1
|
Mattu NK, Singh K. Crystallization effect on structural, mechanical and cytotoxic properties of bioglasses synthesized using conventional and biowaste as resources. MATERIALS CHEMISTRY AND PHYSICS 2025; 331:130157. [DOI: 10.1016/j.matchemphys.2024.130157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Youness RA, Taha MA. Role of Ti 3AlC 2 MAX phase in regulating biodegradation and improving electrical properties of calcium silicate ceramic for bone repair applications. Sci Rep 2024; 14:25811. [PMID: 39468168 PMCID: PMC11519508 DOI: 10.1038/s41598-024-74859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Calcium silicate ceramic is a promising bioceramic for various biomedical applications, but its high biodegradation rate and low strength restrict its clinical utility. As a result, the study devised an innovative solution to address these issues by utilizing the titanium aluminum carbide phase, potentially for the first time in biological applications, in conjugation with hydroxyapatite. Then, using powder metallurgy technology, they added these phases to calcium silicate to create nanocomposites. After soaking in simulated body fluid for ten days, the produced nanocomposites were assessed for bioactivity and biodegradability using scanning electron microscopy, inductively coupled plasma-atomic emission spectroscopy, and weight loss assays. Their electrical and dielectric properties were also measured before and after soaking in the simulated body fluid solution. Furthermore, the tribo-mechanical properties of all sintered samples were measured. Interestingly, adding 40% hydroxyapatite nanoparticles to calcium silicate reduced the porosity from 12 to 6%. However, adding five vol% of the titanium aluminum carbide phase to the same sample increased the porosity to 8%. Importantly, these recorded percentages of porosity were comparable to those of compact bone porosity, which range from 5 to 13%. The addition of hydroxyapatite and titanium aluminum carbide phase significantly improved the rapid biodegradation of calcium silicate, albeit with a slight decrease in its bioactive properties, as evidenced by the incomplete surface coverage of the samples with the hydroxyapatite layer in the scanning electron microscopy images. The electrical properties of the nanocomposites were better with the addition of hydroxyapatite and titanium aluminum carbide phase, which helped the bone heal faster. The addition of a titanium aluminum carbide phase significantly improved the mechanical properties of the resulting nanocomposites. For example, the calculated values for compressive strength of all examined samples were 131, 115, 105, 147, and 135 MPa. Based on the results, the prepared samples can be used in orthopaedic and dental applications.
Collapse
Affiliation(s)
- Rasha A Youness
- Spectroscopy Department, National Research Centre, El Buhouth St, Dokki, Giza, 12622, Egypt.
| | - Mohammed A Taha
- Solid State Physics Department, National Research Centre, El Buhouth St, Dokki, Giza, 12622, Egypt.
- Pharos University in Alexandria, Canal Mahmoudiah Street, Smouha, Alexandria, Egypt.
| |
Collapse
|
3
|
Aguiar VCPF, Bezerra RDN, Dos Santos KW, Gonçalves IDS, Costa KJSG, Lauda DP, Campos TMB, do Prado RF, de Vasconcellos LMR, de Oliveira IR. Development and characterization of ceramic-polymeric hybrid scaffolds for bone regeneration: incorporating of bioactive glass BG-58S into PDLLA matrix. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1493-1510. [PMID: 38569077 DOI: 10.1080/09205063.2024.2334981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
In recent years, there has been a notable surge of interest in hybrid materials within the biomedical field, particularly for applications in bone repair and regeneration. Ceramic-polymeric hybrid scaffolds have shown promising outcomes. This study aimed to synthesize bioactive glass (BG-58S) for integration into a bioresorbable polymeric matrix based on PDLLA, aiming to create a bioactive scaffold featuring stable pH levels. The synthesis involved a thermally induced phase separation process followed by lyophilization to ensure an appropriate porous structure. BG-58S characterization revealed vitreous, bioactive, and mesoporous structural properties. The scaffolds were analyzed for morphology, interconnectivity, chemical groups, porosity and pore size distribution, zeta potential, pH, in vitro degradation, as well as cell viability tests, total protein content and mineralization nodule production. The PDLLA scaffold displayed a homogeneous morphology with interconnected macropores, while the hybrid scaffold exhibited a heterogeneous morphology with smaller diameter pores due to BG-58S filling. The hybrid scaffold also demonstrated a pH buffering effect on the polymer surface. In addition to structural characteristics, degradation tests indicated that by incorporating BG-58S modified the acidic degradation of the polymer, allowing for increased total protein production and the formation of mineralization nodules, indicating a positive influence on cell culture.
Collapse
Affiliation(s)
- Veronica Cristina Pêgo Fiebig Aguiar
- Characterization and Processing Laboratory of Advanced Materials, Institute for Research and Development, University of Vale do Paraíba, São Paulo, Brazil
| | | | - Kennedy Wallace Dos Santos
- Characterization and Processing Laboratory of Advanced Materials, Institute for Research and Development, University of Vale do Paraíba, São Paulo, Brazil
- Selaz - Industry and Commercialization of Biomechanical Devices, São Paulo, Brazil
| | - Isabela Dos Santos Gonçalves
- Characterization and Processing Laboratory of Advanced Materials, Institute for Research and Development, University of Vale do Paraíba, São Paulo, Brazil
| | | | - Diogo Ponte Lauda
- Selaz - Industry and Commercialization of Biomechanical Devices, São Paulo, Brazil
| | - Tiago Moreira Bastos Campos
- Laboratório de Plasma e Processos, Instituto Tecnológico de Aeronáutica. Laboratório, São José dos Campos. Praça Marechal Eduardo Gomes, CEP, Brasil
| | - Renata Falchete do Prado
- Institute of Science and Technology, Paulista State University, Francisco José Longo, São José dos Campos, SP, CEP, Brazil
| | | | - Ivone Regina de Oliveira
- Characterization and Processing Laboratory of Advanced Materials, Institute for Research and Development, University of Vale do Paraíba, São Paulo, Brazil
| |
Collapse
|
4
|
Youness RA, Taha MA. Tuning biodegradability, bone-bonding capacity, and wear resistance of zinc-30% magnesium intermetallic alloy for use in load-bearing bone applications. Sci Rep 2024; 14:2425. [PMID: 38287092 PMCID: PMC10825179 DOI: 10.1038/s41598-024-52648-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
This work aimed to improve the rapid biodegradation, poor wear resistance properties, and lack of bioactivity of metallic biomaterials to be used in orthopedic applications. In this context, zinc-magnesium (Zn-Mg) alloy with successive contents of calcium silicate (CaSiO3) and silicon nitride (Si3N4) was prepared using powder metallurgy technique. After sintering, their phase composition and microstructure were investigated using the X-ray diffraction technique and scanning electron microscopy (SEM), respectively. Furthermore, their degradation behavior and ability to form hydroxyapatite (HA) layer on the sample surface after immersion in simulated body fluid (SBF) were monitored using weight loss measurements, inductively coupled plasma-atomic emission spectroscopy, and SEM. Moreover, their tribo-mechanical properties were measured. The results obtained showed that the successive contents of CaSiO3 were responsible for improving the bioactivity behavior as indicated by a good formation of the HA layer on the samples' surface. Additionally, ceramic materials were responsible for a continuous decrease in the released ions in the SBF solution as indicated by the ICP results. The tribology properties were significantly improved even after exposure to different loads. Based on the above results, the prepared nanocomposites are promising for use in orthopedic applications.
Collapse
Affiliation(s)
- Rasha A Youness
- Spectroscopy Department, National Research Centre, El Buhouth St., Dokki, Giza, 12622, Egypt.
| | - Mohammed A Taha
- Solid State Physics Department, National Research Centre, El Buhouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
5
|
da Silva RBP, Biguetti CC, Munerato MS, Siqueira RL, Zanotto ED, Kudo GHA, Simionato GB, Bacelar ACZ, Ortiz RC, Ferreira-Junior JS, Rangel-Junior IG, Matsumoto MA. Effects of glass-ceramic produced by the sol-gel route in macrophages recruitment and polarization into bone tissue regeneration. J Biomed Mater Res B Appl Biomater 2024; 112:e35340. [PMID: 37929804 DOI: 10.1002/jbm.b.35340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/28/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023]
Abstract
Effective bone substitute biomaterials remain an important challenge in patients with large bone defects. Glass ceramics produced by different synthesis routes may result in changes in the material physicochemical properties and consequently affect the success or failure of the bone healing response. To investigate the differences in the orchestration of the inflammatory and healing process in bone grafting and repair using different glass-ceramic routes production. Thirty male Wistar rats underwent surgical unilateral parietal defects filled with silicate glass-ceramic produced by distinct routes: BS - particulate glass-ceramic produced via the fusion/solidification route, and BG - particulate glass-ceramic produced via the sol-gel route. After 7, 14, and 21 days from biomaterial grafting, parietal bones were removed to be analyzed under H&E and Massons' Trichome staining, and immunohistochemistry for CD206, iNOS, and TGF-β. Our findings demonstrated that the density of lymphocytes and plasma cells was significantly higher in the BS group at 45, and 7 days compared to the BG group, respectively. Furthermore, a significant increase of foreign body giant cells (FBGCs) in the BG group at day 7, compared to BS was found, demonstrating early efficient recruitment of FBGCs against sol-gel-derived glass-ceramic particulate (BS group). According to macrophage profiles, CD206+ macrophages enhanced at the final periods of both groups, being significantly higher at 45 days of BS compared to the BG group. On the other hand, the density of transformation growth factor beta (TGF-β) positive cells on 21 days were the highest in BG, and the lowest in the BS group, demonstrating a differential synergy among groups. Noteworthy, TGF-β+ cells were significantly higher at 21 days of BG compared to the BS group. Glass-ceramic biomaterials can act differently in the biological process of bone remodeling due to their route production, being the sol-gel route more efficient to activate M2 macrophages and specific FBGCs compared to the traditional route. Altogether, these features lead to a better understanding of the effectiveness of inflammatory response for biomaterial degradation and provide new insights for further preclinical and clinical studies involved in bone healing.
Collapse
Affiliation(s)
| | - Claudia Cristina Biguetti
- Regenerative Medicine Laboratory, School of Podiatric Medicine, The University of Texas Rio Grande Valley - UTRGV, Harlingen, Texas, USA
| | | | - Renato Luis Siqueira
- Department of Material Engineering, São Carlos Federal University, São Paulo, Brazil
| | - Edgard Dutra Zanotto
- Department of Material Engineering, São Carlos Federal University, São Paulo, Brazil
| | | | - Gustavo Baroni Simionato
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, Brazil
| | - Ana Carolina Zucon Bacelar
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, Brazil
| | - Rafael Carneiro Ortiz
- Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, Brazil
| | | | - Idelmo Garcia Rangel-Junior
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araçatuba, Brazil
| | - Mariza Akemi Matsumoto
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, Brazil
| |
Collapse
|
6
|
Kaou MH, Furkó M, Balázsi K, Balázsi C. Advanced Bioactive Glasses: The Newest Achievements and Breakthroughs in the Area. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2287. [PMID: 37630871 PMCID: PMC10459405 DOI: 10.3390/nano13162287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Bioactive glasses (BGs) are especially useful materials in soft and bone tissue engineering and even in dentistry. They can be the solution to many medical problems, and they have a huge role in the healing processes of bone fractures. Interestingly, they can also promote skin regeneration and wound healing. Bioactive glasses are able to attach to the bone tissues and form an apatite layer which further initiates the biomineralization process. The formed intermediate apatite layer makes a connection between the hard tissue and the bioactive glass material which results in faster healing without any complications or side effects. This review paper summarizes the most recent advancement in the preparation of diverse types of BGs, such as silicate-, borate- and phosphate-based bioactive glasses. We discuss their physical, chemical, and mechanical properties detailing how they affect their biological performances. In order to get a deeper insight into the state-of-the-art in this area, we also consider their medical applications, such as bone regeneration, wound care, and dental/bone implant coatings.
Collapse
Affiliation(s)
- Maroua H. Kaou
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
- Doctoral School of Materials Science and Technologies, Óbuda University, Bécsi Str. 96/B, 1030 Budapest, Hungary
| | - Mónika Furkó
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
| | - Katalin Balázsi
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
| | - Csaba Balázsi
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. Str. 29-33, 1121 Budapest, Hungary; (M.H.K.); (M.F.); (K.B.)
| |
Collapse
|
7
|
Hoa BT, Phuc LH, Hien NQ, Vinh LK, Tien NA, Hiep ĐT, Vi VT, Thanh ĐH, Ly ĐN, Long NV, Hieu TT, Linh LV, Minh NT, Vuong BX. Synthesis of Silver-Containing Bioactive Glass Material by an Improved Sol–Gel Method. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s003602362260160x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Anghel EM, Petrescu S, Mocioiu OC, Cusu JP, Atkinson I. Influence of Ceria Addition on Crystallization Behavior and Properties of Mesoporous Bioactive Glasses in the SiO2–CaO–P2O5–CeO2System. Gels 2022; 8:gels8060344. [PMID: 35735688 PMCID: PMC9222617 DOI: 10.3390/gels8060344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Knowledge of the crystallization stability of bioactive glasses (BGs) is a key factor in developing porous scaffolds for hard tissue engineering. Thus, the crystallization behavior of three mesoporous bioactive glasses (MBGs) in the 70SiO2-(26-x)CaO-4P2O5-xCeO2 system (x stands for 0, 1 and 5 mol. %, namely MBG(0/1/5)Ce), prepared using the sol–gel method coupled with the evaporation-induced self-assembly method (EISA), was studied. A thermal analysis of the multiple-component crystallization exotherms from the DSC scans was performed using the Kissinger method. The main crystalline phases of Ca5(PO4)2.823(CO3)0.22O, CaSiO3 and CeO2 were confirmed to be generated by the devitrification of the MBG with 5% CeO2, MBG5Ce. Increasing the ceria content triggered a reduction in the first crystallization temperature while ceria segregation took place. The amount of segregated ceria of the annealed MBG5Ce decreased as the annealing temperature increased. The optimum processing temperature range to avoid the crystallization of the MBG(0/1/5)Ce powders was established.
Collapse
|
9
|
Alturki AM, Abulyazied DE, Taha MA, Abomostafa HM, Youness RA. A Study to Evaluate the Bioactivity Behavior and Electrical Properties of Hydroxyapatite/Ag2O-Borosilicate Glass Nanocomposites for Biomedical Applications. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02100-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
de Laia AGS, Valverde TM, Barrioni BR, Cunha PDS, de Goes AM, de Miranda MC, Gomes DA, Queiroz-Junior CM, de Sá MA, de Magalhães Pereira M. Cobalt-containing bioactive glass mimics vascular endothelial growth factor A and hypoxia inducible factor 1 function. J Biomed Mater Res A 2021; 109:1051-1064. [PMID: 32876363 DOI: 10.1002/jbm.a.37095] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
Bioactive glasses (BGs) have shown great potential for tissue regeneration and their composition flexibility allows the incorporation of different ions with physiological activities and therapeutic properties in the glass network. Among the many ions that could be incorporated, cobalt (Co) is a significant one, as it mimics hypoxia, triggering the formation of new blood vessels by the vascular endothelial growth factor A (VEGFA), due to the stabilizing effect on the hypoxia inducible factor 1 subunit alpha (HIF1A), an activator of angiogenesis-related genes, and is therefore of great interest for tissue engineering applications. However, despite its promising properties, the effects of glasses incorporated with Co on angiogenesis, through human umbilical cord vein endothelial cells (HUVECs) studies, need to be further investigated. Therefore, this work aimed to evaluate the biocompatibility and angiogenic potential of a new sol-gel BG, derived from the SiO2 -CaO-P2 O5 -CoO system. The structural evaluation showed the predominance of an amorphous glass structure, and the homogeneous presence of cobalt in the samples was confirmed. in vitro experiments showed that Co-containing glasses did not affect the viability of HUVECs, stimulated the formation of tubes and the gene expression of HIF1A and VEGFA. in vivo experiments showed that Co-containing glasses stimulated VEGFA and HIF1A expression in blood vessels and cell nuclei, respectively, in the deep dermis layer of the dorsal region of rats, featuring considerable local stimulation of the angiogenesis process due to Co-release. Co-containing glasses showed therapeutic effect, and Co incorporation is a promising strategy for obtaining materials with superior angiogenesis properties for tissue engineering applications.
Collapse
Affiliation(s)
- Andréia Grossi Santos de Laia
- Department of Metallurgical and Materials Engineering, Engineering School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thalita Marcolan Valverde
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Breno Rocha Barrioni
- Department of Metallurgical and Materials Engineering, Engineering School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pricila da Silva Cunha
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alfredo Miranda de Goes
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo Coutinho de Miranda
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Dawidson Assis Gomes
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcos Augusto de Sá
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marivalda de Magalhães Pereira
- Department of Metallurgical and Materials Engineering, Engineering School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
11
|
Danewalia S, Singh K. Bioactive glasses and glass-ceramics for hyperthermia treatment of cancer: state-of-art, challenges, and future perspectives. Mater Today Bio 2021; 10:100100. [PMID: 33778466 PMCID: PMC7985406 DOI: 10.1016/j.mtbio.2021.100100] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 01/04/2023] Open
Abstract
Bioactive glasses and glass-ceramics are well-proven potential biomaterials for bone-tissue engineering applications because of their compositional flexibility. Many research groups have been focused to explore the utility of bioactive glass-ceramics beyond bone engineering to hyperthermia treatment of cancer. Hyperthermia refers to raising the temperature of tumor close to 44°C at which malignant cells perish with negligible harm to normal cells. Hyperthermia can be employed by many means such as by ultrasonic waves, electromagnetic waves, infrared radiations, alternating magnetic fields, etc. Magnetic bioactive glass-ceramics are advantageous over other potential candidates for thermoseeds such as nanofluids, superparamagnetic nanoparticles because they can bond not only to the natural bone but also with soft tissues in few cases, which helps regenerating the affected part due to its bioactive nature. Strict restrictions on clinical settings ( H × f < 5 × 10 9 ) force the research activities to be more focused on material characteristics to raise the implant temperature to required ranges. Lots of efforts have been made in past years to tackle these challenges and design best-suited glass-ceramics for hyperthermia treatment. This review aims to provide essential information on the concept of hyperthermia treatment of cancer and recent developments in the field of bioactive glass-ceramics for cancer treatment. The advantages and disadvantages of magnetic glass-ceramics over other potential thermoseed materials are highlighted. In this field, the major challenges are to develop magnetic glasses, which have fast and bulk crystallization with optimized magnetic phases with lower Curie and Neel temperatures.
Collapse
Affiliation(s)
- S.S. Danewalia
- Division of Research and Development, Lovely Professional University, Phagwara, 144411, India
| | - K. Singh
- School of Physics & Materials Science, Thapar Institute of Engineering and Technology, Patiala, 147004, India
| |
Collapse
|
12
|
S C, S B. Insight into the impingement of different sodium precursors on structural, biocompatible, and hemostatic properties of bioactive materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111959. [PMID: 33812587 DOI: 10.1016/j.msec.2021.111959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 11/27/2022]
Abstract
Bioactive materials play a significant role in biomedical engineering for plethora of applications. To date, there is no evident report on the role of sodium precursors in structural changes towards their acceleration in biocompatibility. This study highlights the impact and role of two different sodium precursors (sodium nitrate and sodium hydroxide) on the structural changes and their potential formulations in biomineralization and biocompatibility. Structural characteristics enunciate the significant crystallization of NaCaPO4, Na2Ca2Si3O9, and Na1.8Ca1.1Si6O14 phases with pertinent Q2 stretching's while using sodium nitrate than sodium hydroxide. XPS spectra authenticate the elevated sodium content while using sodium nitrate as sodium precursor. One-dimensional structures with well faceted morphology and superior alkaline environment preferentially support the biomineralization and bactericidal properties in sodium nitrate-bioglass, was confirmed through structural, morphological, elemental, and antibacterial investigations. Whereas, higher blood and cell-line compatibility with elevated protein adsorption rate is perceived for the bioglass prepared using sodium hydroxide source, and subsequently, higher hemostatic properties are considerably observed with sodium nitrate-bioglass. Higher mechanical stability (ultrasonic measurements) and controlled degradation rate are the stratagems of sodium nitrate to boost the basic criteria of bioactive materials. Hence, it is proposed that sodium nitrate is a highly preferable source to develop bioactive and stable bioglass formulations.
Collapse
Affiliation(s)
- Chitra S
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai 600025, India
| | - Balakumar S
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai 600025, India.
| |
Collapse
|
13
|
Bueno OMVM, Herrera CL, Bertran CA, San-Miguel MA, Lopes JH. An experimental and theoretical approach on stability towards hydrolysis of triethyl phosphate and its effects on the microstructure of sol-gel-derived bioactive silicate glass. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111759. [PMID: 33545900 DOI: 10.1016/j.msec.2020.111759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 11/19/2022]
Abstract
The sol-gel method is versatile and one of the well-established synthetic approaches for preparing bioactive glass with improved microstructure. In a successful approach, alkoxide precursors undergo rapid hydrolysis, followed by immediate condensation leading to the formation of three-dimensional gels. On the other hand, a slow kinetics rate for hydrolysis of one or more alkoxide precursors generates a mismatch in the progression of the consecutive reactions of the sol-gel process, which makes it difficult to form homogeneous multicomponent glass products. The amorphous phase separation (APS) into the gel is thermodynamically unstable and tends to transform into a crystalline form during the calcination step of xerogel. In the present study, we report a combined experimental and theoretical method to investigate the stability towards hydrolysis of triethyl phosphate (TEP) and its effects on the mechanism leading to phase separation in 58S bioactive glass obtained via sol-gel route. A multitechnical approach for the experimental characterization combined with calculations of functional density theory (DFT) suggest that TEP should not undergo hydrolysis by water under acidic conditions during the formation of the sol or even in the gel phase. The activation energy barrier (ΔG‡) showed a height of about 20 kcal·mol-1 for the three stages of hydrolysis and the reaction rates calculated for each stage of TEP hydrolysis were kFHR = 7.0 × 10-3s-1, kSHR = 6.8 × 10-3s-1 and kTHR = 3.5 × 10-3s-1. These results show that TEP remains in the non-hydrolyzed form segregated within the xerogel matrix until its thermal decomposition in the calcination step, when P species preferentially associate with calcium ions (labile species) and other phosphate groups present nearby, forming crystalline domains of calcium pyrophosphates permeated by the silica-rich glass matrix. Together, our data expand the knowledge about the synthesis by the sol-gel method of bioactive glass and establishes a mechanism that explains the role played by the precursor source of phosphorus (TEP) in the phase separation, an event commonly observed for these biomaterials.
Collapse
Affiliation(s)
- Otto Mao Vargas Machuca Bueno
- Department of Physical Chemistry, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil.
| | - Christian Leonardo Herrera
- Department of Physical Chemistry, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Celso Aparecido Bertran
- Department of Physical Chemistry, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Miguel Angel San-Miguel
- Department of Physical Chemistry, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - João Henrique Lopes
- Department of Chemistry, Division of Fundamental Sciences (IEF), Aeronautics Institute of Technology - ITA, 12228-900 Sao Jose dos Campos, SP, Brazil.
| |
Collapse
|
14
|
Youness RA, Taha MA, Ibrahim MA. Effect of sintering temperatures on the in vitro bioactivity, molecular structure and mechanical properties of titanium/carbonated hydroxyapatite nanobiocomposites. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.08.070] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Effect of alkali earth oxides on hydroxy-carbonated apatite nano layer formation for SiO2–BaO–CaO–Na2O–P2O5 glass system. APPLIED NANOSCIENCE 2017. [DOI: 10.1007/s13204-017-0616-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Ren H, Tian Y, Li A, Martin RA, Qiu D. The influence of phosphorus precursor on the structure and properties of SiO
2
–P
2
O
5
–CaO bioactive glass. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa7daa] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Kiran P, Ramakrishna V, Trebbin M, Udayashankar N, Shashikala H. Effective role of CaO/P 2O 5 ratio on SiO 2-CaO-P 2O 5 glass system. J Adv Res 2017; 8:279-288. [PMID: 28337345 PMCID: PMC5347516 DOI: 10.1016/j.jare.2017.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 11/25/2022] Open
Abstract
In the present work, the effect of the CaO/P2O5 ratio on the composition of sol-gel synthesized 58SiO2-(19 - x)P2O5-(23 + x)CaO (x = 0, 5, 10 and 15 mol%) glass samples was studied. Further, the effect of NBO/BO ratio on hydroxy carbonated apatite layer (HCA) forming ability based on dissolution behavior in simulated body fluid (SBF) solution was also investigated. CaO/P2O5 ratios of synthesized glass samples were 1.2, 2, 3.6, and 9.5, respectively. NBO/BO ratios were obtained using Raman spectroscopic analysis as 0.58, 1.20, 1.46, and 1.78, respectively. All samples were soaked in the SBF solution for 7 days. The calculated weight losses of these samples were 58%, 64%, 83%, and 89% for corresponding NBO/BO ratios. The increase in CaO/P2O5 ratio increases the NBO/BO ratios. However, the increase in NBO/BO ratio increases HCA forming ability of SBF treated samples. The HCA crystalline layer formation was confirmed through X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Raman and Infrared spectroscopic analysis. Higher CaO/P2O5 ratio favors the increase in HCA formation for SBF treated calcium phospho silicate glasses.
Collapse
Affiliation(s)
- P. Kiran
- Department of Physics, Crystal Growth Laboratory, National Institute of Technology Karnataka, Surathkal 575025, India
| | - V. Ramakrishna
- Hamburg Center for Ultrafast Imaging (CUI), University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - M. Trebbin
- Hamburg Center for Ultrafast Imaging (CUI), University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - N.K. Udayashankar
- Department of Physics, Crystal Growth Laboratory, National Institute of Technology Karnataka, Surathkal 575025, India
| | - H.D. Shashikala
- Department of Physics, Crystal Growth Laboratory, National Institute of Technology Karnataka, Surathkal 575025, India
| |
Collapse
|
18
|
The effective role of alkali earth/alkali ratio on formation HCA nano particles for soda lime phospho silicate glass system. OPENNANO 2017. [DOI: 10.1016/j.onano.2017.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Catauro M, Papale F, Sapio L, Naviglio S. Biological influence of Ca/P ratio on calcium phosphate coatings by sol-gel processing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:188-93. [PMID: 27157742 DOI: 10.1016/j.msec.2016.03.110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/11/2016] [Accepted: 03/23/2016] [Indexed: 12/13/2022]
|
20
|
Bioactivity and cell proliferation in radiopaque gel-derived CaO–P 2 O 5 –SiO 2 –ZrO 2 glass and glass–ceramic powders. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 55:436-47. [DOI: 10.1016/j.msec.2015.05.065] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/16/2015] [Accepted: 05/25/2015] [Indexed: 01/31/2023]
|
21
|
Abo-Naf SM, Khalil ESM, El-Sayed ESM, Zayed HA, Youness RA. In vitro bioactivity evaluation, mechanical properties and microstructural characterization of Na₂O-CaO-B₂O₃-P₂O₅ glasses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 144:88-98. [PMID: 25748986 DOI: 10.1016/j.saa.2015.02.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/28/2014] [Accepted: 02/18/2015] [Indexed: 06/04/2023]
Abstract
Na2O-CaO-B2O3-P2O5 glasses have been prepared by the melt-quenching method. B2O3 content was systematically increased from 5 to 30 mol%, at the expense of P2O5, in the chemical composition of these glasses. Density, Vickers microhardness and fracture toughness of the prepared glasses were measured. In vitro bioactivity of the glasses was assessed by soaking in the simulated body fluid (SBF) at 37±0.5°C for 3, 7, 14 and 30 days. The glasses were tested in the form of glass grains as well as bulk slabs. The structure and composition of the solid reaction products were analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The kinetics of degradation of the glass particles were monitored by measuring the weight loss of the particles and the ionic concentration of Ca, P and B in the SBF solution using inductive coupled plasma-atomic emission spectroscopy (ICP-AES). The obtained results revealed the formation of a bioactive hydroxyapatite (HA) layer, composed of nano-crystallites, on the surface of glass grains after the in vitro assays. The results have been used to understand the formation of HA as a function of glass composition and soaking time in the SBF. It can be pointed out that increasing B2O3 content in glass composition enhances the bioactivity of glasses. The nanometric particle size of the formed HA and in vitro bioactivity of the studied glasses make them possible candidates for tissue engineering application.
Collapse
Affiliation(s)
- Sherief M Abo-Naf
- Glass Research Department, National Research Centre (NRC), El-behoos Str., Dokki, 12622 Cairo, Egypt.
| | - El-Sayed M Khalil
- Spectroscopy Department, National Research Centre (NRC), El-behoos Str., Dokki, 12622 Cairo, Egypt
| | | | - Hamdia A Zayed
- Physics Department, Faculty of Girls, Ain-Shams University, Cairo, Egypt
| | - Rasha A Youness
- Spectroscopy Department, National Research Centre (NRC), El-behoos Str., Dokki, 12622 Cairo, Egypt
| |
Collapse
|
22
|
Bejarano J, Caviedes P, Palza H. Sol-gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics. ACTA ACUST UNITED AC 2015; 10:025001. [PMID: 25760730 DOI: 10.1088/1748-6041/10/2/025001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Metal doping of bioactive glasses based on ternary 60SiO2-36CaO-4P2O5 (58S) and quaternary 60SiO2-25CaO-11Na2O-4P2O5 (NaBG) mol% compositions synthesized using a sol-gel process was analyzed. In particular, the effect of incorporating 1, 5 and 10 mol% of CuO and ZnO (replacing equivalent quantities of CaO) on the texture, in vitro bioactivity, and cytocompatibility of these materials was evaluated. Our results showed that the addition of metal ions can modulate the textural property of the matrix and its crystal structure. Regarding the bioactivity, after soaking in simulated body fluid (SBF) undoped 58S and NaBG glasses developed an apatite surface layer that was reduced in the doped glasses depending on the type of metal and its concentration with Zn displaying the largest inhibitions. Both the ion release from samples and the ion adsorption from the medium depended on the type of matrix with 58S glasses showing the highest values. Pure NaBG glass was more cytocompatible to osteoblast-like cells (SaOS-2) than pure 58S glass as tested by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The incorporation of metal ions decreased the cytocompatibility of the glasses depending on their concentration and on the glass matrix doped. Our results show that by changing the glass composition and by adding Cu or Zn, bioactive materials with different textures, bioactivity and cytocompatibility can be synthesized.
Collapse
Affiliation(s)
- Julian Bejarano
- Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| | | | | |
Collapse
|