1
|
Dobrzyńska-Mizera M, Dodda JM, Liu X, Knitter M, Oosterbeek RN, Salinas P, Pozo E, Ferreira AM, Sadiku ER. Engineering of Bioresorbable Polymers for Tissue Engineering and Drug Delivery Applications. Adv Healthc Mater 2024:e2401674. [PMID: 39233521 DOI: 10.1002/adhm.202401674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/15/2024] [Indexed: 09/06/2024]
Abstract
Herein, the recent advances in the development of resorbable polymeric-based biomaterials, their geometrical forms, resorption mechanisms, and their capabilities in various biomedical applications are critically reviewed. A comprehensive discussion of the engineering approaches for the fabrication of polymeric resorbable scaffolds for tissue engineering, drug delivery, surgical, cardiological, aesthetical, dental and cardiovascular applications, are also explained. Furthermore, to understand the internal structures of resorbable scaffolds, representative studies of their evaluation by medical imaging techniques, e.g., cardiac computer tomography, are succinctly highlighted. This approach provides crucial clinical insights which help to improve the materials' suitable and viable characteristics for them to meet the highly restrictive medical requirements. Finally, the aspects of the legal regulations and the associated challenges in translating research into desirable clinical and marketable materials of polymeric-based formulations, are presented.
Collapse
Affiliation(s)
- Monika Dobrzyńska-Mizera
- Institute of Materials Technology, Polymer Division, Poznan University of Technology, Poznan, Poland
| | - Jagan Mohan Dodda
- New Technologies - Research Centre (NTC), University of West Bohemia, Univerzitní 8, Pilsen, 30100, Czech Republic
| | - Xiaohua Liu
- Chemical and Biomedical Engineering Department, University of Missouri, 1030 Hill Street, Columbia, Missouri, 65211, USA
| | - Monika Knitter
- Institute of Materials Technology, Polymer Division, Poznan University of Technology, Poznan, Poland
| | - Reece N Oosterbeek
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Pablo Salinas
- Department of Cardiology, Hospital Clínico San Carlos, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Eduardo Pozo
- Department of Cardiology, Hospital Clínico San Carlos, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle upon Tyne, Newcastle, NE1 7RU, UK
| | - Emmanuel Rotimi Sadiku
- Tshwane University of Technology, Department of Chemical, Metallurgical and Materials Engineering, Polymer Division & Institute for Nano Engineering Research (INER), Pretoria West Campus, Pretoria, South Africa
| |
Collapse
|
2
|
Kołakowska A, Kołbuk D, Chwojnowski A, Rafalski A, Gadomska-Gajadhur A. Chitosan-Based High-Intensity Modification of the Biodegradable Substitutes for Cancellous Bone. J Funct Biomater 2023; 14:410. [PMID: 37623655 PMCID: PMC10455456 DOI: 10.3390/jfb14080410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
An innovative approach to treating bone defects is using synthetic bone substitutes made of biomaterials. The proposed method to obtain polylactide scaffolds using the phase inversion technique with a freeze extraction variant enables the production of substitutes with morphology similar to cancellous bone (pore size 100-400 µm, open porosity 94%). The high absorbability of the implants will enable their use as platelet-rich plasma (PRP) carriers in future medical devices. Surface modification by dipping enabled the deposition of the hydrophilic chitosan (CS) layer, maintaining good bone tissue properties and high absorbability (850% dry weight). Introducing CS increases surface roughness and causes local changes in surface free energy, promoting bone cell adhesion. Through this research, we have developed a new and original method of low-temperature modification of PLA substitutes with chitosan. This method uses non-toxic reagents that do not cause changes in the structure of the PLA matrix. The obtained bone substitutes are characterised by exceptionally high hydrophilicity and morphology similar to spongy bone. In vitro studies were performed to analyse the effect of morphology and chitosan on cellular viability. Substitutes with properties similar to those of cancellous bone and which promote bone cell growth were obtained.
Collapse
Affiliation(s)
- Anna Kołakowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland;
| | - Dorota Kołbuk
- Institute of Fundamental Technological Research Polish Academy of Sciences, Pawińskiego St. 5B, 02-106 Warsaw, Poland
| | - Andrzej Chwojnowski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena St. 4, 02-109 Warsaw, Poland
| | - Andrzej Rafalski
- Radiosterilisation Facility for Medical Supplies and Transplants, Institute Nuclear Chemistry and Technology, Dorodna St. 16, 03-195 Warsaw, Poland
| | | |
Collapse
|
3
|
Stodolak-Zych E, Ficek K, Wieczorek J, Kajor M, Gryń K, Rapacz-Kmita A, Rajca J, Kosenyuk Y, Stolarz M, Błażewicz S. Assessment of sheep knee joint after ACL replacement with Achilles tendon autograft and PLA-based implant. J Mech Behav Biomed Mater 2021; 125:104923. [PMID: 34753103 DOI: 10.1016/j.jmbbm.2021.104923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 09/24/2021] [Accepted: 10/24/2021] [Indexed: 11/28/2022]
Abstract
In this study, we propose a new approach in the anterior cruciate ligament (ACL) replacement to provide stability and integration with bone tunnel. A polylactide (PLA)-based tubular implant was used to support the graft stabilization in femoral and tibial bones and to stimulate the healing process after (ACL) replacement on a sheep model. The ACL was replaced with an autologous Achilles tendon split graft. The tendon-to-bone healing in the model was analyzed after 6 and 12 weeks. Two groups of animals were compared, i.e. the group with the PLA-based implant used in the ACL replacement and the control group without the implant. The knee joints were mechanically and clinically evaluated, including the histopathology tests, to determine their stability and integrity. The results indicated that the bioresorbable PLA-based tubular implant may facilitate integration of the tendon graft with bone. Remodeling the allograft inside the implant improves the joint mobility from the first week of healing: no pathological changes were observed at the surgery site and in the animals' mobility. After 6 and 12 weeks of healing no significant changes in the mechanical parameters of the knee joint were observed, regarding the joint failure force, knee displacement, angular mobility range and joint stiffness. Relatively small values of the non-destructive tests in the knee displacement, already 6 weeks after surgery, indicated the early stabilization of the knee joint. The studies showed that the failure forces of knee joints after the ACL replacement with the PLA-based implant are lower than those of an intact joint, although their biomechanical features, including strain-at- failure, are similar. The biomechanical parameters of the knee joint were significantly improved due to the selected method of attaching the autograft ends to the femoral and tibial bone surfaces. After 12 weeks the intra-tunnel tendon-bone site with the PLA implant revealed the better tibia-femur joint mechanical stability, linear force-strain function and the decreasing strain-to-failure value, as compared to the control group.
Collapse
Affiliation(s)
- Ewa Stodolak-Zych
- Faculty of Materials Science and Ceramics, University of Science and Technology, 30-059, Krakow, Poland.
| | - Krzysztof Ficek
- The Jerzy Kukuczka Academy of Physical Education, 40-065, Katowice, Poland; Galen - Orthopaedics, 43-150, Bierun, Poland
| | | | - Maciej Kajor
- Medical University of Silesia, Ul. Medyków 18, 40-752, Katowice, Poland
| | - Karol Gryń
- Faculty of Materials Science and Ceramics, University of Science and Technology, 30-059, Krakow, Poland
| | - Alicja Rapacz-Kmita
- Faculty of Materials Science and Ceramics, University of Science and Technology, 30-059, Krakow, Poland
| | | | - Yuriy Kosenyuk
- National Research Institute of Animal Production, 32-083, Balice, Poland
| | | | - Stanisław Błażewicz
- Faculty of Materials Science and Ceramics, University of Science and Technology, 30-059, Krakow, Poland
| |
Collapse
|
4
|
Budnicka M, Kołbuk D, Ruśkowski P, Gadomska-Gajadhur A. Poly-L-lactide scaffolds with super pores obtained by freeze-extraction method. J Biomed Mater Res B Appl Biomater 2020; 108:3162-3173. [PMID: 32501603 DOI: 10.1002/jbm.b.34642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 12/14/2022]
Abstract
A nonplanar polylactide scaffold to be used in tissue engineering was obtained by freeze-extraction method. Properties of the scaffold were modified by adding Eudragit® E100. The impact of the modification on morphology, porosity and pore size, mass absorbability, mechanical properties was determined. Scanning electron microscopy (SEM), hydrostatic weighing test, static compression test was used to this end. The chemical composition of the scaffold was defined based on infrared spectroscopy (FTIR) and energy-dispersive X-ray spectroscopy (EDX). Biocompatibility was confirmed by quantitative tests and microscopic observation. The obtained results show that the obtained scaffolds may be applied as a carrier of hydrophilic cellular growth factors for more efficient tissue regeneration.
Collapse
Affiliation(s)
- Monika Budnicka
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Dorota Kołbuk
- Institute of Fundamental Technological Research PAS, Warsaw, Poland
| | - Paweł Ruśkowski
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | | |
Collapse
|
5
|
Abstract
Human bones have unique structures and characteristics, and replacing a natural bone in the case of bone fracture or bone diseases is a very complicated problem. The main goal of this paper was to summarize the recent research on polymer materials as bone substitutes and for bone repair. Bone treatment methods, bone substitute materials as well as their advantages and drawbacks, and manufacturing methods were reviewed. Biopolymers are the most promising materials in the field of artificial bones and using biopolymers with the shape memory effect can improve the integration of an artificial bone into the human body by better mimicking the structure and properties of natural bones, decreasing the invasiveness of surgical procedures by producing deployable implants. It has been shown that the application of the rapid prototyping technology for artificial bones allows the customization of bone substitutes for a patient and the creation of artificial bones with a complex structure.
Collapse
Affiliation(s)
- Anastasiia Kashirina
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology, PO Box 301, No. 92 West Dazhi Street, Harbin 150001, China
| | - Yongtao Yao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, No. 2 YiKuang Street, Harbin 150080, China.
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology, PO Box 301, No. 92 West Dazhi Street, Harbin 150001, China
| | - Jinsong Leng
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, No. 2 YiKuang Street, Harbin 150080, China.
| |
Collapse
|
6
|
Budnicka M, Szymaniak M, Kołbuk D, Ruśkowski P, Gadomska-Gajadhur A. Biomineralization of poly-l-lactide spongy bone scaffolds obtained by freeze-extraction method. J Biomed Mater Res B Appl Biomater 2019; 108:868-879. [PMID: 31339656 DOI: 10.1002/jbm.b.34441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/17/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022]
Abstract
Implants in the form of polymer scaffolds are commonly used to regenerate bone tissue after traumas or tooth extractions. However, few implant formation methods enable building polymer scaffolds allowing to reconstruct larger bone losses without immune response. Spacious, porous poly-l-lactide implants with considerable volume were obtained using the phase inversion method with the freeze-extraction variant. The calcium phosphate (CaP) coating was deposited on implant surfaces with the biomimetic method to improve the implant's osteoconductivity. The substitues morphology was characterized-porosity, size and shape of pores; mechanical properties, mass absorbability of implants before and after mineralization. The characteristics were provided with scanning electron microscopy (SEM), static compression test and hydrostatic weighing, respectively. The presence of CaPs in the entire volume of the implant was confirmed with SEM and infrared spectroscopy with Fourier transform (FTIR). The biocompatibility of scaffolds was confirmed with in vitro quantitative test and microscopic observations. The obtained results show that the implants can be used in tissue engineering as a vehicle of platelet-rich plasma to regenerate critical spongy bone losses.
Collapse
Affiliation(s)
- Monika Budnicka
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Monika Szymaniak
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Dorota Kołbuk
- Institute of Fundamental Technological Research PAS, Warsaw, Poland
| | - Paweł Ruśkowski
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | | |
Collapse
|
7
|
Budnicka M, Trzaskowska J, Gadomska-Gajadhur A, Ruśkowski P, Synoradzki L. Preparation of polylactide scaffolds for cancellous bone regeneration – preliminary investigation and optimization of the process. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-0708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Polylactide scaffolds were prepared for the cancellous bone regeneration by the phase inversion method with freeze-extraction variant. A preliminary investigation and the optimization of the process were performed. For the obtained scaffolds, regression equations determining the effect: PLLA concentration by weight in 1,4-dioxane; volume ratio of the porophore/PLLA solution in 1,4-dioxane; and implant-forming solution pouring temperature, on the open porosity and mass absorbability were determined. The conditions in which the obtained implants were characterized by the maximal absorbability with the open porosity greater than 90 % were obtained.
Collapse
Affiliation(s)
- Monika Budnicka
- Faculty of Chemistry , Warsaw University of Technology , Noakowskiego 3, 00-664 Warszawa , Poland
| | - Joanna Trzaskowska
- Faculty of Chemistry , Warsaw University of Technology , Noakowskiego 3, 00-664 Warszawa , Poland
| | | | - Paweł Ruśkowski
- Faculty of Chemistry , Warsaw University of Technology , Noakowskiego 3, 00-664 Warszawa , Poland
| | - Ludwik Synoradzki
- Faculty of Chemistry , Warsaw University of Technology , Noakowskiego 3, 00-664 Warszawa , Poland
| |
Collapse
|
8
|
Liu G, Guo Y, Zhang L, Wang X, Liu R, Huang P, Xiao Y, Chen Z, Chen Z. A standardized rat burr hole defect model to study maxillofacial bone regeneration. Acta Biomater 2019; 86:450-464. [PMID: 30605772 DOI: 10.1016/j.actbio.2018.12.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/03/2018] [Accepted: 12/30/2018] [Indexed: 12/18/2022]
Abstract
With high incidence rate and unique regeneration features, maxillofacial burr hole bone defects require a specially designed bone defect animal model for the evaluation of related bone regenerative approaches. Although some burr hole defect models have been developed in long bones or calvarial bones, the mandible has unique tissue development origins and regenerative environments. This suggests that the defect model should be prepared in the maxillofacial bone area. After dissecting the anatomic structures of rat mandibles, we found that creating defects in the anterior tooth area avoided damaging important organs and improved animal welfare. Furthermore, the available bone volume at the anterior tooth area was superior to that of the posterior tooth and ascending ramus areas. We then managed to standardize the model by controlling the age, weight and gender of the animal, creating standardized measurement instruments and reducing the variations derived from various operators. We also succeeded in deterring the self-rehabilitation of the proposed model by increasing the defect size. The 6 × 2 mm and 8 × 2 mm defects were found to meet the requirements of bone regenerative studies. This study provided a step-by-step standardized burr hole bone defect model with minimal tissue damage in small animals. The evaluations resulting from this model testify to the in vitro outcomes of the proposed regenerative approaches and provide preliminary screening data for further large animal and clinical trials. Therefore, the inclusion of this model may optimize the evaluation systems for maxillofacial burr hole bone defect regenerative approaches. STATEMENT OF SIGNIFICANCE: Unremitting effort has been devoted to the development of bone regenerative materials to restore maxillofacial burr hole bone defects because of their high clinical incidence rate. In the development of these biomaterials, in vivo testing in small animals is necessary to evaluate the effects of candidate biomaterials. However, little has been done to develop such defect models in small animals. In this study, we developed a standardized rat mandible burr hole bone defect model with minimal injury to the animals. A detailed description and supplementary video were provided to guide the preparation. The development of this model optimizes the maxillofacial bone regenerative approach evaluation system.
Collapse
Affiliation(s)
- Guanqi Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yuanlong Guo
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Linjun Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xiaoshuang Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Runheng Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Peina Huang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yin Xiao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia
| | - Zhuofan Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Zetao Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| |
Collapse
|
9
|
Wyrwa R, Otto K, Voigt S, Enkelmann A, Schnabelrauch M, Neubert T, Schneider G. Electrospun mucosal wound dressings containing styptics for bleeding control. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:419-428. [DOI: 10.1016/j.msec.2018.07.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 05/12/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022]
|
10
|
Effects of Polylactide Copolymer Implants and Platelet-Rich Plasma on Bone Regeneration within a Large Calvarial Defect in Sheep. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4120471. [PMID: 29862268 PMCID: PMC5971313 DOI: 10.1155/2018/4120471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/18/2018] [Accepted: 03/01/2018] [Indexed: 12/17/2022]
Abstract
The aim of this study was to verify whether L-lactide/DL-lactide copolymer 80/20 (PLDLLA) and platelet-rich plasma (PRP) trigger bone formation within critical-sized calvarial defects in adult sheep (n = 6). Two craniectomies, each ca. 3 cm in diameter, were created in each animal. The first craniectomy was protected with an inner polylactide membrane, filled with PRP-polylactide granules, and covered with outer polylactide membrane. The second control craniectomy was left untreated. The animals were euthanized at 6, 7, 17, 19, 33, and 34 weeks after surgery, and the quality and the rate of reossification were assessed histomorphometrically and microtomographically. The study demonstrated that application of implants made of PLDLLA 80/20 combined with an osteopromotive substance (e.g., PRP) may promote bone healing in large calvarial defect in sheep. These promising proof-of-concept studies need to be verified in the future on a larger cohort of animals and over a longer period of time in order to draw definitive conclusions.
Collapse
|
11
|
Shine R, Neghabat Shirazi R, Ronan W, Sweeney CA, Kelly N, Rochev YA, McHugh PE. Modeling of Biodegradable Polyesters With Applications to Coronary Stents. J Med Device 2017. [DOI: 10.1115/1.4035723] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The interest in biodegradable polymers for clinical and biomedical engineering applications has seen a dramatic increase in the last 10 years. Recent innovations include bioresorbable polymeric stents (BPS), which are temporary vascular scaffolds designed to restore patency and provide short-term support to a blocked blood vessel, before becoming naturally resorbed over time. BPS offer possibilities to overcome the long-term complications often observed with the permanent metallic stents, well established in the treatment of coronary and peripheral artery disease. From the perspective of designing next generation BPS, the bulk degradation behavior of the polymer material adds considerable complications. Computational modeling offers an efficient framework to predict and provide understanding into the behavior of medical devices and implants. Current computational modeling techniques for the degradation of BPS are either phenomenologically or physically based. In this work, a physically based polymer degradation model is implemented into a number of different computational frameworks to investigate the degradation of a number of polymeric structures. A thermal analogy is presented to implement the degradation model into the commercially available finite-element code, abaqus/standard. This approach is then applied to the degradation of BPS, and the effects of material, boundary condition, and design on the degradation rates of the stents are examined. The results indicate that there is a notable difference in the molecular weight trends predicted for the different materials and boundary condition assumptions investigated, with autocatalysis emerging as a dominant mechanism controlling the degradation behavior. Insights into the scaffolding ability of the various BPS examined are then obtained using a suggested general relationship between Young's modulus and molecular weight.
Collapse
Affiliation(s)
- Rosa Shine
- Biomechanics Research Centre (BMEC), Biomedical Engineering, National University of Ireland Galway, University Road, Galway H91 HX31, Ireland e-mail:
| | - Reyhaneh Neghabat Shirazi
- Biomechanics Research Centre (BMEC), Biomedical Engineering, National University of Ireland Galway, University Road, Galway H91 HX31, Ireland e-mail:
| | - William Ronan
- Biomechanics Research Centre (BMEC), Biomedical Engineering, National University of Ireland Galway, University Road, Galway H91 HX31, Ireland e-mail:
| | - Caoimhe A. Sweeney
- Biomechanics Research Centre (BMEC), Biomedical Engineering, National University of Ireland Galway, University Road, Galway H91 HX31, Ireland e-mail:
| | - Nicola Kelly
- Biomechanics Research Centre (BMEC), Biomedical Engineering, National University of Ireland Galway, University Road, Galway H91 HX31, Ireland e-mail:
| | - Yury A. Rochev
- National Centre for Biomedical Engineering Science (NCBES), National University of Ireland Galway, University Road, Galway H91 HX31, Ireland e-mail:
| | - Peter E. McHugh
- Professor Biomechanics Research Centre (BMEC), Biomedical Engineering, National University of Ireland Galway, University Road, Galway H91 HX31, Ireland e-mail:
| |
Collapse
|