1
|
Ham DW, Park SM, Kim YB, Chang DG, Yang JJ, Kwon BT, Song KS. Feasibility of the Non-Window-Type 3D-Printed Porous Titanium Cage in Posterior Lumbar Interbody Fusion: A Randomized Controlled Multicenter Trial. J Bone Joint Surg Am 2024:00004623-990000000-01194. [PMID: 39259778 DOI: 10.2106/jbjs.23.01245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
BACKGROUND Three-dimensionally printed titanium (3D-Ti) cages can be divided into 2 types: window-type cages, which have a void for bone graft, and non-window-type cages without a void. Few studies have investigated the necessity of a void for bone graft in fusion surgery. Therefore, the present study assessed the clinical and radiographic outcomes of window and non-window-type 3D-Ti cages in single-level posterior lumbar interbody fusion. METHODS A total of 70 patients were randomly assigned to receive either a window or non-window cage; 61 patients (87%) completed final follow-up (32 from the window cage group, 29 from the non-window cage group). Radiographic outcomes, including fusion rates, subsidence, and intra-cage osseointegration patterns, were assessed. Intra-cage osseointegration was measured using the intra-cage bridging bone score for the window cage group and the surface osseointegration ratio score for the non-window cage group. Additionally, we looked for the presence of the trabecular bone remodeling (TBR) sign on computed tomography (CT) images. RESULTS Of the 61 patients, 58 achieved interbody fusion, resulting in a 95.1% fusion rate. The fusion rate in the non-window cage group was comparable to, and not significantly different from, that in the window cage group (96.6% and 93.8%, p > 0.99). The subsidence rate showed no significant difference between the window and non-window cage groups (15.6% and 3.4%, respectively; p = 0.262). The intra-cage osseointegration scores showed a significant difference between the groups (p = 0.007), with the non-window cage group having a higher proportion of cases with a score of 4 compared with the window cage group. The TBR sign was observed in 87.9% of patients who achieved interbody fusion, with a higher rate in the non-window cage group across the entire cohort although the difference was not significant (89.7% versus 78.1%, p = 0.385). CONCLUSIONS Non-window-type 3D-Ti cages showed equivalent clinical outcomes compared with window-type cages and comparable interbody fusion rates. These results suggest that the potential advantages of 3D-Ti cages could be optimized in the absence of a void for bone graft by providing a larger contact surface for osseointegration. LEVEL OF EVIDENCE Therapeutic Level II. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Dae-Woong Ham
- Department of Orthopedic Surgery, Chung-Ang University Hospital, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Sang-Min Park
- Spine Center and Department of Orthopaedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnamsi, Republic of Korea
| | - Youngbae B Kim
- Department of Orthopedic Surgery, VHS Medical Center, Seoul, Republic of Korea
| | - Dong-Gune Chang
- Spine Center and Department of Orthopedic Surgery, Inje University Sanggye Paik Hospital, College of Medicine, Inje University, Seoul, Republic of Korea
| | - Jae Jun Yang
- Department of Orthopedic Surgery, Dongguk University Ilsan Hospital, Goyangsi, Republic of Korea
| | - Byung-Taek Kwon
- Department of Orthopedic Surgery, Chung-Ang University Gwang Myeong Hospital, Gwangmyeongsi, Republic of Korea
| | - Kwang-Sup Song
- Department of Orthopedic Surgery, Chung-Ang University Hospital, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Kumar R, Agrawal A. Micro-hydroxyapatite reinforced Ti-based composite with tailored characteristics to minimize stress-shielding impact in bio-implant applications. J Mech Behav Biomed Mater 2023; 142:105852. [PMID: 37068431 DOI: 10.1016/j.jmbbm.2023.105852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023]
Abstract
Biomaterials having higher strength and increased bioactivity are widely researched topics in the area of scaffold and implant fabrication. Metal-based biomaterials are favorably suitable for load-bearing implants due to their outstanding mechanical and structural properties. The issue with pure metallic material used for bio-implant is the mismatch between the mechanical properties of the human body parts and the implant. The mismatch in modulus and hardness values causes damage to muscles and other body parts due to the phenomena of 'stress-shielding'. As per the rule of mixture, combining a biocompatible ceramic with metals will not only lower the overall mechanical strength, but will also enhance the composite's bioactivity. In the present work, a Metal-Ceramic composite of Ti and μ-HAp is processed through high-energy mechanical alloying. The μ-HAp powders (in a weight fraction of 1%, 2%, and 3%) were alloyed with Pure Ti powder sintered using microwave hybrid heating (MHH). The homogeneously alloyed materials were inspected for chemical and elemental characteristics using XRD, SEM-EDX, and FTIR analyses. Nano-mechanical and micro-hardness properties were inspected for the fabricated Ti- μ-HAp composites and it shows a decreasing trend. Elastic modulus declined from 130.8 GPa to 50.11 GPa for 3 wt% μ-HAp compared to pure-Ti sample. The mechanical behaviour of developed composites confirms that it can minimize the stress-shielding impact due to comparatively lesser strength and hardness than pure metallic samples.
Collapse
Affiliation(s)
- Rakesh Kumar
- Advanced Manufacturing Technology Lab, Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India.
| | - Anupam Agrawal
- Advanced Manufacturing Technology Lab, Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India.
| |
Collapse
|
3
|
Levy HA, Karamian BA, Yalla GR, Canseco JA, Vaccaro AR, Kepler CK. Impact of surface roughness and bulk porosity on spinal interbody implants. J Biomed Mater Res B Appl Biomater 2023; 111:478-489. [PMID: 36075112 DOI: 10.1002/jbm.b.35161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 07/19/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022]
Abstract
Spinal fusion surgeries are performed to treat a multitude of cervical and lumbar diseases that lead to pain and disability. Spinal interbody fusion involves inserting a cage between the spinal vertebrae, and is often utilized for indirect neurologic decompression, correction of spinal alignment, anterior column stability, and increased fusion rate. The long-term success of interbody fusion relies on complete osseointegration between the implant surface and vertebral end plates. Titanium (Ti)-based alloys and polyetheretherketone (PEEK) interbody cages represent the most commonly utilized materials and provide sufficient mechanics and biocompatibility to assist in fusion. However, modification to the surface and bulk characteristics of these materials has been shown to maximize osseointegration and long-term stability. Specifically, the introduction of intrinsic porosity and surface roughness has been shown to affect spinal interbody mechanics, vascularization, osteoblast attachment, and ingrowth potential. This narrative review synthesizes the mechanical, in vitro, in vivo, and clinical effects on fusion efficacy associated with introduction of porosity in Ti (neat and alloy) and PEEK intervertebral implants.
Collapse
Affiliation(s)
- Hannah A Levy
- Department of Orthopaedic Surgery, Rothman Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Brian A Karamian
- Department of Orthopaedic Surgery, Rothman Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, USA
| | - Goutham R Yalla
- Department of Orthopaedic Surgery, Rothman Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jose A Canseco
- Department of Orthopaedic Surgery, Rothman Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Alexander R Vaccaro
- Department of Orthopaedic Surgery, Rothman Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christopher K Kepler
- Department of Orthopaedic Surgery, Rothman Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Wu Y, Yang L, Chen L, Geng M, Xing Z, Chen S, Zeng Y, Zhou J, Sun K, Yang X, Shen B. Core-Shell Structured Porous Calcium Phosphate Bioceramic Spheres for Enhanced Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47491-47506. [PMID: 36251859 DOI: 10.1021/acsami.2c15614] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Adequate new bone regeneration in bone defects has always been a challenge as it requires excellent and efficient osteogenesis. Calcium phosphate (CaP) bioceramics, including hydroxyapatite (HA) and biphasic calcium phosphates (BCPs), have been extensively used in clinical bone defect filling due to their good osteoinductivity and biodegradability. Here, for the first time, we designed and fabricated two porous CaP bioceramic granules with core-shell structures, named in accordance with their composition as BCP@HA and HA@BCP (core@shell). The spherical shape and the porous structure of these granules were achieved by the calcium alginate gel molding technology combined with a H2O2 foaming process. These granules could be stacked to build a porous structure with a porosity of 65-70% and a micropore size distribution between 150 and 450 μm, which is reported to be good for new bone ingrowth. In vitro experiments confirmed that HA@BCP bioceramic granules could promote the proliferation and osteogenic ability when cocultured with bone marrow mesenchymal stem cells, while inhibiting the differentiation of RAW264.7 cells into osteoclasts. In vivo, 12 weeks of implantation in a critical-sized femoral bone defect animal model showed a higher bone volume fraction and bone mineral density in the HA@BCP group than in the BCP@HA or pure HA or BCP groups. From histological analysis, we discovered that the new bone tissue in the HA@BCP group was invading from the surface to the inside of the granules, and most of the bioceramic phase was replaced by the new bone. A higher degree of vascularization at the defect region repaired by HA@BCP was revealed by 3D microvascular perfusion angiography in terms of a higher vessel volume fraction. The current study demonstrated that the core-shell structured HA@BCP bioceramic granules could be a promising candidate for bone defect repair.
Collapse
Affiliation(s)
- Yuangang Wu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Long Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Li Chen
- Analytical & Testing Center, Sichuan University, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064, China
| | - Mengyu Geng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Zhengyi Xing
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Siyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yi Zeng
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinhan Zhou
- Core Facilities of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kaibo Sun
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Bin Shen
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Design procedure for triply periodic minimal surface based biomimetic scaffolds. J Mech Behav Biomed Mater 2021; 126:104871. [PMID: 34654652 DOI: 10.1016/j.jmbbm.2021.104871] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/16/2021] [Accepted: 09/26/2021] [Indexed: 11/22/2022]
Abstract
Cellular additively manufactured metallic structures for load-bearing scaffolds in the context of bone tissue engineering (BTE) have emerged as promising candidates. Due to many advantages in terms of morphology, stiffness, strength and permeability compared to conventional truss structures, lattices based on triply periodic minimal surfaces (TPMS) have recently attracted increasing interest for this purpose. In addition, the finite element method (FEM) has been proven to be suitable for accurately predicting the deformation behavior as well as the mechanical properties of geometric structures after appropriate parameter validation based on experimental data. Numerous publications have examined many individual aspects, but conceptual design procedures that consider at least the essential requirements for cortical and trabecular bone simultaneously are still rare. Therefore, this paper presents a numerical approach to first determine the actual admissible design spaces for a choice of TPMS based lattices with respect to key parameters and then weight them with respect to further benefit parameters. The admissible design spaces are limited by pore size, strut size and volume fraction, and the subsequent weighting is based on Young's modulus, cell size and surface area. Additively manufactured beta-Ti-42Nb with a strain stiffness of 60.5GPa is assumed as material. In total, the procedure considers twelve lattice types, consisting of six different TPMS, each as network solid and as sheet solid. The method is used for concrete prediction of suitable TPMS based lattices for cortical bone and trabecular bone. For cortical bone a lattice based on the Schwarz Primitive sheet solid with 67.572μm pore size, 0.5445 volume fraction and 18.758GPa Young's modulus shows to be the best choice. For trabecular bone a lattice based on the Schoen Gyroid network solid with 401.39μm pore size, 0.3 volume fraction and 4.6835GPa Young's modulus is the identified lattice. Finally, a model for a long bone scaffold is generated from these two lattices using functional grading methods in terms of volume fraction, cell size and TPMS type. In particular, the presented procedure allows an efficient estimation for a likely suitable biometric TPMS-based scaffolds. In addition to medical applications, however, the method can also be transferred to numerous other applications in mechanical, civil and electrical engineering.
Collapse
|
6
|
Tantalum as a Novel Biomaterial for Bone Implant: A Literature Review. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2021. [DOI: 10.4028/www.scientific.net/jbbbe.52.55] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Titanium (Ti) has been used in metallic implants since the 1950s due to various biocompatible and mechanical properties. However, due to its high Young’s modulus, it has been modified over the years in order to produce a better biomaterial. Tantalum (Ta) has recently emerged as a new potential biomaterial for bone and dental implants. It has been reported to have better corrosion resistance and osteo-regenerative properties as compared to Ti alloys which are most widely used in the bone-implant industry. Currently, Tantalum cannot be widely used yet due to its limited availability, high melting point, and high-cost production. This review paper discusses various manufacturing methods of Tantalum alloys, including conventional and additive manufacturing and also discusses their drawbacks and shortcomings. Recent research includes surface modification of various metals using Tantalum coatings in order to combine bulk material properties of different materials and the porous surface properties of Tantalum. Design modification also plays a crucial role in controlling bulk properties. The porous design does provide a lower density, wider surface area, and more immense specific strength. In addition to improved mechanical properties, a porous design could also escalate the material's biological and permeability properties. With current advancement in additive manufacturing technology, difficulties in processing Tantalum could be resolved. Therefore, Tantalum should be considered as a serious candidate material for future bone and dental implants.
Collapse
|
7
|
He Y, Zhao Y, Fan L, Wang X, Duan M, Wang H, Zhu X, Liu J. Injectable Affinity and Remote Magnetothermal Effects of Bi-Based Alloy for Long-Term Bone Defect Repair and Analgesia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100719. [PMID: 34014040 PMCID: PMC8292916 DOI: 10.1002/advs.202100719] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/30/2021] [Indexed: 05/05/2023]
Abstract
As alternatives, metallic/nonmetallic bone graft materials play significant roles in bone defect surgery to treat external trauma or bone disease. However, to date, there are rather limited long-term implantable materials owning to in situ molding incapability of metallics and poor mechanical property of nonmetallics. Here, Bi-based low melting point alloy, with unique properties of injectability, solid-liquid phase transition, mechanical capability, and biocompatibility, present obvious long-lasting bone affinity as the excellent artificial bone-substitute. It is particularly necessary to point out that the targeted injected Bi alloy remains in its original position for up to 210 days without moving, as well as, displays good osseointegration ability to resolve repeated revision trauma caused by losing bone repair material. Additionally, with outstanding electrical and thermal conductivity, an unconventional way using Bi alloy to realize very beneficial hyperthermia analgesia via non-invasive wireless energy delivery is first proposed, which avoids adverse effects on bone remodeling inflicted by traditional drugs. The significantly decreased expression of pain sensitizing factor, such as, interleukin-6, neuropeptide substance, and transient receptor potential vanilloid 1 reveals the potential mechanism of hyperthermia analgesia. The present findings suggest the combination therapy of Bi alloy in bone repair and analgesia, which owns far-reaching clinical application value.
Collapse
Affiliation(s)
- Yuanyuan He
- Department of Biomedical EngineeringSchool of MedicineTsinghua UniversityBeijing100084China
| | - Yu Zhao
- Orthopedic DepartmentSecond Hospital of Shanxi Medical UniversityTaiyuanShanxi030001China
| | - Linlin Fan
- Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
| | - Xuelin Wang
- School of Engineering MedicineBeihang UniversityBeijing100191China
- Interdisciplinary Institute for Cancer Diagnosis and TreatmentBeijing Advanced Innovation Center for Biomedical EngineeringBeihang UniversityBeijing100191China
| | - Minghui Duan
- Department of Biomedical EngineeringSchool of MedicineTsinghua UniversityBeijing100084China
| | - Hongzhang Wang
- Department of Biomedical EngineeringSchool of MedicineTsinghua UniversityBeijing100084China
| | - Xiyu Zhu
- Department of Biomedical EngineeringSchool of MedicineTsinghua UniversityBeijing100084China
| | - Jing Liu
- Department of Biomedical EngineeringSchool of MedicineTsinghua UniversityBeijing100084China
- Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
| |
Collapse
|
8
|
Gupta J, Ghosh S, Aravindan S. Effect of Mo and space holder content on microstructure, mechanical and corrosion properties in Ti6AlxMo based alloy for bone implant. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111962. [PMID: 33812590 DOI: 10.1016/j.msec.2021.111962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/21/2021] [Accepted: 02/07/2021] [Indexed: 01/24/2023]
Abstract
The porous alloys of Ti6Al(3-15)Mo were developed to replace the fractured bone; the alloy consists of 6 wt% of Al which was taken as α the phase stabilizer and (3-15) wt% Mo with an increment of 3 wt% was taken as β phase stabilizer. The porosity of these fabricated porous alloys was controlled by adjusting volume% of the ammonium bicarbonate (SH). These porous samples were characterized in terms of their microstructure, compressive strength, elastic modulus, energy absorption, ion release and corrosion rate in simulated body fluid (SBF) and these properties are compared with the existing alloys and human bone. The fabricated porous samples were characterized, and the obtained results were analysed as a function of Mo concentration and the volume% of space holder content. Three phases were found in the microstructure: α, α2 and β phase of titanium. Increase in Mo content from 3 to 15 wt% has increased the volume fraction of β phase from 7.45% to 64.09% and Kirkendall pores also are observed to be increased with increase in Mo content. α and α2 phase was differentiated by the TEM and phase map of EBSD images. The plateau stress, elastic modulus and energy absorption are observed to be decreased, and the densification strain is observed to be increased with the addition of Mo and SH content. The released ion concentration and corrosion rate are far below the tolerance limits of Ti, Al and Mo elements, in the static immersion test conducted in SBF solution.
Collapse
Affiliation(s)
| | - S Ghosh
- Indian Institute of Technology, Delhi, India
| | - S Aravindan
- Indian Institute of Technology, Delhi, India.
| |
Collapse
|
9
|
Li J, Wang K, Bai X, Wang Q, Lv N, Li Z. Enhanced regeneration of bone defects using sintered porous Ti6Al4V scaffolds incorporated with mesenchymal stem cells and platelet-rich plasma. RSC Adv 2021; 11:5128-5138. [PMID: 35424426 PMCID: PMC8694689 DOI: 10.1039/d0ra10215f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/18/2021] [Indexed: 11/23/2022] Open
Abstract
A new highly controlled powder sintering technique was used for the fabrication of a porous Ti6Al4V scaffold. The platelet-rich plasma (PRP) was prepared using whole blood. The PRP was used as a cell carrier to inject bone marrow mesenchymal stem cells (MSC) into the pores of the Ti6Al4V scaffold in the presence of calcium chloride and thrombin, and then the composite construct of porous Ti6Al4V loaded with PRP gel and MSC was obtained. The bare Ti6Al4V scaffold and the Ti6Al4V scaffold loaded with MSC were used as controls. The characteristics and mechanical properties of the scaffold, and the biological properties of the constructs were evaluated by a series of in vitro and in vivo experiments. The results show that the sintered porous Ti6Al4V has good biocompatibility, and high porosity and large pore size, which can provide sufficient space and sufficient mechanical support for the growth of cells and bones without an obvious stress shielding effect. However, Ti6Al4V/MSC/PRP showed a significantly higher cell proliferation rate, faster bone growth speed, more bone ingrowth, and higher interfacial strength. Therefore, the porous Ti6Al4V scaffolds incorporated with MSC and PRP may be more effective at enhancing bone regeneration, and is expected to be used for bone defect repair.
Collapse
Affiliation(s)
- Ji Li
- Department of Orthopedics, General Hospital of PLA No. 28 Fuxing Road, Haidian District Beijing 100853 China +86 10 66938306 +86 10 66938306
| | - Ketao Wang
- Department of Orthopedics, General Hospital of PLA No. 28 Fuxing Road, Haidian District Beijing 100853 China +86 10 66938306 +86 10 66938306
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University Shanghai China
| | - Xiaowei Bai
- Department of Orthopedics, General Hospital of PLA No. 28 Fuxing Road, Haidian District Beijing 100853 China +86 10 66938306 +86 10 66938306
| | - Qi Wang
- Department of Orthopedics, General Hospital of PLA No. 28 Fuxing Road, Haidian District Beijing 100853 China +86 10 66938306 +86 10 66938306
| | - Ningyu Lv
- Department of Orthopedics, General Hospital of PLA No. 28 Fuxing Road, Haidian District Beijing 100853 China +86 10 66938306 +86 10 66938306
| | - Zhongli Li
- Department of Orthopedics, General Hospital of PLA No. 28 Fuxing Road, Haidian District Beijing 100853 China +86 10 66938306 +86 10 66938306
| |
Collapse
|
10
|
Zhang G, Zhao P, Lin L, Qin L, Huan Z, Leeflang S, Zadpoor AA, Zhou J, Wu L. Surface-treated 3D printed Ti-6Al-4V scaffolds with enhanced bone regeneration performance: an in vivo study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:39. [PMID: 33553332 PMCID: PMC7859759 DOI: 10.21037/atm-20-3829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Given their highly adjustable and predictable properties, three-dimensional(3D) printed geometrically ordered porous biomaterials offer unique opportunities as orthopedic implants. The performance of such biomaterials is, however, as much a result of the surface properties of the struts as it is of the 3D porous structure. In our previous study, we have investigated the in vitro performances of selective laser melted (SLM) Ti-6Al-4V scaffolds which are surface modified by the bioactive glass (BG) and mesoporous bioactive glass (MBG), respectively. The results demonstrated that such modification enhanced the attachment, proliferation, and differentiation of human bone marrow stromal cells (hBMSC). Here, we take the next step by assessing the therapeutic potential of 3D printed Ti-6Al-4V scaffolds with BG and MBG surface modifications for bone regeneration in a rabbit bone defect model. Methods 3D printed Ti-6Al-4V scaffolds with BG and MBG surface modifications were implanted into the femoral condyle of the rabbits, the Ti-6Al-4V scaffolds without surface modification were used as the control. At week 3, 6, and 9 after the implantation, micro-computed tomography (micro-CT) imaging, fluorescence double-labeling to determine the mineral apposition rate (MAR), and histological analysis of non-decalcified sections were performed. Results We found significantly higher volumes of regenerated bone, significantly higher values of the relevant bone morphometric parameters, clear signs of bone matrix apposition and maturation, and the evidence of progressed angiogenesis and blood vessel formation in the groups where the bioactive glass was added as a coating, particularly the MGB group. Conclusions The MBG coating resulted in enhanced osteoconduction and vascularization in bone defect healing, which was attributed to the release of silicon and calcium ions and the presence of a nano-mesoporous structure on the surface of the MBG specimens.
Collapse
Affiliation(s)
- Guangdao Zhang
- Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Pengyu Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Lin Lin
- The First People's Hospital of Shenyang, Shenyang, China
| | - Limei Qin
- Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Zhiguang Huan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Sander Leeflang
- Department of Biomechanical Engineering, Delft University of Technology, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology, The Netherlands
| | - Jie Zhou
- Department of Biomechanical Engineering, Delft University of Technology, The Netherlands
| | - Lin Wu
- Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
11
|
Kowsar S, Soheilifard R. The effect of the degradation pattern of biodegradable bone plates on the healing process using a biphasic mechano-regulation theory. Biomech Model Mechanobiol 2020; 20:309-321. [PMID: 32980999 DOI: 10.1007/s10237-020-01386-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 09/14/2020] [Indexed: 11/28/2022]
Abstract
Bone plates are used to treat bone fractures by stabilizing the fracture site and allowing treatments to take place. Mechanical properties of the applied bone plate determine the stability of the fracture site and affect the endochondral ossification process and the healing performance. In recent years, biodegradable bone plates have been used in demand for the elimination of a second surgery to remove the plate. The degradation of these plates into the body environment is commonly accompanied by alterations in the mechanical properties of the bone plate and a shift in the healing performance of the bone. In the present study, the effects of using biodegradable plates with various elastic moduli and degradation patterns, including linear and nonlinear, on the healing process are investigated. A three-dimensional finite element model of the radius bone along with a mechano-regulation theory was used to study the healing performance. Two mechanical stimuli of octahedral shear strain and interstitial fluid flow are considered as the propelling factors of healing. The results of this study indicated that increasing the bone plate's initial elastic modulus accelerates the healing process. However, by increasing the initial Young's modulus of the plate more than 100 GPa, no noticeable alteration is observed. The degradation time period of the plate was seen to be directly related to the speed of the healing process. It is shown, however, that by increasing the degradation time period to more than 8 weeks, the healing performance remains almost unchanged. The results of this work showed that the application of plates with a high enough initial elastic modulus and degradation period can prevent the healing process from decelerating.
Collapse
Affiliation(s)
- Sara Kowsar
- Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Reza Soheilifard
- Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran.
| |
Collapse
|
12
|
Binder Jetting Additive Manufacturing of High Porosity 316L Stainless Steel Metal Foams. MATERIALS 2020; 13:ma13173744. [PMID: 32847089 PMCID: PMC7504368 DOI: 10.3390/ma13173744] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/26/2020] [Accepted: 08/21/2020] [Indexed: 11/17/2022]
Abstract
High porosity (40% to 60%) 316L stainless steel containing well-interconnected open-cell porous structures with pore openness index of 0.87 to 1 were successfully fabricated by binder jetting and subsequent sintering processes coupled with a powder space holder technique. Mono-sized (30 µm) and 30% (by volume) spherically shaped poly(methyl methacrylate) (PMMA) powder was used as the space holder material. The effects of processing conditions such as: (1) binder saturation rates (55%, 100% and 150%), and (2) isothermal sintering temperatures (1000 ○C to 1200 ○C) on the porosity of 316L stainless steel parts were studied. By varying the processing conditions, porosity of 40% to 45% were achieved. To further increase the porosity values of 316L stainless steel parts, 30 vol. % (or 6 wt. %) of PMMA space holder particles were added to the 3D printing feedstock and porosity values of 57% to 61% were achieved. Mercury porosimetry results indicated pore sizes less than 40 µm for all the binder jetting processed 316L stainless steel parts. Anisotropy in linear shrinkage after the sintering process was observed for the SS316L parts with the largest linear shrinkage in the Z direction. The Young's modulus and compression properties of 316L stainless steel parts decreased with increasing porosity and low Young's modulus values in the range of 2 GPa to 29 GPa were able to be achieved. The parts fabricated by using pure 316L stainless steel feedstock sintered at 1200 ○C with porosity of ~40% exhibited the maximum overall compressive properties with 0.2% compressive yield strength of 52.7 MPa, ultimate compressive strength of 520 MPa, fracture strain of 36.4%, and energy absorption of 116.7 MJ/m3, respectively. The Young's modulus and compression properties of the binder jetting processed 316L stainless steel parts were found to be on par with that of the conventionally processed porous 316L stainless steel parts and even surpassed those having similar porosities, and matched to that of the cancellous bone types.
Collapse
|
13
|
Siddiq A, Kennedy AR. Compression moulding and injection over moulding of porous PEEK components. J Mech Behav Biomed Mater 2020; 111:103996. [PMID: 32763774 DOI: 10.1016/j.jmbbm.2020.103996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 01/07/2023]
Abstract
A simple and adaptable process for the production of porous PEEK has been demonstrated herein, which uses compression moulding to infiltrate molten PEEK into of a packed bed of salt beads. The process has the capacity to vary the pore size and porosity within the range suitable for materials to replace bone, but compressive testing showed the stiffness to be well below the target to match trabecular bone. This issue was addressed by creating a hybrid structure, integrating "pillars" of solid PEEK into the porous structure, by the injection over-moulding of compression moulded PEEK-salt inserts that contained drilled holes. Good bonding between the moulding and the insert was demonstrated and it was found that as little as 35 mm2 of support, in the form of PEEK "pillars" was required to achieve the target performance.
Collapse
Affiliation(s)
- A Siddiq
- Faculty of Engineering, University of Nottingham, Nottingham, NG2 7JU, UK
| | - A R Kennedy
- Engineering Department, Lancaster University, Lancaster, LA1 4YW, UK.
| |
Collapse
|
14
|
Response of Saos-2 osteoblast-like cells to kilohertz-resonance excitation in porous metallic scaffolds. J Mech Behav Biomed Mater 2020; 106:103726. [DOI: 10.1016/j.jmbbm.2020.103726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/10/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
|
15
|
Correlating in-situ process monitoring data with the reduction in load bearing capacity of selective laser melted Ti-6Al-4V porous biomaterials. J Mech Behav Biomed Mater 2020; 106:103723. [PMID: 32250941 DOI: 10.1016/j.jmbbm.2020.103723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 11/20/2022]
Abstract
Selective Laser Melting allows for the creation of intricate porous structures, that possess favourable biological properties. These structures are known as porous biomaterials. The focus of this paper is to evaluate the use of an in-line photodiode based process monitoring system, for the monitoring of the operational behaviour of the laser, and to correlate this with the resultant parts mechanical performance. In this study the production scale Renishaw 500M was used to produce porous structures, using Ti-6Al-4V feedstock powder. During the process, a co-axial process monitoring system was utilised to generate data relating to both the meltpool and the operational behaviour of the laser. An advanced scanning technique was used to produce the structures, whereby the laser parameters determine the strut dimensions. In this study, the laser input energy was reduced by 33%, 66% and 100%, at specific layers within the structures. Computer Tomography and Scanning Electron Microscopy was utilised to characterise the affected struts within the structures, while quasi-static compression testing was used to determine the structure's mechanical properties. It was demonstrated that as the level of input energy decreased and the number of affected layers increased, a corresponding decrease in the load bearing capacity of the structures occurred. With the structures experiencing a significant loss in strength also exhibiting a change in the failure mode during compression testing. Data generated during the processing of such structures was compared to the data generated during the processing of control structures, with the difference between the two been calculated on a layer-by-layer basis. A clear correlation was demonstrated between the total level of deviation between the two signal sets and a reduction in the load bearing capacity of the structures. This indicates that by comparing build data to a benchmark data set, valuable information relating to the structural integrity of the porous structures can be obtained.
Collapse
|
16
|
3D laser-printed porous Ti6Al4V dental implants for compromised bone support. J Formos Med Assoc 2020; 119:420-429. [DOI: 10.1016/j.jfma.2019.07.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/22/2019] [Accepted: 07/24/2019] [Indexed: 11/19/2022] Open
|
17
|
The Effect of Processing Route on Properties of HfNbTaTiZr High Entropy Alloy. MATERIALS 2019; 12:ma12234022. [PMID: 31817034 PMCID: PMC6926650 DOI: 10.3390/ma12234022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/20/2019] [Accepted: 11/27/2019] [Indexed: 11/17/2022]
Abstract
High entropy alloys (HEA) have been one of the most attractive groups of materials for researchers in the last several years. Since HEAs are potential candidates for many (e.g., refractory, cryogenic, medical) applications, their properties are studied intensively. The most frequent method of HEA synthesis is arc or induction melting. Powder metallurgy is a perspective technique of alloy synthesis and therefore in this work the possibilities of synthesis of HfNbTaTiZr HEA from powders were studied. Blended elemental powders were sintered, hot isostatically pressed, and subsequently swaged using a special technique of swaging where the sample is enveloped by a titanium alloy. This method does not result in a full density alloy due to cracking during swaging. Spark plasma sintering (SPS) of mechanically alloyed powders resulted in a fully dense but brittle specimen. The most promising result was obtained by SPS treatment of gas atomized powder with low oxygen content. The microstructure of HfNbTaTiZr specimen prepared this way can be refined by high pressure torsion deformation resulting in a high hardness of 410 HV10 and very fine microstructure with grain size well below 500 nm.
Collapse
|
18
|
Abstract
In this paper, binary β type Ti-23 at.% Mo alloys were obtained by arc melting as well as by mechanical alloying and powder metallurgical process with cold powder compaction and sintering or, interchangeably, hot pressing. The influence of the synthesis method on the microstructure and properties of bulk alloys were studied. The produced materials were characterized by an X-ray diffraction technique, scanning electron microscopy and chemical composition determination. Young’s modulus was evaluated with nanoindentation testing method based on the Oliver and Pharr approach. The mechanically alloyed Ti-23 at.% Mo powders, after inductively hot-pressed at 800 °C for 5 min, allowed the formation of single Ti(β) phase alloy. In this case, Young’s modulus and Vickers hardness were 127 GPa and 454 HV0.3, respectively. Among the examined materials, the porous (55%) single-phase scaffold showed the lowest indentation modulus (69.5 GPa). Analytical approach performed in this work focuses also on the surface properties. The estimation includes the corrosion resistance analyzed in the potentiodynamic test, and also some wettability properties as a contact angle, and surface free energy values measured in glycerol and diiodomethane testing fluids. Additionally, surface modification of processed material by micro-arc oxidation and electrophoretic deposition on the chosen samples was investigated. Proposed procedures led to the formation of apatite and fluorapatite layers, which influence both the corrosion resistance and surface wetting properties in comparison to unmodified samples. The realized research shows that a single-phase ultrafine-grained Ti-23 at.% Mo alloy for medical implant applications can be synthesized at a temperature lower than the transition point by the application of hot pressing of mechanically alloyed powders. The material processing, that includes starting powder preparation, bulk alloy transformation, and additional surface treatment functionalization, affect final properties by the obtained phase composition and internal structure.
Collapse
|
19
|
Porous Titanium for Biomedical Applications: Evaluation of the Conventional Powder Metallurgy Frontier and Space-Holder Technique. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9050982] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Titanium and its alloys are reference materials in biomedical applications because of their desirable properties. However, one of the most important concerns in long-term prostheses is bone resorption as a result of the stress-shielding phenomena. Development of porous titanium for implants with a low Young’s modulus has accomplished increasing scientific and technological attention. The aim of this study is to evaluate the viability, industrial implementation and potential technology transfer of different powder-metallurgy techniques to obtain porous titanium with stiffness values similar to that exhibited by cortical bone. Porous samples of commercial pure titanium grade-4 were obtained by following both conventional powder metallurgy (PM) and space-holder technique. The conventional PM frontier (Loose-Sintering) was evaluated. Additionally, the technical feasibility of two different space holders (NH4HCO3 and NaCl) was investigated. The microstructural and mechanical properties were assessed. Furthermore, the mechanical properties of titanium porous structures with porosities of 40% were studied by Finite Element Method (FEM) and compared with the experimental results. Some important findings are: (i) the optimal parameters for processing routes used to obtain low Young’s modulus values, retaining suitable mechanical strength; (ii) better mechanical response was obtained by using NH4HCO3 as space holder; and (iii) Ti matrix hardening when the interconnected porosity was 36–45% of total porosity. Finally, the advantages and limitations of the PM techniques employed, towards an industrial implementation, were discussed.
Collapse
|
20
|
Singh P, Singh IB, Mondal DP. A comparative study on compressive deformation and corrosion behaviour of heat treated Ti4wt%Al foam of different porosity made of milled and unmilled powders. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:918-929. [PMID: 30813099 DOI: 10.1016/j.msec.2019.01.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/09/2019] [Accepted: 01/12/2019] [Indexed: 10/27/2022]
Abstract
Ti4wt%Al alloy foams of various porosities were prepared using milled and unmilled powders through space holder technique. Crystallographic and morphological change in milled powder compared to the unmilled one were also examined. Space holder content was varied to get foams of different porosities. After sintering, foams were thermally oxidized through heat treatment and characterised in terms of their pore size, pore morphology, pore interconnectivity, phase formation and compressive deformation behaviour. It was observed that plastic collapse stress, elastic modulus, plateau stress and energy absorption capacity are strong function of porosity and these are higher for the foam made of milled powder (Mf) than those of the foam made of unmilled one (Uf). Corrosion behaviour of these foams were examined. Open circuit potential, Tafel plot and electrochemical impedance spectroscopy confirm that Mf has higher corrosion resistance than Uf for the same porosity level. Also, with increasing porosity, corrosion resistance of the foam samples reduces.
Collapse
Affiliation(s)
- Pradeep Singh
- Academy of Scientific and Innovative Research (AcSIR), India; CSIR-Advanced Materials and Processes Research Institute, Bhopal 462026, India
| | - I B Singh
- Academy of Scientific and Innovative Research (AcSIR), India; CSIR-Advanced Materials and Processes Research Institute, Bhopal 462026, India
| | - D P Mondal
- Academy of Scientific and Innovative Research (AcSIR), India; CSIR-Advanced Materials and Processes Research Institute, Bhopal 462026, India.
| |
Collapse
|
21
|
Li J, Li Z, Shi Y, Wang H, Li R, Tu J, Jin G. In vitro and in vivo comparisons of the porous Ti6Al4V alloys fabricated by the selective laser melting technique and a new sintering technique. J Mech Behav Biomed Mater 2019; 91:149-158. [DOI: 10.1016/j.jmbbm.2018.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/19/2018] [Accepted: 12/08/2018] [Indexed: 10/27/2022]
|
22
|
Li J, Li W, Li Z, Wang Y, Li R, Tu J, Jin G. In vitro and in vivo evaluations of the fully porous Ti6Al4V acetabular cups fabricated by a sintering technique. RSC Adv 2019; 9:6724-6732. [PMID: 35518492 PMCID: PMC9061126 DOI: 10.1039/c9ra00638a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/21/2019] [Indexed: 11/21/2022] Open
Abstract
A type of canine fully porous Ti6Al4V acetabular cup was fabricated by a well-controlled powder sintering technique. The traditional hydroxyapatite-coated (HA-coated) cups were also prepared as the control. The characteristics, mechanical and biological properties of the two types of cups were evaluated by scanning electron microscopy, mechanical tests, finite element analysis and canine total hip arthroplasty (THA). Results showed that the porous cup had high porosity and large pore size with good mechanical properties without obvious stress shielding, and it had sufficient safety for implantation according to the finite element analysis. Both groups showed good biocompatibility and osteogenic ability after the THA surgeries, but the porous group had more bone ingrowth and higher bone-implant contact rate according to the micro-CT and histopathologic results. Therefore, the canine fully porous Ti6Al4V acetabular cup fabricated by the sintering technique could provide sufficient space and adequate mechanical support without obvious stress shielding effect for bone ingrowth. Compared with the traditional HA-coated cup, the porous cup may be more effective in achieving in vivo stability, which could contribute to reducing the risk of aseptic loosening.
Collapse
Affiliation(s)
- Ji Li
- Department of Orthopedics, General Hospital of PLA No. 28 Fuxing Road, Haidian District Beijing 100853 China +86 010 66938306 +86 010 66938306
| | - Wei Li
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University Xixiazhuang, Badachu Road, Shijingshan District Beijing 100144 China
| | - Zhongli Li
- Department of Orthopedics, General Hospital of PLA No. 28 Fuxing Road, Haidian District Beijing 100853 China +86 010 66938306 +86 010 66938306
| | - Yuxing Wang
- Department of Orthopedics, General Hospital of PLA No. 28 Fuxing Road, Haidian District Beijing 100853 China +86 010 66938306 +86 010 66938306
| | - Ruiling Li
- State Key Laboratory of Materials, Department of Materials Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Jiangping Tu
- State Key Laboratory of Materials, Department of Materials Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Gong Jin
- ZhongAoHuiCheng Technology Co. No. 20 Kechuang Road, Economic and Technological Development Zone Beijing 100176 China
| |
Collapse
|
23
|
Chang JZC, Tsai PI, Kuo MYP, Sun JS, Chen SY, Shen HH. Augmentation of DMLS Biomimetic Dental Implants with Weight-Bearing Strut to Balance of Biologic and Mechanical Demands: From Bench to Animal. MATERIALS 2019; 12:ma12010164. [PMID: 30621012 PMCID: PMC6337105 DOI: 10.3390/ma12010164] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022]
Abstract
A mismatch of elastic modulus values could result in undesirable bone resorption around the dental implant. The objective of this study was to optimize direct metal laser sintering (DMLS)-manufactured Ti₆Al₄V dental implants' design, minimize elastic mismatch, allow for maximal bone ingrowth, and improve long-term fixation of the implant. In this study, DMLS dental implants with different morphological characteristics were fabricated. Three-point bending, torsional, and stability tests were performed to compare the mechanical properties of different designs. Improvement of the weaker design was attempted by augmentation with a longitudinal 3D-printed strut. The osseointegrative properties were evaluated. The results showed that the increase in porosity decreased the mechanical properties, while augmentation with a longitudinal weight-bearing strut can improve mechanical strength. Maximal alkaline phosphatase gene expression of MG63 cells attained on 60% porosity Ti₆Al₄V discs. In vivo experiments showed good incorporation of bone into the porous scaffolds of the DMLS dental implant, resulting in a higher pull-out strength. In summary, we introduced a new design concept by augmenting the implant with a longitudinal weight-bearing strut to achieve the ideal combination of high strength and low elastic modulus; our results showed that there is a chance to reach the balance of both biologic and mechanical demands.
Collapse
Affiliation(s)
| | - Pei-I Tsai
- Department of Materials Science and Engineering, National Chiao-Tung University, Hsinchu 30010, Taiwan.
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan.
| | - Mark Yen-Ping Kuo
- School of Dentistry, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| | - Jui-Sheng Sun
- Department of Orthopedic Surgery, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.
| | - San-Yuan Chen
- Department of Materials Science and Engineering, National Chiao-Tung University, Hsinchu 30010, Taiwan.
| | - Hsin-Hsin Shen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan.
| |
Collapse
|
24
|
Impacts of dynamic degradation on the morphological and mechanical characterisation of porous magnesium scaffold. Biomech Model Mechanobiol 2019; 18:797-811. [DOI: 10.1007/s10237-018-01115-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 12/26/2018] [Indexed: 01/27/2023]
|
25
|
Qiu G, Wang J, Cui H, Lu T. Mechanical behaviors and porosity of porous Ti prepared with large-size acicular urea as spacer. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-018-0126-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
26
|
Xu JL, Tao SC, Bao LZ, Luo JM, Zheng YF. Effects of Mo contents on the microstructure, properties and cytocompatibility of the microwave sintered porous Ti-Mo alloys. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:156-165. [PMID: 30678900 DOI: 10.1016/j.msec.2018.12.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 11/23/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
The porous Ti-Mo alloys were prepared by microwave sintering, and the effects of Mo contents on the pore structure, phase composition, compressive strength, elastic modulus, bending strength, corrosion resistance and cytocompatibility of porous Ti-Mo alloys were investigated. The results show that the porous Ti-Mo alloys are composed of α phase and β phase, and the volume fraction of β phase increases with increasing the Mo contents. The amount of Kirkendall pores distributed over the porous Ti-Mo alloys skeleton increases with increasing the Mo contents, which greatly increases the porosities and pore sizes of the porous Ti-Mo alloys. Correspondingly, all of the compressive strength, elastic modulus and bending strength of the porous Ti-Mo alloys decrease with increasing the Mo contents. The porous Ti-Mo alloys present excellent corrosion resistance in the Hank's solution due to the oxidation film of TiO2, MoO2 and MoO3 naturally formed on the surface, and the Mo contents have no obvious effect on the corrosion resistance. The cell viabilities of the porous Ti-Mo alloys are higher than 94%, indicating the porous Ti-Mo alloys possess favorable cytocompatibility. Moreover, the porous Ti-Mo alloys are beneficial to the spread, proliferation and differentiation of osteoblast-like cells, and the Mo contents have no significant effect on the cytocompatibility of the porous Ti-Mo alloys.
Collapse
Affiliation(s)
- J L Xu
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - S C Tao
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - L Z Bao
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - J M Luo
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Y F Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
27
|
Wang H, Su K, Su L, Liang P, Ji P, Wang C. The effect of 3D-printed Ti6Al4V scaffolds with various macropore structures on osteointegration and osteogenesis: A biomechanical evaluation. J Mech Behav Biomed Mater 2018; 88:488-496. [DOI: 10.1016/j.jmbbm.2018.08.049] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/05/2018] [Accepted: 08/29/2018] [Indexed: 12/25/2022]
|
28
|
Direct calciothermic reduction of porous calcium titanate to porous titanium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:125-134. [PMID: 30033239 DOI: 10.1016/j.msec.2018.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/22/2018] [Accepted: 05/05/2018] [Indexed: 11/21/2022]
Abstract
A metallurgical material integration concept, using porous calcium titanate (CaTiO3) as raw material, was put forward for preparation of metallic titanium powder and porous titanium by calciothermic reduction. Porous metallic titanium was prepared by calcium vapor reduction at 1273 K for 6 h with two types of interconnected pores in titanium samples. The interconnected macropores about 50-300 μm were inherited from porous CaTiO3, and the micropores about 5-40 μm were made by leaching removal of byproduct CaO in reduction products. Metallic porous titanium was fabricated in Ca-dissolved CaO-CaCl2 molten salt mixtures by self-sintering and had a good interconnectivity inside with thickness about 155 μm and the porosities of the porous titanium are 65-81%.
Collapse
|
29
|
Yang J, Guo JL, Mikos AG, He C, Cheng G. Material Processing and Design of Biodegradable Metal Matrix Composites for Biomedical Applications. Ann Biomed Eng 2018; 46:1229-1240. [PMID: 29869105 DOI: 10.1007/s10439-018-2058-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022]
Abstract
In recent years, biodegradable metallic materials have played an important role in biomedical applications. However, as typical for the metal materials, their structure, general properties, preparation technology and biocompatibility are hard to change. Furthermore, biodegradable metals are susceptible to excessive degradation and subsequent disruption of their mechanical integrity; this phenomenon limits the utility of these biomaterials. Therefore, the use of degradable metals, as the base material to prepare metal matrix composite materials, it is an excellent alternative to solve the problems above described. Biodegradable metals can thus be successfully combined with other materials to form biodegradable metallic matrix composites for biomedical applications and functions. The present article describes the processing methods currently available to design biodegradable metal matrix composites for biomedical applications and provides an overview of the current existing biodegradable metal systems. At the end, the manuscript presents and discusses the challenges and future research directions for development of biodegradable metallic matrix composites for biomedical purposes.
Collapse
Affiliation(s)
- Jingxin Yang
- Beijing Engineering Research Center of Smart Mechanical Innovation Design Service, Beijing, People's Republic of China. .,Robot Academy, Beijing Union University, Beijing, 100101, People's Republic of China. .,Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX, 77030, USA.
| | - Jason L Guo
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX, 77030, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX, 77030, USA
| | - Chunyan He
- Jinzhou Medical University, Jinzhou, 121000, People's Republic of China
| | - Guang Cheng
- Beijing Engineering Research Center of Smart Mechanical Innovation Design Service, Beijing, People's Republic of China.,Robot Academy, Beijing Union University, Beijing, 100101, People's Republic of China
| |
Collapse
|
30
|
Zhang Z, Li H, Fogel GR, Xiang D, Liao Z, Liu W. Finite element model predicts the biomechanical performance of transforaminal lumbar interbody fusion with various porous additive manufactured cages. Comput Biol Med 2018; 95:167-174. [DOI: 10.1016/j.compbiomed.2018.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 11/24/2022]
|
31
|
Zhang Z, Li H, Fogel GR, Liao Z, Li Y, Liu W. Biomechanical Analysis of Porous Additive Manufactured Cages for Lateral Lumbar Interbody Fusion: A Finite Element Analysis. World Neurosurg 2017; 111:e581-e591. [PMID: 29288855 DOI: 10.1016/j.wneu.2017.12.127] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND A porous additive manufactured (AM) cage may provide stability similar to that of traditional solid cages and may be beneficial to bone ingrowth. The biomechanical influence of various porous cages on stability, subsidence, stresses in cage, and facet contact force has not been fully described. The purpose of this study was to verify biomechanical effects of porous AM cages. METHODS The surgical finite element models with various cages were constructed. The partially porous titanium (PPT) cages and fully porous titanium (FPT) cages were applied. The mechanical parameters of porous materials were obtained by mechanical test. Then the porous AM cages were compared with solid titanium (TI) cage and solid polyetheretherketone (PEEK) cage. The 4 motion modes were simulated. Range of motion (ROM), cage stress, end plate stress, and facet joint force (FJF) were compared. RESULTS For all the surgical models, ROM decreased by >90%. Compared with TI and PPT cages, PEEK and FPT cages substantially reduced the maximum stresses in cage and end plate in all motion modes. Compared with PEEK cages, the stresses in cage and end plate for FPT cages decreased, whereas the ROM increased. Comparing FPT cages, the stresses in cage and end plate decreased with increasing porosity, whereas ROM increased with increasing porosity. After interbody fusion, FJF was substantially reduced in all motion modes except for flexion. CONCLUSIONS Fully porous cages may offer an alternative to solid PEEK cages in lateral lumbar interbody fusion. However, it may be prudent to further increase the porosity of the cage.
Collapse
Affiliation(s)
- Zhenjun Zhang
- Department of Mechanical Engineering, Tsinghua University, Beijing, China; Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Hui Li
- Naton Science and Technology Group, Beijing, China
| | - Guy R Fogel
- Spine Pain Begone Clinic, San Antonio, TX, USA
| | - Zhenhua Liao
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Yang Li
- Department of Mechanical Engineering, Tsinghua University, Beijing, China; Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Weiqiang Liu
- Department of Mechanical Engineering, Tsinghua University, Beijing, China; Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China.
| |
Collapse
|
32
|
A novel high-strength and highly corrosive biodegradable Fe-Pd alloy: Structural, mechanical and in vitro corrosion and cytotoxicity study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.100] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Comparison of Single Ti6Al4V Struts Made Using Selective Laser Melting and Electron Beam Melting Subject to Part Orientation. METALS 2017. [DOI: 10.3390/met7030091] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Porous magnesium-based scaffolds for tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:1253-1266. [DOI: 10.1016/j.msec.2016.11.027] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/04/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022]
|
35
|
Specific Yielding of Selective Laser-Melted Ti6Al4V Open-Porous Scaffolds as a Function of Unit Cell Design and Dimensions. METALS 2016. [DOI: 10.3390/met6070166] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Benedetti M, Cazzolli M, Fontanari V, Leoni M. Fatigue limit of Ti6Al4V alloy produced by Selective Laser Sintering. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.prostr.2016.06.394] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Seiffert G, Hopkins C, Sutcliffe C. Comparison of high-intensity sound and mechanical vibration for cleaning porous titanium cylinders fabricated using selective laser melting. J Biomed Mater Res B Appl Biomater 2015; 105:117-123. [PMID: 26426906 PMCID: PMC5215742 DOI: 10.1002/jbm.b.33535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 08/24/2015] [Accepted: 09/12/2015] [Indexed: 12/13/2022]
Abstract
Orthopedic components, such as the acetabular cup in total hip joint replacement, can be fabricated using porous metals, such as titanium, and a number of processes, such as selective laser melting. The issue of how to effectively remove loose powder from the pores (residual powder) of such components has not been addressed in the literature. In this work, we investigated the feasibility of two processes, acoustic cleaning using high‐intensity sound inside acoustic horns and mechanical vibration, to remove residual titanium powder from selective laser melting‐fabricated cylinders. With acoustic cleaning, the amount of residual powder removed was not influenced by either the fundamental frequency of the horn used (75 vs. 230 Hz) or, for a given horn, the number of soundings (between 1 and 20). With mechanical vibration, the amount of residual powder removed was not influenced by the application time (10 vs. 20 s). Acoustic cleaning was found to be more reliable and effective in removal of residual powder than cleaning with mechanical vibration. It is concluded that acoustic cleaning using high‐intensity sound has significant potential for use in the final preparation stages of porous metal orthopedic components. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 117–123, 2017.
Collapse
Affiliation(s)
- Gary Seiffert
- Acoustics Research Unit, University of Liverpool, Liverpool, L69 3GH, UK
| | - Carl Hopkins
- Acoustics Research Unit, University of Liverpool, Liverpool, L69 3GH, UK
| | - Chris Sutcliffe
- School of Engineering, University of Liverpool, Liverpool, L69 3GH, UK
| |
Collapse
|
38
|
Wauthle R, Ahmadi SM, Amin Yavari S, Mulier M, Zadpoor AA, Weinans H, Van Humbeeck J, Kruth JP, Schrooten J. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 54:94-100. [PMID: 26046272 DOI: 10.1016/j.msec.2015.05.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/17/2015] [Accepted: 05/02/2015] [Indexed: 01/16/2023]
Abstract
Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants.
Collapse
Affiliation(s)
- Ruben Wauthle
- KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven, Belgium; 3D Systems - LayerWise NV, Grauwmeer 14, 3001 Leuven, Belgium.
| | - Seyed Mohammad Ahmadi
- Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Saber Amin Yavari
- Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Michiel Mulier
- KU Leuven, Department of Orthopaedics, Weligerveld 1, 3212 Pellenberg, Belgium
| | - Amir Abbas Zadpoor
- Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Harrie Weinans
- Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands; Department of Orthopedics & department of Rheumatology, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jan Van Humbeeck
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, PB 2450, 3001 Leuven, Belgium
| | - Jean-Pierre Kruth
- KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven, Belgium
| | - Jan Schrooten
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, PB 2450, 3001 Leuven, Belgium; KU Leuven, Prometheus, Division of Skeletal Tissue Engineering, PB 813, O&N1, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
39
|
Ahmadi SM, Yavari SA, Wauthle R, Pouran B, Schrooten J, Weinans H, Zadpoor AA. Additively Manufactured Open-Cell Porous Biomaterials Made from Six Different Space-Filling Unit Cells: The Mechanical and Morphological Properties. MATERIALS 2015; 8:1871-1896. [PMID: 28788037 PMCID: PMC5507048 DOI: 10.3390/ma8041871] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/08/2015] [Accepted: 04/14/2015] [Indexed: 01/02/2023]
Abstract
It is known that the mechanical properties of bone-mimicking porous biomaterials are a function of the morphological properties of the porous structure, including the configuration and size of the repeating unit cell from which they are made. However, the literature on this topic is limited, primarily because of the challenge in fabricating porous biomaterials with arbitrarily complex morphological designs. In the present work, we studied the relationship between relative density (RD) of porous Ti6Al4V EFI alloy and five compressive properties of the material, namely elastic gradient or modulus (Es20–70), first maximum stress, plateau stress, yield stress, and energy absorption. Porous structures with different RD and six different unit cell configurations (cubic (C), diamond (D), truncated cube (TC), truncated cuboctahedron (TCO), rhombic dodecahedron (RD), and rhombicuboctahedron (RCO)) were fabricated using selective laser melting. Each of the compressive properties increased with increase in RD, the relationship being of a power law type. Clear trends were seen in the influence of unit cell configuration and porosity on each of the compressive properties. For example, in terms of Es20–70, the structures may be divided into two groups: those that are stiff (comprising those made using C, TC, TCO, and RCO unit cell) and those that are compliant (comprising those made using D and RD unit cell).
Collapse
Affiliation(s)
- Seyed Mohammad Ahmadi
- Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands.
| | - Saber Amin Yavari
- Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands.
- Department of Orthopedics and Department of Rheumatology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | | | - Behdad Pouran
- Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands.
- Department of Orthopedics and Department of Rheumatology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Jan Schrooten
- Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, PB 2450, 3001 Leuven, Belgium.
| | - Harrie Weinans
- Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands.
- Department of Orthopedics and Department of Rheumatology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Amir A Zadpoor
- Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands.
| |
Collapse
|
40
|
SLM produced porous titanium implant improvements for enhanced vascularization and osteoblast seeding. Int J Mol Sci 2015; 16:7478-92. [PMID: 25849656 PMCID: PMC4425029 DOI: 10.3390/ijms16047478] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/20/2015] [Accepted: 03/30/2015] [Indexed: 01/06/2023] Open
Abstract
To improve well-known titanium implants, pores can be used for increasing bone formation and close bone-implant interface. Selective Laser Melting (SLM) enables the production of any geometry and was used for implant production with 250-µm pore size. The used pore size supports vessel ingrowth, as bone formation is strongly dependent on fast vascularization. Additionally, proangiogenic factors promote implant vascularization. To functionalize the titanium with proangiogenic factors, polycaprolactone (PCL) coating can be used. The following proangiogenic factors were examined: vascular endothelial growth factor (VEGF), high mobility group box 1 (HMGB1) and chemokine (C-X-C motif) ligand 12 (CXCL12). As different surfaces lead to different cell reactions, titanium and PCL coating were compared. The growing into the porous titanium structure of primary osteoblasts was examined by cross sections. Primary osteoblasts seeded on the different surfaces were compared using Live Cell Imaging (LCI). Cross sections showed cells had proliferated, but not migrated after seven days. Although the cell count was lower on titanium PCL implants in LCI, the cell count and cell spreading area development showed promising results for titanium PCL implants. HMGB1 showed the highest migration capacity for stimulating the endothelial cell line. Future perspective would be the incorporation of HMGB1 into PCL polymer for the realization of a slow factor release.
Collapse
|
41
|
Rubshtein AP, Makarova EB, Rinkevich AB, Medvedeva DS, Yakovenkova LI, Vladimirov AB. Elastic properties of a porous titanium-bone tissue composite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 52:54-60. [PMID: 25953540 DOI: 10.1016/j.msec.2015.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/06/2014] [Accepted: 03/11/2015] [Indexed: 12/22/2022]
Abstract
The porous titanium implants were introduced into the condyles of tibias and femurs of sheep. New bone tissue fills the pore, and the porous titanium-new bone tissue composite is formed. The duration of composite formation was 4, 8, 24 and 52 weeks. The formed composites were extracted from the bone and subjected to a compression test. The Young's modulus was calculated using the measured stress-strain curve. The time dependence of the Young's modulus of the composite was obtained. After 4 weeks the new bone tissue that filled the pores does not affect the elastic properties of implants. After 24 and 52 weeks the Young's modulus increases by 21-34% and 62-136%, respectively. The numerical calculations of the elasticity of porous titanium-new bone tissue composite were conducted using a simple polydisperse model that is based on the consideration of heterogeneous structure as a continuous medium with spherical inclusions of different sizes. The kinetics of the change in the elasticity of the new bone tissue is presented via the intermediate characteristics, namely the relative ultimate tensile strength or proportion of mature bone tissue in the bone tissue. The calculated and experimentally measured values of the Young's modulus of the composite are in good agreement after 8 weeks of composite formation. The properties of the porous titanium-new bone tissue composites can only be predicted when data on the properties of new bone tissue are available after 8 weeks of contact between the implant and the native bone.
Collapse
Affiliation(s)
- A P Rubshtein
- M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 18S. Kovalevskaya St., Ekaterinburg 620990, Russia.
| | - E B Makarova
- V.D. Chaklin Ural Scientific & Research Institute of Traumatology and Orthopaedics, 7 Bankovskiy per., Ekaterinburg 620014, Russia
| | - A B Rinkevich
- M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 18S. Kovalevskaya St., Ekaterinburg 620990, Russia
| | - D S Medvedeva
- M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 18S. Kovalevskaya St., Ekaterinburg 620990, Russia
| | - L I Yakovenkova
- M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 18S. Kovalevskaya St., Ekaterinburg 620990, Russia
| | - A B Vladimirov
- M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 18S. Kovalevskaya St., Ekaterinburg 620990, Russia
| |
Collapse
|
42
|
Rivard J, Brailovski V, Dubinskiy S, Prokoshkin S. Fabrication, morphology and mechanical properties of Ti and metastable Ti-based alloy foams for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 45:421-33. [DOI: 10.1016/j.msec.2014.09.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/08/2014] [Accepted: 09/23/2014] [Indexed: 01/20/2023]
|