1
|
Elumalai A, Nayak Y, Ganapathy AK, Chen D, Tappa K, Jammalamadaka U, Bishop G, Ballard DH. Reverse Engineering and 3D Printing of Medical Devices for Drug Delivery and Drug-Embedded Anatomic Implants. Polymers (Basel) 2023; 15:4306. [PMID: 37959986 PMCID: PMC10647997 DOI: 10.3390/polym15214306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
In recent years, 3D printing (3DP) has advanced traditional medical treatments. This review explores the fusion of reverse engineering and 3D printing of medical implants, with a specific focus on drug delivery applications. The potential for 3D printing technology to create patient-specific implants and intricate anatomical models is discussed, along with its ability to address challenges in medical treatment. The article summarizes the current landscape, challenges, benefits, and emerging trends of using 3D-printed formulations for medical implantation and drug delivery purposes.
Collapse
Affiliation(s)
- Anusha Elumalai
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - Yash Nayak
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - Aravinda K. Ganapathy
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - David Chen
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - Karthik Tappa
- Department of Breast Imaging, Division of Diagnostic Imaging, The University of Texas, 7000 Fannin Street, Houston, TX 77030, USA;
| | | | - Grace Bishop
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - David H. Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
2
|
Mazarura KR, Kumar P, Choonara YE. Customised 3D printed multi-drug systems: An effective and efficient approach to polypharmacy. Expert Opin Drug Deliv 2022; 19:1149-1163. [PMID: 36059243 DOI: 10.1080/17425247.2022.2121816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Combination therapies continue to improve therapeutic outcomes as currently achieved by polypharmacy. Since the introduction of the polypill, there has been a significant improvement in adherence and patient outcomes. However, the mass production of polypills presents a number of technical, formulation, and clinical challenges. The current one-size-fits-all approach ignores the unique clinical demands of patients, necessitating the adoption of a more versatile tool. That will be the novel, but not so novel, 3D printing. AREAS COVERED : The present review investigates this promising paradigm shift from one medication for all, to customised medicines, providing an overview of the current state of 3D-printed multi-active pharmaceutical forms, techniques applied and printing materials. Details on cost implications, as well as potential limitations and challenges are also elaborated. EXPERT OPINION : 3D printing of multi-active systems, is not only beneficial but also essential. With growing interest in this field, a shift in manufacturing, prescribing, and administration patterns is at this point, unavoidable. Addressing limitations and challenges, as well as data presentation on clinical trial results, will aid in the acceleration of this technology's implementation. However, it is clear that 3D printing is not the end of it, as evidenced by the emerging 4D printing technology.
Collapse
Affiliation(s)
- Kundai R Mazarura
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
3
|
Hua L, Qian H, Lei T, Liu W, He X, Zhang Y, Lei P, Hu Y. Anti-tuberculosis drug delivery for tuberculous bone defects. Expert Opin Drug Deliv 2021; 18:1815-1827. [PMID: 34758697 DOI: 10.1080/17425247.2021.2005576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Traditional therapy methods for treating tuberculous bone defects have several limitations. Furthermore, systemic toxicity and disease recurrence in tuberculosis (TB) have not been effectively addressed. AREAS COVERED This review is based on references from September 1998 to September 2021 and summarizes the classification and drug-loading methods of anti-TB drugs. The application of different types of biological scaffolds loaded with anti-TB drugs as a novel drug delivery strategy for tuberculous bone defects has been deeply analyzed. Furthermore, the limitations of the existing studies are summarized. EXPERT OPINION Loading anti-TB drugs into the scaffold through various drug-loading techniques can effectively improve the efficiency of anti-TB treatment and provide an effective means of treating tuberculous bone defects. This methodology also has good application prospects and provides directions for future research.
Collapse
Affiliation(s)
- Long Hua
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China.,Department of Orthopedics, The First Affiliated Hospital,Medical College of Zhejiang University, Hangzhou, P. R. China.,Department of orthopedics,The Sixth Affiliated Hospital, Xinjiang Medical University, Urumqi, P. R. China
| | - Hu Qian
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Ting Lei
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Wenbin Liu
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Xi He
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Yu Zhang
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Pengfei Lei
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China.,Department of Orthopedics, The First Affiliated Hospital,Medical College of Zhejiang University, Hangzhou, P. R. China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China.,Department of Orthopedics, The First Affiliated Hospital,Medical College of Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
4
|
Hua L, Qian H, Lei T, Zhang Y, Lei P, Hu Y. 3D-Printed Porous Tantalum Coated with Antitubercular Drugs Achieving Antibacterial Properties and Good Biocompatibility. Macromol Biosci 2021; 22:e2100338. [PMID: 34708567 DOI: 10.1002/mabi.202100338] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/05/2021] [Indexed: 12/17/2022]
Abstract
Treatment of bone and joint tuberculosis remains a challenge. The development of tissue-engineered drug-loaded biomaterials has increased the therapeutic options. However, for the treatment of osteoarticular tuberculosis with severe local infection risks and high weight-bearing requirements, it is still necessary to design materials consistent with bone biomechanics, cytocompatibility, and osteogenesis and to provide more effective antimicrobial functions. The antitubercular drugs isoniazid and rifampicin are loaded with gellan gum, and a 3D-printed porous tantalum surface is treated with polydopamine to increase adhesion. The osteogenic induction and differentiation are tested using alkaline phosphatase, alizarin red staining, sirius red staining, and polymerase chain reaction testing. Bone regeneration in vivo is measured by X-ray, micro-computerized tomography, hard tissue sections, and fluorescence staining. The drug is released slowly in vitro and in vivo, increasing the duration of antibacterial action. The composite bio-scaffolds inhibit Staphylococcus aureus growth, have good biocompatibility, and does not inhibit the induction of osteogenic differentiation of rat bone marrow mesenchymal stem cells. The composite bio-scaffold can simultaneously achieve localized long-term controlled drug release and bone regeneration and is a promising route for bone and joint tuberculosis treatment.
Collapse
Affiliation(s)
- Long Hua
- Department of Orthopedics, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital Central South University, Changsha, Hunan, P. R. China.,Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, P. R. China.,Department of Orthopedics, The Sixth Affiliated Hospital, Xinjiang Medical University, Urumqi, P. R. China
| | - Hu Qian
- Department of Orthopedics, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital Central South University, Changsha, Hunan, P. R. China
| | - Ting Lei
- Department of Orthopedics, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital Central South University, Changsha, Hunan, P. R. China
| | - Yu Zhang
- Department of Orthopedics, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital Central South University, Changsha, Hunan, P. R. China
| | - Pengfei Lei
- Department of Orthopedics, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital Central South University, Changsha, Hunan, P. R. China.,Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, P. R. China
| | - Yihe Hu
- Department of Orthopedics, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital Central South University, Changsha, Hunan, P. R. China.,Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
5
|
Cui M, Pan H, Li L, Fang D, Sun H, Qiao S, Li X, Pan W. Exploration and Preparation of Patient-specific Ciprofloxacin Implants Drug Delivery System Via 3D Printing Technologies. J Pharm Sci 2021; 110:3678-3689. [PMID: 34371072 DOI: 10.1016/j.xphs.2021.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022]
Abstract
A suitable drug-loaded implant delivery system that can effectively release antibacterial drug in the postoperative lesion area and help repair bone infection is very significant in the clinical treatment of bone defect. The work was aimed to investigate the feasibility of applying three-dimensional (3D) printing technology to prepare drug-loaded implants for bone repair. Semi-solid extrusion (SSE) and Fuse deposition modeling® (FDM) technologies were implemented and ciprofloxacin (CIP) was chosen as the model drug. All of the implants exhibited a smooth surface, good mechanical properties and satisfactory structural integrity as well as accurate dimensional size. In vitro drug release showed that the implants made by 3D printing technologies slowed down the initial drug burst effect and expressed a long-term sustained release behavior, compared with the implants prepared with traditional method. In addition, the patient-specific macrostructure implants, consisting of interconnected and different shapes pores, were created using unique lay down patterns. As a result, the weakest burst release effect and the sustained drug release were achieved in the patient-specific implants with linear pattern. These results clearly stated that 3D printing technology offers a viable approach to prepare control-releasing implants with patient-specific macro-porosity and presents novel strategies for treating bone infections.
Collapse
Affiliation(s)
- Mengsuo Cui
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Hao Pan
- School of Pharmacy, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Lu Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Dongyang Fang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Haowei Sun
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Sen Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xin Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
6
|
Domsta V, Seidlitz A. 3D-Printing of Drug-Eluting Implants: An Overview of the Current Developments Described in the Literature. Molecules 2021; 26:4066. [PMID: 34279405 PMCID: PMC8272161 DOI: 10.3390/molecules26134066] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 01/15/2023] Open
Abstract
The usage of 3D-printing for drug-eluting implants combines the advantages of a targeted local drug therapy over longer periods of time at the precise location of the disease with a manufacturing technique that easily allows modifications of the implant shape to comply with the individual needs of each patient. Research until now has been focused on several aspects of this topic such as 3D-printing with different materials or printing techniques to achieve implants with different shapes, mechanical properties or release profiles. This review is intended to provide an overview of the developments currently described in the literature. The topic is very multifaceted and several of the investigated aspects are not related to just one type of application. Consequently, this overview deals with the topic of 3D-printed drug-eluting implants in the application fields of stents and catheters, gynecological devices, devices for bone treatment and surgical screws, antitumoral devices and surgical meshes, as well as other devices with either simple or complex geometry. Overall, the current findings highlight the great potential of the manufacturing of drug-eluting implants via 3D-printing technology for advanced individualized medicine despite remaining challenges such as the regulatory approval of individualized implants.
Collapse
Affiliation(s)
- Vanessa Domsta
- Department of Biopharmacy and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Center of Drug Absorption and Transport, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
| | - Anne Seidlitz
- Department of Biopharmacy and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Center of Drug Absorption and Transport, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
| |
Collapse
|
7
|
Carvalho LT, Vieira TA, Zhao Y, Celli A, Medeiros SF, Lacerda TM. Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides. Int J Biol Macromol 2021; 183:1514-1539. [PMID: 33989687 DOI: 10.1016/j.ijbiomac.2021.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/10/2023]
Abstract
In recent years, growing attention has been devoted to naturally occurring biological macromolecules and their ensuing application in agriculture, cosmetics, food and pharmaceutical industries. They inherently have antigenicity, low immunogenicity, excellent biocompatibility and cytocompatibility, which are ideal properties for the design of biomedical devices, especially for the controlled delivery of active ingredients in the most diverse contexts. Furthermore, these properties can be modulated by chemical modification via the incorporation of other (macro)molecules in a random or controlled way, aiming at improving their functionality for each specific application. Among the wide variety of natural polymers, microbial polyhydroxyalkanoates (PHAs) and exopolysaccharides (EPS) are often considered for the development of original biomaterials due to their unique physicochemical and biological features. Here, we aim to fullfil a gap on the present associated literature, bringing an up-to-date overview of ongoing research strategies that make use of PHAs (poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxyoctanoate), poly(3-hydroxypropionate), poly (3-hydroxyhexanoate-co-3-hydroxyoctanoate), and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)) and EPS (bacterial cellulose, alginates, curdlan, pullulan, xanthan gum, dextran, hyaluronan, and schizophyllan) as sources of interesting and versatile biomaterials. For the first time, a monograph addressing the properties, pros and cons, status, challenges, and recent progresses regarding the application of these two important classes of biopolymers in biomedicine is presented.
Collapse
Affiliation(s)
- Layde T Carvalho
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Thiago A Vieira
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Yanjun Zhao
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery 449 and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Annamaria Celli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Simone F Medeiros
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil; Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| | - Talita M Lacerda
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| |
Collapse
|
8
|
Rahman J, Quodbach J. Versatility on demand - The case for semi-solid micro-extrusion in pharmaceutics. Adv Drug Deliv Rev 2021; 172:104-126. [PMID: 33705878 DOI: 10.1016/j.addr.2021.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022]
Abstract
Since additive manufacturing of pharmaceuticals has been introduced as viable method to produce individualized drug delivery systems with complex geometries and release profiles, semi-solid micro-extrusion has shown to be uniquely beneficial. Easy incorporation of actives, room-temperature processability and avoidance of cross-contamination by using disposables are some of the advantages that led many researchers to focus their work on this technology in the last few years. First acceptability and in-vivo studies have brought it closer towards implementation in decentralized settings. This review covers recently established process models in light of viscosity and printability discussions to help develop high quality printed medicines. Quality defining formulation and process parameters to characterize the various developed dosage forms are presented before critically discussing the role of semi-solid micro-extrusion in the future of personalized drug delivery systems. Remaining challenges regarding regulatory guidance and quality assurance that pose the last hurdle for large scale and commercial manufacturing are addressed.
Collapse
|
9
|
Giubilini A, Bondioli F, Messori M, Nyström G, Siqueira G. Advantages of Additive Manufacturing for Biomedical Applications of Polyhydroxyalkanoates. Bioengineering (Basel) 2021; 8:29. [PMID: 33672131 PMCID: PMC7926534 DOI: 10.3390/bioengineering8020029] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
In recent years, biopolymers have been attracting the attention of researchers and specialists from different fields, including biotechnology, material science, engineering, and medicine. The reason is the possibility of combining sustainability with scientific and technological progress. This is an extremely broad research topic, and a distinction has to be made among different classes and types of biopolymers. Polyhydroxyalkanoate (PHA) is a particular family of polyesters, synthetized by microorganisms under unbalanced growth conditions, making them both bio-based and biodegradable polymers with a thermoplastic behavior. Recently, PHAs were used more intensively in biomedical applications because of their tunable mechanical properties, cytocompatibility, adhesion for cells, and controllable biodegradability. Similarly, the 3D-printing technologies show increasing potential in this particular field of application, due to their advantages in tailor-made design, rapid prototyping, and manufacturing of complex structures. In this review, first, the synthesis and the production of PHAs are described, and different production techniques of medical implants are compared. Then, an overview is given on the most recent and relevant medical applications of PHA for drug delivery, vessel stenting, and tissue engineering. A special focus is reserved for the innovations brought by the introduction of additive manufacturing in this field, as compared to the traditional techniques. All of these advances are expected to have important scientific and commercial applications in the near future.
Collapse
Affiliation(s)
- Alberto Giubilini
- Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy;
| | - Federica Bondioli
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy;
| | - Massimo Messori
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Gustav Nyström
- Cellulose & Wood Materials Laboratory, Empa—Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland;
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Gilberto Siqueira
- Cellulose & Wood Materials Laboratory, Empa—Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland;
| |
Collapse
|
10
|
Hua L, Lei T, Qian H, Zhang Y, Hu Y, Lei P. 3D-printed porous tantalum: recent application in various drug delivery systems to repair hard tissue defects. Expert Opin Drug Deliv 2021; 18:625-634. [PMID: 33270470 DOI: 10.1080/17425247.2021.1860015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The treatment of hard tissue defects, especially those of bone and cartilage, induced by infections or tumors remains challenging. Traditional methods, including debridement with systematic chemotherapy, have shortcomings owing to their inability to eliminate infections and high systematic toxicity. AREA COVERED This review comprehensively summarizes and discusses the current applications of 3D-printed porous tantalum (3D-P-p-Ta), a novel drug delivery strategy, in drug delivery systems to repair hard tissue defects, as well as the limitations of existing data and potential future research directions. EXPERT OPINION Drug delivery systems have advanced medical treatments, with the advantages of high local drug concentration, long drug-release period, and minimal systematic toxicity. Due to its excellent biocompatibility, ideal mechanical property, and anti-corrosion ability, porous tantalum is one of the most preferable loading scaffolds. 3D printing allows for freedom of design and facilitates the production of regular porous implants with high repeatability. There are several reports on the application of 3D-P-p-Ta in drug delivery systems for the management of infection- or tumor-associated bone defects, yet, to the best of our knowledge, no reviews have summarized the current research progress.
Collapse
Affiliation(s)
- Long Hua
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha Hunan, China.,Department of Orthopedics, No.6 Affiliated Hospital Xinjiang Medical University, Urumqi Xinjiang, China
| | - Ting Lei
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha Hunan, China
| | - Hu Qian
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha Hunan, China
| | - Yu Zhang
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha Hunan, China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha Hunan, China
| | - Pengfei Lei
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha Hunan, China.,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, China
| |
Collapse
|
11
|
Tavares MT, Gaspar VM, Monteiro MV, Farinha JPS, Baleizao C, Mano J. GelMA/bioactive silica nanocomposite bioinks for stem cell osteogenic differentiation. Biofabrication 2021; 13. [PMID: 33455952 DOI: 10.1088/1758-5090/abdc86] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/15/2021] [Indexed: 01/12/2023]
Abstract
Leveraging 3D bioprinting for processing stem cell-laden biomaterials has unlocked a tremendous potential for fabricating living 3D constructs for bone tissue engineering. Even though several bioinks developed to date display suitable physicochemical properties for stem cell seeding and proliferation, they generally lack the nanosized minerals present in native bone bioarchitecture. To enable the bottom-up fabrication of biomimetic 3D constructs for bioinstructing stem cells pro-osteogenic differentiation, herein we developed multi-bioactive nanocomposite bioinks that combine the organic and inorganic building blocks of bone. For the organic component gelatin methacrylate (GelMA), a photocrosslinkable denaturated collagen derivative used for 3D bioprinting was selected due to its rheological properties display of cell adhesion moities to which bone tissue precursors such as human bone marrow derived mesenchymal stem cells (hBM-MSCs) can attach to. The inorganic building block was formulated by incorporating mesoporous silica nanoparticles functionalized with calcium, phosphate and dexamethasone (MSNCaPDex), which previously proven to induce osteogenic differentiation. The newly formulated photocrosslinkable nanocomposite GelMA bioink incorporating MSNCaPDex nanoparticles and laden with hBM-MSCs was sucessfully processed into a 3D bioprintable construct with structural fidelity and well dispersed nanoparticles throughout the hydrogel matrix. These nanocomposite constructs could induce the deposition of apatite in vitro, thus showing attractive bioactivity properties. Viability and differentiation studies showed that hBM-MSCs remained viable and exhibited osteogenic differentiation biomarkers when incorporated in GelMA/MSNCaPDex constructs and without requiring further biochemical nor mechanical stimuli. Overall, our nanocomposite bioink has demonstrated excellent processability via extrusion bioprinting into osteogenic constructs with potential application in bone tissue repair and regeneration.
Collapse
Affiliation(s)
- Márcia T Tavares
- Centro de Química Estrutural and Department of Chemical Engineering, Universidade de Lisboa Instituto Superior Técnico, Complexo Interdisciplinar Instituto Superior Técnico Av. Rovisco Pais 1, Lisboa, Lisboa, 1049-001, PORTUGAL
| | - Vítor M Gaspar
- CICECO - Aveiro Institute of Materials, Universidade de Aveiro Departamento de Quimica, Complexo de Laboratórios Tecnológicos Campus Universitário de Santiago, Aveiro, Portugal, 3810-193, PORTUGAL
| | - Maria V Monteiro
- CICECO - Aveiro Institute of Materials, Universidade de Aveiro Departamento de Quimica, Complexo de Laboratórios Tecnológicos Campus Universitário de Santiago Aveiro, Portugal, Aveiro, Portugal, 3810-193, PORTUGAL
| | - José Paulo S Farinha
- Centro de Química Estrutural and Department of Chemical Engineering, Universidade de Lisboa Instituto Superior Técnico, Complexo Interdisciplinar Instituto Superior Técnico Av. Rovisco Pais 1, Lisboa, Lisboa, 1049-001, PORTUGAL
| | - Carlos Baleizao
- Centro de Química Estrutural and Department of Chemical Engineering, Universidade de Lisboa, Complexo Interdisciplinar Instituto Superior Técnico Av. Rovisco Pais 1, Lisboa, 1049-001, PORTUGAL
| | - João Mano
- CICECO - Aveiro Institute of Materials, Universidade de Aveiro Departamento de Quimica, CICECO - Complexo de Laboratórios Tecnológicos Campus Universitário de Santiago, Aveiro, Portugal, 3810-193, PORTUGAL
| |
Collapse
|
12
|
Durga Prasad Reddy R, Sharma V. Additive manufacturing in drug delivery applications: A review. Int J Pharm 2020; 589:119820. [DOI: 10.1016/j.ijpharm.2020.119820] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
|
13
|
Bagde A, Kuthe A, Quazi S, Gupta V, Jaiswal S, Jyothilal S, Lande N, Nagdeve S. State of the Art Technology for Bone Tissue Engineering and Drug Delivery. Ing Rech Biomed 2019. [DOI: 10.1016/j.irbm.2019.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Bouguéon G, Kauss T, Dessane B, Barthélémy P, Crauste-Manciet S. Micro- and nano-formulations for bioprinting and additive manufacturing. Drug Discov Today 2019; 24:163-178. [DOI: 10.1016/j.drudis.2018.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/05/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023]
|
15
|
Lim SH, Kathuria H, Tan JJY, Kang L. 3D printed drug delivery and testing systems - a passing fad or the future? Adv Drug Deliv Rev 2018; 132:139-168. [PMID: 29778901 DOI: 10.1016/j.addr.2018.05.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/12/2018] [Accepted: 05/12/2018] [Indexed: 12/23/2022]
Abstract
The US Food and Drug Administration approval of the first 3D printed tablet in 2015 has ignited growing interest in 3D printing, or additive manufacturing (AM), for drug delivery and testing systems. Beyond just a novel method for rapid prototyping, AM provides key advantages over traditional manufacturing of drug delivery and testing systems. These includes the ability to fabricate complex geometries to achieve variable drug release kinetics; ease of personalising pharmacotherapy for patient and lowering the cost for fabricating personalised dosages. Furthermore, AM allows fabrication of complex and micron-sized tissue scaffolds and models for drug testing systems that closely resemble in vivo conditions. However, there are several limitations such as regulatory concerns that may impede the progression to market. Here, we provide an overview of the advantages of AM drug delivery and testing, as compared to traditional manufacturing techniques. Also, we discuss the key challenges and future directions for AM enabled pharmaceutical applications.
Collapse
Affiliation(s)
- Seng Han Lim
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Block S4A, Level 3, 117543, Singapore
| | - Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Block S4A, Level 3, 117543, Singapore
| | - Justin Jia Yao Tan
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Block S4A, Level 3, 117543, Singapore
| | - Lifeng Kang
- School of Pharmacy, University of Sydney, Pharmacy and Bank Building A15, NSW 2006, Australia.
| |
Collapse
|
16
|
Tarafder S, Lee CH. 3D printing integrated with controlled delivery for musculoskeletal tissue engineering. ACTA ACUST UNITED AC 2017. [DOI: 10.2217/3dp-2017-0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
3D printing is an emerging tool to fabricate scaffolds for tissue engineering and regenerative medicine, benefited by customized design, tunable internal microstructure and a wide range of applicable materials. As a recent technical advancement, 3D-printed scaffolds have been incorporated with a controlled delivery of growth factors and/or other bioactive cues to facilitate tissue regeneration, in addition to providing a temporal structural substrate for cell and tissue ingrowth. This review covers a number of the existing approaches to incorporate a controlled delivery system in 3D-printed scaffolds from hydrogel adsorption and surface coating to chemical integration and embedding microspheres. In addition, we discuss the advantages and disadvantages of each delivery method integrated in 3D-printed scaffolds, outstanding challenges and future directions.
Collapse
Affiliation(s)
- Solaiman Tarafder
- Regenerative Engineering Laboratory, Section for Oral & Maxillofacial Surgery, College of Dental Medicine, Columbia University, 630 W 168 St – VC12–230, New York, NY 10032, USA
| | - Chang H Lee
- Regenerative Engineering Laboratory, Section for Oral & Maxillofacial Surgery, College of Dental Medicine, Columbia University, 630 W 168 St – VC12–230, New York, NY 10032, USA
| |
Collapse
|
17
|
Powder-based 3D printing for bone tissue engineering. Biotechnol Adv 2016; 34:740-753. [DOI: 10.1016/j.biotechadv.2016.03.009] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/20/2016] [Accepted: 03/27/2016] [Indexed: 12/19/2022]
|