrocartilage characterizing a transitional zone from silk graft to bone that was similar to native ligament bone attachments. We conclude that both initial stability and robust long-term biological attachment were consistently achieved using the tested construct, supporting a large potential for silk-TCP combinations in the repair of the torn ACL.
Collapse
|
27
|
Shen W, Chen X, Hu Y, Yin Z, Zhu T, Hu J, Chen J, Zheng Z, Zhang W, Ran J, Heng BC, Ji J, Chen W, Ouyang HW. Long-term effects of knitted silk-collagen sponge scaffold on anterior cruciate ligament reconstruction and osteoarthritis prevention. Biomaterials 2014; 35:8154-63. [PMID: 24974007 DOI: 10.1016/j.biomaterials.2014.06.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/08/2014] [Indexed: 12/21/2022]
Abstract
Anterior cruciate ligament (ACL) is difficult to heal after injury due to the dynamic fluid environment of joint. Previously, we have achieved satisfactory regeneration of subcutaneous tendon/ligament with knitted silk-collagen sponge scaffold due to its specific "internal-space-preservation" property. This study aims to investigate the long-term effects of knitted silk-collagen sponge scaffold on ACL regeneration and osteoarthritis prevention. The knitted silk-collagen sponge scaffold was fabricated and implanted into a rabbit ACL injury model. The knitted silk-collagen sponge scaffold was found to enhance migration and adhesion of spindle-shaped cells into the scaffold at 2 months post-surgery. After 6 months, ACL treated with the knitted silk-collagen sponge scaffold exhibited increased expression of ligament genes and better microstructural morphology. After 18 months, the knitted silk-collagen sponge scaffold-treated group had more mature ligament structure and direct ligament-to-bone healing. Implanted knitted silk-collagen sponge scaffolds degraded much more slowly compared to subcutaneous implantation. Furthermore, the knitted silk-collagen sponge scaffold effectively protected joint surface cartilage and preserved joint space for up to 18 months post-surgery. These findings thus demonstrated that the knitted silk-collagen sponge scaffold can regenerate functional ACL and prevent osteoarthritis in the long-term, suggesting its clinical use as a functional bioscaffold for ACL reconstruction.
Collapse
Affiliation(s)
- Weiliang Shen
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China; Zhejiang Key Laboratory for Tissue Engineering and Repair Technology, School of Medicine, Zhejiang University, Zhejiang 310009, China
| | - Xiao Chen
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Yejun Hu
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China
| | - Zi Yin
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Ting Zhu
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China
| | - Jiajie Hu
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Jialin Chen
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Zefeng Zheng
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China
| | - Wei Zhang
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Jisheng Ran
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China
| | - Boon Chin Heng
- Department of Biosystems Science & Engineering (D-BSSE), ETH-Zurich, Switzerland
| | - Junfeng Ji
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Weishan Chen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China.
| | - Hong-Wei Ouyang
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; Zhejiang Key Laboratory for Tissue Engineering and Repair Technology, School of Medicine, Zhejiang University, Zhejiang 310009, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Zhejiang 310000, China.
| |
Collapse
|
28
|
Han F, Liu S, Liu X, Pei Y, Bai S, Zhao H, Lu Q, Ma F, Kaplan DL, Zhu H. Woven silk fabric-reinforced silk nanofibrous scaffolds for regenerating load-bearing soft tissues. Acta Biomater 2014; 10:921-30. [PMID: 24090985 DOI: 10.1016/j.actbio.2013.09.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 09/03/2013] [Accepted: 09/23/2013] [Indexed: 11/19/2022]
Abstract
Although three-dimensional (3-D) porous regenerated silk scaffolds with outstanding biocompatibility, biodegradability and low inflammatory reactions have promising application in different tissue regeneration, the mechanical properties of regenerated scaffolds, especially suture retention strength, must be further improved to satisfy the requirements of clinical applications. This study presents woven silk fabric-reinforced silk nanofibrous scaffolds aimed at dermal tissue engineering. To improve the mechanical properties, silk scaffolds prepared by lyophilization were reinforced with degummed woven silk fabrics. The ultimate tensile strength, elongation at break and suture retention strength of the scaffolds were significantly improved, providing suitable mechanical properties strong enough for clinical applications. The stiffness and degradation behaviors were then further regulated by different after-treatment processes, making the scaffolds more suitable for dermal tissue regeneration. The in vitro cell culture results indicated that these scaffolds maintained their excellent biocompatibility after being reinforced with woven silk fabrics. Without sacrifice of porous structure and biocompatibility, the fabric-reinforced scaffolds with better mechanical properties could facilitate future clinical applications of silk as matrices in skin repair.
Collapse
Affiliation(s)
- F Han
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; Key Lab of Rubber-Plastics (QUST), Ministry of Education, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - S Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - X Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Y Pei
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - S Bai
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - H Zhao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Q Lu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - F Ma
- Key Lab of Rubber-Plastics (QUST), Ministry of Education, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - D L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - H Zhu
- Research Center of Materials Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
29
|
Leong NL, Petrigliano FA, McAllister DR. Current tissue engineering strategies in anterior cruciate ligament reconstruction. J Biomed Mater Res A 2013; 102:1614-24. [DOI: 10.1002/jbm.a.34820] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Natalie L. Leong
- Department of Orthopaedic Surgery; David Geffen School of Medicine at UCLA; Los Angeles California
| | - Frank A. Petrigliano
- Department of Orthopaedic Surgery; David Geffen School of Medicine at UCLA; Los Angeles California
| | - David R. McAllister
- Department of Orthopaedic Surgery; David Geffen School of Medicine at UCLA; Los Angeles California
| |
Collapse
|
30
|
Wired silk architectures provide a biomimetic ACL tissue engineering scaffold. J Mech Behav Biomed Mater 2013; 22:30-40. [DOI: 10.1016/j.jmbbm.2013.03.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 02/06/2023]
|
31
|
Cai C, Chen C, Chen G, Wang F, Guo L, Yin L, Feng D, Yang L. Type I collagen and polyvinyl alcohol blend fiber scaffold for anterior cruciate ligament reconstruction. Biomed Mater 2013; 8:035001. [PMID: 23531980 DOI: 10.1088/1748-6041/8/3/035001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The aim of this study was to perform an evaluation of a braided fiber scaffold for anterior cruciate ligament (ACL) reconstruction. The scaffold was composed of 50% type I collagen (Col-I) and 50% polyvinyl alcohol (PVA). First, the biocompatibility and in vitro weight loss of the scaffold were tested. Then, the scaffolds were used to reconstruct the ACL in China Bama mimi pigs. At 24 weeks post-operation, the mechanical properties and histology of the regenerated ACL were analyzed. The maximum load and tensile strength were 472.43± 15.2 N and 29.71± 0.96 MPa, respectively; both were ~75% of those of native ACL and ~90% of those of fiber scaffold. This indicated that the scaffold maintained a large portion of native ACL's mechanical properties, and tissue formation on the scaffold compensated most of the tensile strength loss caused by scaffold degradation. Histology and immunohistology analysis showed the morphology and major extracellular matrix components of the regenerated ligament resembled the native ACL. Thus, the Col-I/PVA blend fiber ACL scaffold showed good potential for clinical applications.
Collapse
Affiliation(s)
- Changbin Cai
- Center for Joint Surgery, Southwest Hospital, the Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|