1
|
Romero-Gavilán F, García-Arnáez I, Cerqueira A, Scalschi L, Vicedo B, Villagrasa A, Izquierdo R, Azkargorta M, Elortza F, Gurruchaga M, Goñi I, Suay J. Insight into the antibacterial mechanism of Cu-enriched sol-gel coatings employing proteomics. Biomater Sci 2023; 11:1042-1055. [PMID: 36562316 DOI: 10.1039/d2bm01421a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Advanced antibacterial biomaterials can help reduce the severe consequences of infections. Using copper compounds is an excellent option to achieve this goal; they offer a combination of regenerative and antimicrobial functions. In this study, new CuCl2-doped sol-gel coatings were developed and physicochemically characterised. Their osteogenic and inflammatory responses were tested in vitro using human osteoblasts and THP-1 macrophages. Their antibacterial effect was evaluated using Escherichia coli and Staphylococcus aureus. The Cu influence on the adsorption of human serum proteins was analysed employing proteomics. The materials released Cu2+ and were not cytotoxic. The osteoblasts in contact with these materials showed an increased ALP, BMP2 and OCN gene expression. THP-1 showed an increase in pro-inflammatory markers related to M1 polarization. Moreover, Cu-doped coatings displayed a potent antibacterial behaviour against E. coli and S. aureus. The copper ions affected the adsorption of proteins related to immunity, coagulation, angiogenesis, fibrinolysis, and osteogenesis. Interestingly, the coatings had increased affinity to proteins with antibacterial functions and proteins linked to the complement system activation that can lead to direct bacterial killing via large pore-forming complexes. These results contribute to our understanding of the antibacterial mechanisms of Cu-biomaterials and their interaction with biological systems.
Collapse
Affiliation(s)
- Francisco Romero-Gavilán
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| | - Iñaki García-Arnáez
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - Andreia Cerqueira
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| | - Loredana Scalschi
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Begonya Vicedo
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Alejandro Villagrasa
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| | - Raúl Izquierdo
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Mariló Gurruchaga
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - Isabel Goñi
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - Julio Suay
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| |
Collapse
|
2
|
García-Arnáez I, Romero-Gavilán F, Cerqueira A, Elortza F, Azkargorta M, Muñoz F, Mata M, de Llano JM, Suay J, Gurruchaga M, Goñi I. Correlation between biological responses in vitro and in vivo to Ca-doped sol-gel coatings assessed using proteomic analysis. Colloids Surf B Biointerfaces 2022; 220:112962. [DOI: 10.1016/j.colsurfb.2022.112962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022]
|
3
|
Cerqueira A, García-Arnáez I, Muriach M, Azkargorta M, Elortza F, Izquierdo R, Romero-Gavilán F, Gurruchaga M, Suay J, Goñi I. The effect of calcium-magnesium mixtures in sol-gel coatings on bone tissue regeneration. Biomater Sci 2022; 10:5634-5647. [PMID: 35993129 DOI: 10.1039/d2bm00742h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Calcium and magnesium are two elements essential for bone structure and metabolism. However, their synergistic or competitive effects on bone regeneration are often overlooked during biomaterial development. We examined the interactions between Ca and Mg in sol-gel coatings doped with mixtures of CaCl2 (0.5%) and MgCl2 (0.5, 1, and 1.5%). After physicochemical characterisation, the materials were incubated in vitro with MC3T3-E1 osteoblastic cells and RAW264.7 macrophages, and the protein adsorption was analysed using nLC-MS/MS. The incorporation of the ions did not lead to the formation of crystalline structures and did not affect the sol-gel network cross-linking. The release of the ions did not cause cytotoxic effects at any tested concentration. The proteomic analysis showed that adding the Ca and Mg ions elevated the adsorption of proteins associated with inflammatory response regulation (e.g., ALBU, CLUS, HPT, HPTR, A1AG1 and A1AG2) but decreased the adsorption of immunoglobulins. The CaMg coatings had reduced affinity to proteins associated with coagulation (e.g., FA9, FA10, FA11, FA12) but increased the adsorption of proteins involved in cell adhesion (DSG1, DESP, FBLN1, ZA2G). In vitro assays revealed that the cellular response was affected by changing the concentration of Mg. Moreover, our results show that these differences reflect the changes in the concentrations of both ions in the mix but are not a simple additive effect.
Collapse
Affiliation(s)
- Andreia Cerqueira
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| | - Iñaki García-Arnáez
- Departament of Science and Technology of Polymers, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - María Muriach
- Deparment of Medicine, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Raúl Izquierdo
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| | - Francisco Romero-Gavilán
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| | - Mariló Gurruchaga
- Departament of Science and Technology of Polymers, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - Julio Suay
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| | - Isabel Goñi
- Departament of Science and Technology of Polymers, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| |
Collapse
|
4
|
Cerqueira A, Romero-Gavilán F, García-Arnáez I, Martinez-Ramos C, Ozturan S, Izquierdo R, Azkargorta M, Elortza F, Gurruchaga M, Suay J, Goñi I. Characterization of magnesium doped sol-gel biomaterial for bone tissue regeneration: The effect of Mg ion in protein adsorption. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 125:112114. [PMID: 33965118 DOI: 10.1016/j.msec.2021.112114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/11/2021] [Accepted: 03/29/2021] [Indexed: 12/20/2022]
Abstract
Magnesium is the fourth most abundant element in the human body with a wide battery of functions in the maintenance of normal cell homeostasis. In the bone, this element incorporates in the hydroxyapatite structure and it takes part in mineral metabolism and regulates osteoclast functions. In this study, sol-gel materials with increasing concentrations of MgCl2 (0.5, 1, and 1.5%) were synthesized and applied onto Ti surfaces as coatings. The materials were first physicochemically characterized. In vitro responses were examined using the MC3T3-E1 osteoblastic cells and RAW264.7 macrophages. Human serum protein adsorption was evaluated employing nLC-MS/MS. The incorporation of Mg did not affect the crosslinking of the sol-gel network, and a controlled release of Mg was observed; it was not cytotoxic at any of the tested concentrations. The cytoskeleton arrangement of MC3T3-E1 cells cultured on the Mg-doped materials changed in comparison with controls; the cells became more elongated, with protruded lamellipodia and increased cell surface. The expression of integrins (ITGA5 and ITGB1) was boosted by Mg-coatings. The ALP activity and expression of TGF-β, OSX and RUNX2 genes were also increased. In RAW264.7 cells, TNF-α secretion was reduced, while TGF-β and IL-4 expression rose. These changes correlated with the altered protein adsorption patterns. The Mg-doped coatings showed increased adsorption of anti-inflammatory (CLUS, IC1, CFAH, and VTNC), cell adhesion (DSG1, FILA2, and DESP) and tissue regeneration (VTNC and CYTA) proteins. This integrated approach to biomaterial characterization revealed the potential of Mg in bone tissue regeneration.
Collapse
Affiliation(s)
- Andreia Cerqueira
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Francisco Romero-Gavilán
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| | - Iñaki García-Arnáez
- Departament of Science and Technology of Polymers, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - Cristina Martinez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de Valencia, Camino de Vera, s/n, 46022 Valencia, Spain
| | - Seda Ozturan
- Department of Periodontology, Faculty of Dentistry, Istanbul Medeniyet University, Dumlupınar D100 Karayolu, 98, 34720 Istanbul, Turkey
| | - Raúl Izquierdo
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Mariló Gurruchaga
- Departament of Science and Technology of Polymers, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - Julio Suay
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Isabel Goñi
- Departament of Science and Technology of Polymers, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| |
Collapse
|
5
|
Cerqueira A, Romero-Gavilán F, García-Arnáez I, Martinez-Ramos C, Ozturan S, Iloro I, Azkargorta M, Elortza F, Izquierdo R, Gurruchaga M, Goñi I, Suay J. Bioactive zinc-doped sol-gel coating modulates protein adsorption patterns and in vitro cell responses. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111839. [PMID: 33579477 DOI: 10.1016/j.msec.2020.111839] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/07/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023]
Abstract
Zinc is an essential element with an important role in stimulating the osteogenesis and mineralization and suppressing osteoclast differentiation. In this study, new bioactive ZnCl2-doped sol-gel materials were designed to be applied as coatings onto titanium. The biomaterials were physicochemically characterized and the cellular responses evaluated in vitro using MC3T3-E1 osteoblasts and RAW264.7 macrophages. The effect of Zn on the adsorption of human serum proteins onto the material surface was evaluated through nLC-MS/MS. The incorporation of Zn did not affect the crosslinking of the sol-gel network. A controlled Zn2+ release was obtained, reaching values below 10 ppm after 21 days. The materials were no cytotoxic and lead to increased gene expression of ALP, TGF-β, and RUNX2 in the osteoblasts. In macrophages, an increase of IL-1β, TGF-β, and IL-4 gene expression was accompanied by a reduced TNF-α liberation. Proteomic results showed changes in the adsorption patterns of proteins associated with immunological, coagulative, and regenerative functions, in a Zn dose-dependent manner. The variations in protein adsorption might lead to the downregulation of the NF-κB pathway, thus explain the observed biological effects of Zn incorporation into biomaterials. Overall, these coatings demonstrated their potential to promote bone tissue regeneration.
Collapse
Affiliation(s)
- A Cerqueira
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - F Romero-Gavilán
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| | - I García-Arnáez
- Departament of Science and Technology of Polymers, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - C Martinez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de Valencia, Camino de Vera, s/n, 46022, Valencia, Spain
| | - S Ozturan
- Department of Periodontology, Faculty of Dentristy, Istanbul Medeniyet University, Istanbul, Turkey
| | - I Iloro
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - M Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - F Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - R Izquierdo
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - M Gurruchaga
- Departament of Science and Technology of Polymers, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - I Goñi
- Departament of Science and Technology of Polymers, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - J Suay
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| |
Collapse
|
6
|
Tharani Kumar S, Prasanna Devi S, Krithika C, Raghavan RN. Review of Metallic Biomaterials in Dental Applications. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2020; 12:S14-S19. [PMID: 33149425 PMCID: PMC7595562 DOI: 10.4103/jpbs.jpbs_88_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/09/2020] [Indexed: 11/23/2022] Open
Abstract
Titanium and its alloys are mainly used in manufacturing dental implants. The fact that titanium implants are immunologically very effective, new methods are being experimented to achieve utmost success rate as a biomaterial. One fundamental indicator for clinical achievement of implant is the decision of composition decided for the implant with the objective to improve osseointegration. The main objective of this study was to explore literature on dental materials used for implants, contrast them with titanium dental implants, with the aim to improve osseointegration and mechanical quality using Ti–Ga–Si dental implant.
Collapse
Affiliation(s)
- S Tharani Kumar
- Dr. MGR Educational and Research Institute University, Chennai, Tamil Nadu, India
| | - S Prasanna Devi
- Department of Computer Science & Engineering, SRM Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Chandrasekaran Krithika
- Department of Oral Medicine, Thai Moogambigai Dental College, Dr. MGR Educational and Research Institute University, Chennai, Tamil Nadu, India
| | - R N Raghavan
- RNR Dental Clinic and Research Services, Chennai, Tamil Nadu, India
| |
Collapse
|
7
|
Cerqueira A, Romero-Gavilán F, Araújo-Gomes N, García-Arnáez I, Martinez-Ramos C, Ozturan S, Azkargorta M, Elortza F, Gurruchaga M, Suay J, Goñi I. A possible use of melatonin in the dental field: Protein adsorption and in vitro cell response on coated titanium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111262. [PMID: 32806297 DOI: 10.1016/j.msec.2020.111262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 01/06/2023]
Abstract
Melatonin (MLT) is widely known for regulating the circadian cycles and has been studied for its role in bone regeneration and inflammation. Its application as a coating for dental implants can condition the local microenvironment, affecting protein deposition on its surface and the cellular and tissue response. Using sol-gel coatings as a release vehicle for MLT, the aim of this work was to assess the potential of this molecule in improving the osseointegration and inflammatory responses of a titanium substrate. The materials obtained were physicochemically characterized (scanning electron microscopy, contact angle, roughness, Fourier-transform infrared spectroscopy, nuclear magnetic resonance, Si release, MLT liberation, and degradation) and studied in vitro with MC3T3-E1 osteoblastic cells and RAW264.7 macrophage cells. Although MLT application led to an increased gene expression of RUNX2 and BMP2 in 10MTL, it did not improve ALP activity. On the other hand, MLT-enriched sol-gel materials presented potential effects in the adsorption of proteins related to inflammation, coagulation and angiogenesis pathways depending on the dosage used. Using LC-MS/MS, protein adsorption patterns were studied after incubation with human serum. Proteins related to the complement systems (CO7, IC1, CO5, CO8A, and CO9) were less adsorbed in materials with MLT; on the other hand, proteins with functions in the coagulation and angiogenesis pathways, such as A2GL and PLMN, showed a significant adsorption pattern.
Collapse
Affiliation(s)
- Andreia Cerqueira
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Francisco Romero-Gavilán
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| | - Nuno Araújo-Gomes
- Department of Developmental Bioengineering, University of Twente, Faculty of Science and Technology, 7522LW Enschede, the Netherlands
| | - Iñaki García-Arnáez
- Facultad de Ciencias Químicas, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - Cristina Martinez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de Valencia, Camino de Vera, s/n, 46022 Valencia, Spain
| | - Seda Ozturan
- Department of Periodontology, Faculty of Dentristy, Istambul Medeniyet University, Istanbul, Turkey
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Mariló Gurruchaga
- Facultad de Ciencias Químicas, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| | - Julio Suay
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Isabel Goñi
- Facultad de Ciencias Químicas, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018 San Sebastián, Spain
| |
Collapse
|
8
|
Dhaliwal JS, David SRN, Zulhilmi NR, Sodhi Dhaliwal SK, Knights J, de Albuquerque Junior RF. Contamination of titanium dental implants: a narrative review. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2810-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AbstractContamination of titanium dental implants may lead to implant failure. There are two major types of contaminants: the inorganic and organic contaminants. The inorganic contaminants mostly consist of elements such as calcium, phosphorus, chlorine, sulphur, sodium, silicon, fluorine and some organic carbons. Whereas organic contaminants consist of hydrocarbon, carboxylates, salts of organic acids, nitrogen from ammonium and bacterial cells/byproducts. Contaminants can alter the surface energy, chemical purity, thickness and composition of the oxide layer, however, we lack clinical evidence that contaminations have any effect at all. However, surface cleanliness seems to be essential for implant osseointegration.These contaminants may cause dental implants to fail in its function to restore missing teeth and also cause a financial burden to the patient and the health care services to invest in decontamination methods. Therefore, it is important to discuss the aetiology of dental implant failures. In this narrative review, we discuss two major types of contaminants: the inorganic and organic contaminants including bacterial contaminants. This review also aims to discuss the potential effect of contamination on Ti dental implants.
Collapse
|
9
|
Zhao QM, Li XK, Guo S, Wang N, Liu WW, Shi L, Guo Z. Osteogenic activity of a titanium surface modified with silicon-doped titanium dioxide. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110682. [PMID: 32204111 DOI: 10.1016/j.msec.2020.110682] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/30/2019] [Accepted: 01/19/2020] [Indexed: 01/17/2023]
Abstract
Titanium and its alloys are the most widely used implants in clinical practice. However, their bioactivity is unsatisfactory, and the effect of osteogenesis on the bonding interface between the implant and bone needs to be further improved. In this study, a coating consisting of microporous titanium doped with silicon (Si-TiO2) was successfully created by microarc oxidation (MAO), and Si was evenly distributed on the surface of the coating. The surface morphology, roughness, and phase composition of the Si-TiO2 microporous coating were similar to those of the Si-free doped MAO coatings. The Si-TiO2 microporous coating can promote osteoblast adhesion, spreading, proliferation and differentiation. More importantly, the integrin β1-FAK signaling pathway may be involved in the regulatory effect of the coating on osteoblasts. Further studies in vivo indicated that the Si-TiO2 microporous coating could improve early stage osseointegration. In conclusion, the Si-TiO2 microporous coating is a feasible way to improve the osteogenic abilities of Ti implants to potentially promote clinical performance.
Collapse
Affiliation(s)
- Quan-Ming Zhao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiao-Kang Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shuo Guo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ning Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wen-Wen Liu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lei Shi
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zheng Guo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
10
|
Araújo-Gomes N, Romero-Gavilán F, Zhang Y, Martinez-Ramos C, Elortza F, Azkargorta M, Martín de Llano J, Gurruchaga M, Goñi I, van den Beucken J, Suay J. Complement proteins regulating macrophage polarisation on biomaterials. Colloids Surf B Biointerfaces 2019; 181:125-133. [DOI: 10.1016/j.colsurfb.2019.05.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/06/2019] [Accepted: 05/16/2019] [Indexed: 01/06/2023]
|
11
|
Romero-Gavilán F, Araújo-Gomes N, Cerqueira A, García-Arnáez I, Martínez-Ramos C, Azkargorta M, Iloro I, Elortza F, Gurruchaga M, Suay J, Goñi I. Proteomic analysis of calcium-enriched sol-gel biomaterials. J Biol Inorg Chem 2019; 24:563-574. [PMID: 31030324 DOI: 10.1007/s00775-019-01662-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/15/2019] [Indexed: 01/05/2023]
Abstract
Calcium is an element widely used in the development of biomaterials for bone tissue engineering as it plays important roles in bone metabolism and blood coagulation. The Ca ions can condition the microenvironment at the tissue-material interface, affecting the protein deposition process and cell responses. The aim of this study was to analyze the changes in the patterns of protein adsorption on the silica hybrid biomaterials supplemented with different amounts of CaCl2, which can function as release vehicles. This characterization was carried out by incubating the Ca-biomaterials with human serum. LC-MS/MS analysis was used to characterize the adsorbed protein layers and compile a list of proteins whose affinity for the surfaces might depend on the CaCl2 content. The attachment of pro- and anti-clotting proteins, such as THRB, ANT3, and PROC, increased significantly on the Ca-materials. Similarly, VTNC and APOE, proteins directly involved on osteogenic processes, attached preferentially to these surfaces. To assess correlations with the proteomic data, these formulations were tested in vitro regarding their osteogenic and inflammatory potential, employing MC3T3-E1 and RAW 264.7 cell lines, respectively. The results confirmed a Ca dose-dependent osteogenic and inflammatory behavior of the materials employed, in accordance with the protein attachment patterns.
Collapse
Affiliation(s)
- F Romero-Gavilán
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Nuno Araújo-Gomes
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, 12071, Castellón de la Plana, Spain.
- Department of Medicine, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, 12071, Castellón de la Plana, Spain.
| | - A Cerqueira
- Department of Medicine, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - I García-Arnáez
- Facultad de Ciencias Químicas, Universidad del País Vasco., P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - C Martínez-Ramos
- Department of Medicine, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - M Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - I Iloro
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - F Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - M Gurruchaga
- Facultad de Ciencias Químicas, Universidad del País Vasco., P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - J Suay
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - I Goñi
- Facultad de Ciencias Químicas, Universidad del País Vasco., P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| |
Collapse
|
12
|
Palla-Rubio B, Araújo-Gomes N, Fernández-Gutiérrez M, Rojo L, Suay J, Gurruchaga M, Goñi I. Synthesis and characterization of silica-chitosan hybrid materials as antibacterial coatings for titanium implants. Carbohydr Polym 2018; 203:331-341. [PMID: 30318220 DOI: 10.1016/j.carbpol.2018.09.064] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/17/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
To avoid dental implant-related infections and to promote the osseointegration of titanium implants, the application of silicon and chitosan containing coatings is proposed. Silicon is a well-known osteogenic element and chitosan was selected to confer the antibacterial properties. The synthesis of hybrid silica-chitosan coatings using the sol-gel process is presented and the characterization using 29Si-NMR to verify the correct formation of the network is discussed. The 13C NMR spectroscopy was used to confirm the covalent union between chitosan and the silicon network. Hydrolytic degradation and silicon release studies showed the effective silicon release from the hybrids and, hence, the possibility to promote bone formation. The introduction of different amounts of chitosan and tetraethyl orthosilicate (TEOS) modulated the Si release. The analysis of cell cultures in vitro demonstrated that the hybrid coatings were not cytotoxic and promoted cell proliferation on their surfaces. The coatings containing 5%-10% chitosan had substantial antibacterial properties.
Collapse
Affiliation(s)
- B Palla-Rubio
- Department of Science and Technology of Polymers, POLYMAT (Institute of Polymeric Materials), Faculty of Chemistry, University of the Basque Country (UPV/EHU), Pº Manuel de Lardizabal, 3, 20018, San Sebastián, Spain.
| | - N Araújo-Gomes
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent-Sos Baynat s/n. 12071, Castellón, Spain.
| | - M Fernández-Gutiérrez
- Institute of Polymer Science and Technology, CSIC and CIBER-BBN, c/Juan de la Cierva 3, 28006, Madrid, Spain.
| | - L Rojo
- Institute of Polymer Science and Technology, CSIC and CIBER-BBN, c/Juan de la Cierva 3, 28006, Madrid, Spain.
| | - J Suay
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent-Sos Baynat s/n. 12071, Castellón, Spain.
| | - M Gurruchaga
- Department of Science and Technology of Polymers, POLYMAT (Institute of Polymeric Materials), Faculty of Chemistry, University of the Basque Country (UPV/EHU), Pº Manuel de Lardizabal, 3, 20018, San Sebastián, Spain.
| | - I Goñi
- Department of Science and Technology of Polymers, POLYMAT (Institute of Polymeric Materials), Faculty of Chemistry, University of the Basque Country (UPV/EHU), Pº Manuel de Lardizabal, 3, 20018, San Sebastián, Spain.
| |
Collapse
|
13
|
Araújo-Gomes N, Romero-Gavilán F, Lara-Sáez I, Elortza F, Azkargorta M, Iloro I, Martínez-Ibañez M, Martín de Llano JJ, Gurruchaga M, Goñi I, Suay J, Sánchez-Pérez AM. Silica-gelatin hybrid sol-gel coatings: A proteomic study with biocompatibility implications. J Tissue Eng Regen Med 2018; 12:1769-1779. [PMID: 29785783 DOI: 10.1002/term.2708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 04/09/2018] [Accepted: 05/08/2018] [Indexed: 11/09/2022]
Abstract
Osseointegration, including the foreign body reaction to biomaterials, is an immune-modulated, multifactorial, and complex healing process in which various cells and mediators are involved. The buildup of the osseointegration process is immunological and inflammation-driven, often triggered by the adsorption of proteins on the surfaces of the biomaterials and complement activation. New strategies for improving osseointegration use coatings as vehicles for osteogenic biomolecules delivery from implants. Natural polymers, such as gelatin, can mimic Collagen I and enhance the biocompatibility of a material. In this experimental study, two different base sol-gel formulations and their combination with gelatin were applied as coatings on sandblasted, acid-etched titanium substrates, and their biological potential as osteogenic biomaterials was tested. We examined the proteins adsorbed onto each surface and their in vitro and in vivo effects. In vitro results showed an improvement in cell proliferation and mineralization in gelatin-containing samples. In vivo testing showed the presence of a looser connective tissue layer in those coatings with substantially more complement activation proteins adsorbed, especially those containing gelatin. Vitronectin and FETUA, proteins associated with mineralization process, were significantly more adsorbed in gelatin coatings.
Collapse
Affiliation(s)
- Nuno Araújo-Gomes
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Castellón, Spain.,Department of Medicine, Universitat Jaume I, Castellón, Spain
| | - Francisco Romero-Gavilán
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Castellón, Spain
| | - Irene Lara-Sáez
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Castellón, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - Ibon Iloro
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | | | - Javier J Martín de Llano
- Department of Pathology and Health Research, Institute of the Hospital Clínico (INCLIVA), Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Mariló Gurruchaga
- Facultad de Ciencias Químicas, Universidad del País Vasco, San Sebastián, Spain
| | - Isabel Goñi
- Facultad de Ciencias Químicas, Universidad del País Vasco, San Sebastián, Spain
| | - Julio Suay
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Castellón, Spain
| | | |
Collapse
|
14
|
Araújo-Gomes N, Romero-Gavilán F, García-Arnáez I, Martínez-Ramos C, Sánchez-Pérez AM, Azkargorta M, Elortza F, de Llano JJM, Gurruchaga M, Goñi I, Suay J. Osseointegration mechanisms: a proteomic approach. J Biol Inorg Chem 2018; 23:459-470. [PMID: 29572572 DOI: 10.1007/s00775-018-1553-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/19/2018] [Indexed: 01/08/2023]
Abstract
The prime objectives in the development of biomaterials for dental applications are to improve the quality of osseointegration and to short the time needed to achieve it. Design of implants nowadays involves changes in the surface characteristics to obtain a good cellular response. Incorporating osteoinductive elements is one way to achieve the best regeneration possible post-implantation. This study examined the osteointegrative potential of two distinct biomaterials: sandblasted acid-etched titanium and a silica sol-gel hybrid coating, 70% MTMOS-30% TEOS. In vitro, in vivo, and proteomic characterisations of the two materials were conducted. Enhanced expression levels of ALP and IL-6 in the MC3T3-E1 cells cultured with coated discs, suggest that growing cells on such surfaces may increase mineralisation levels. 70M30T-coated implants showed improved bone growth in vivo compared to uncoated titanium. Complete osseointegration was achieved on both. However, coated implants displayed osteoinductive properties, while uncoated implants demonstrated osteoconductive characteristics. Coagulation-related proteins attached predominantly to SAE-Ti surface. Surface properties of the material might drive the regenerative process of the affected tissue. Analysis of the proteins on the coated dental implant showed that few proteins specifically attached to its surface, possibly indicating that its osteoinductive properties depend on the silicon delivery from the implant.
Collapse
Affiliation(s)
- N Araújo-Gomes
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, 12071, Castellón, Spain.,Department of Medicine, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, 12071, Castellón, Spain
| | - F Romero-Gavilán
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, 12071, Castellón, Spain.
| | - I García-Arnáez
- Facultad de Ciencias Químicas, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - C Martínez-Ramos
- Department of Medicine, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, 12071, Castellón, Spain
| | - A M Sánchez-Pérez
- Department of Medicine, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, 12071, Castellón, Spain
| | - M Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - F Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - J J Martín de Llano
- Department of Pathology, Faculty of Medicine and Dentistry, Health Research Institute of the Hospital Clínico (INCLIVA), University of Valencia, 46010, Valencia, Spain
| | - M Gurruchaga
- Facultad de Ciencias Químicas, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - I Goñi
- Facultad de Ciencias Químicas, Universidad del País Vasco, P. M. de Lardizábal, 3, 20018, San Sebastián, Spain
| | - J Suay
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, 12071, Castellón, Spain
| |
Collapse
|
15
|
Bioactive potential of silica coatings and its effect on the adhesion of proteins to titanium implants. Colloids Surf B Biointerfaces 2017; 162:316-325. [PMID: 29223071 DOI: 10.1016/j.colsurfb.2017.11.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/14/2017] [Accepted: 11/30/2017] [Indexed: 11/22/2022]
Abstract
There is an ever-increasing need to develop dental implants with ideal characteristics to achieve specific and desired biological response in the scope of improve the healing process post-implantation. Following that premise, enhancing and optimizing titanium implants through superficial treatments, like silica sol-gel hybrid coatings, are regarded as a route of future research in this area. These coatings change the physicochemical properties of the implant, ultimately affecting its biological characteristics. Sandblasted acid-etched titanium (SAE-Ti) and a silica hybrid sol-gel coating (35M35G30T) applied onto the Ti substrate were examined. The results of in vitro and in vivo tests and the analysis of the protein layer adsorbed to each surface were compared and discussed. In vitro analysis with MC3T3-E1 osteoblastic cells, showed that the sol-gel coating raised the osteogenic activity potential of the implants (the expression of osteogenic markers, the alkaline phosphatase (ALP) and IL-6 mRNAs, increased). In the in vivo experiments using as model rabbit tibiae, both types of surfaces promoted osseointegration. However, the coated implants demonstrated a clear increase in the inflammatory activity in comparison with SAE-Ti. Mass spectrometry (LC-MS/MS) analysis showed differences in the composition of protein layers formed on the two tested surfaces. Large quantities of apolipoproteins were found attached predominantly to SAE-Ti. The 35M35G30T coating adsorbed a significant quantity of complement proteins, which might be related to the material intrinsic bioactivity, following an associated, natural and controlled immune response. The correlation between the proteomic data and the in vitro and in vivo outcomes is discussed on this experimental work.
Collapse
|
16
|
Romero-Gavilan F, Sánchez-Pérez AM, Araújo-Gomes N, Azkargorta M, Iloro I, Elortza F, Gurruchaga M, Goñi I, Suay J. Proteomic analysis of silica hybrid sol-gel coatings: a potential tool for predicting the biocompatibility of implants in vivo. BIOFOULING 2017; 33:676-689. [PMID: 28871865 DOI: 10.1080/08927014.2017.1356289] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
The interactions of implanted biomaterials with the host organism determine the success or failure of an implantation. Normally, their biocompatibility is assessed using in vitro tests. Unfortunately, in vitro and in vivo results are not always concordant; new, effective methods of biomaterial characterisation are urgently needed to predict the in vivo outcome. As the first layer of proteins adsorbed onto the biomaterial surfaces might condition the host response, mass spectrometry analysis was performed to characterise these proteins. Four distinct hybrid sol-gel biomaterials were tested. The in vitro results were similar for all the materials examined here. However, in vivo, the materials behaved differently. Six of the 171 adsorbed proteins were significantly more abundant on the materials with weak biocompatibility; these proteins are associated with the complement pathway. Thus, protein analysis might be a suitable tool to predict the in vivo outcomes of implantations using newly formulated biomaterials.
Collapse
Affiliation(s)
- F Romero-Gavilan
- a Department of Industrial Systems and Design , Universitat Jaume I , Castellón , Spain
| | | | - N Araújo-Gomes
- a Department of Industrial Systems and Design , Universitat Jaume I , Castellón , Spain
- b Department of Medicine , Universitat Jaume I , Castellón , Spain
| | - M Azkargorta
- d Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII , Derio , Spain
| | - I Iloro
- d Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII , Derio , Spain
| | - F Elortza
- d Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII , Derio , Spain
| | - M Gurruchaga
- c Facultad de Ciencias Químicas , Universidad del País Vasco , San Sebastián , Spain
| | - I Goñi
- c Facultad de Ciencias Químicas , Universidad del País Vasco , San Sebastián , Spain
| | - J Suay
- a Department of Industrial Systems and Design , Universitat Jaume I , Castellón , Spain
| |
Collapse
|
17
|
Araújo-Gomes N, Romero-Gavilán F, Sánchez-Pérez AM, Gurruchaga M, Azkargorta M, Elortza F, Martinez-Ibañez M, Iloro I, Suay J, Goñi I. Characterization of serum proteins attached to distinct sol-gel hybrid surfaces. J Biomed Mater Res B Appl Biomater 2017; 106:1477-1485. [PMID: 28675640 DOI: 10.1002/jbm.b.33954] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/16/2017] [Accepted: 06/15/2017] [Indexed: 12/12/2022]
Abstract
The success of a dental implant depends on its osseointegration, an important feature of the implant biocompatibility. In this study, two distinct sol-gel hybrid coating formulations [50% methyltrimethoxysilane: 50% 3-glycidoxypropyl-trimethoxysilane (50M50G) and 70% methyltrimethoxysilane with 30% tetraethyl orthosilicate (70M30T)] were applied onto titanium implants. To evaluate their osseointegration, in vitro and in vivo assays were performed. Cell proliferation and differentiation in vitro did not show any differences between the coatings. However, four and eight weeks after in vivo implantation, the fibrous capsule area surrounding 50M50G-implant was 10 and 4 times, respectively, bigger than the area of connective tissue surrounding the 70M30T treated implant. Thus, the in vitro results gave no prediction or explanation for the 50M50G-implant failure in vivo. We hypothesized that the first protein layer adhered to the surface may have direct implication in implant osseointegration, and perhaps correlate with the in vivo outcome. Human serum was used for adsorption analysis on the biomaterials, the first layer of serum proteins adhered to the implant surface was analyzed by proteomic analysis, using mass spectrometry (LC-MS/MS). From the 171 proteins identified; 30 proteins were significantly enriched on the 50M50G implant surface. This group comprised numerous proteins of the immune complement system, including several subcomponents of the C1 complement, complement factor H, C4b-binding protein alpha chain, complement C5 and C-reactive protein. This result suggests that these proteins enriched in 50M50G surface might trigger the cascade leading to the formation of the fibrous capsule observed. The implications of these results could open up future possibilities to predict the biocompatibility problems in vivo. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1477-1485, 2018.
Collapse
Affiliation(s)
- Nuno Araújo-Gomes
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, Castellón, 12071, Spain.,Departamento de Medicina, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, Castellón, 12071, Spain
| | - Francisco Romero-Gavilán
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, Castellón, 12071, Spain
| | - Ana M Sánchez-Pérez
- Departamento de Medicina, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, Castellón, 12071, Spain
| | - Marilo Gurruchaga
- Facultad de Ciencias Químicas. POLYMAT Universidad del País Vasco, P. M. de Lardizábal 3, San Sebastián, 20018, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, 48160, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, 48160, Spain
| | - María Martinez-Ibañez
- Facultad de Ciencias Químicas. POLYMAT Universidad del País Vasco, P. M. de Lardizábal 3, San Sebastián, 20018, Spain
| | - Ibon Iloro
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, 48160, Spain
| | - Julio Suay
- Departamento de Ingeniería de Sistemas Industriales y Diseño, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, Castellón, 12071, Spain
| | - Isabel Goñi
- Facultad de Ciencias Químicas. POLYMAT Universidad del País Vasco, P. M. de Lardizábal 3, San Sebastián, 20018, Spain
| |
Collapse
|