1
|
Zhao J, Chen L, Ma A, Bai X, Zeng Y, Liu D, Liu B, Zhang W, Tang S. Recent advances in coaxial electrospun nanofibers for wound healing. Mater Today Bio 2024; 29:101309. [PMID: 39558931 PMCID: PMC11570975 DOI: 10.1016/j.mtbio.2024.101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/28/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024] Open
Abstract
The skin is the body's primary immune barrier, defending it against pathogenic invasion. Skin injuries impose a significant physiological burden on patients, making effective wound management essential. Dressings are commonly employed in wound care, and electrospun nanofiber dressings are a research hotspot owing to their ease of fabrication, cost-effectiveness, and structural similarity to the extracellular matrix. Coaxial electrospinning offers considerable advantages in drug delivery, fiber structure transformation, and enhanced interaction with the host. These attributes make coaxial electrospun materials promising candidates for precision and personalized wound dressings in medical treatments. This review provides a comprehensive overview of wound healing and its influencing factors. It also outlines coaxial electrospinning's production principles and benefits in wound dressings. Guided by the factors affecting wound healing, coaxial electrospun nanofiber dressings have different application modalities. Furthermore, we discuss the current limitations and future directions for enhancing the current coaxial electrospun dressing technologies.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| | - Liyun Chen
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| | - Aiwei Ma
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| | - Xujue Bai
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| | - Yating Zeng
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| | - Daojun Liu
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, China
| | - Bo Liu
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| |
Collapse
|
2
|
Fan X, Ye J, Zhong W, Shen H, Li H, Liu Z, Bai J, Du S. The Promoting Effect of Animal Bioactive Proteins and Peptide Components on Wound Healing: A Review. Int J Mol Sci 2024; 25:12561. [PMID: 39684273 DOI: 10.3390/ijms252312561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The skin is the first line of defense to protect the host from external environmental damage. When the skin is damaged, the wound provides convenience for the invasion of external substances. The prolonged nonhealing of wounds can also lead to numerous subsequent complications, seriously affecting the quality of life of patients. To solve this problem, proteins and peptide components that promote wound healing have been discovered in animals, which can act on key pathways involved in wound healing, such as the PI3K/AKT, TGF-β, NF-κ B, and JAK/STAT pathways. So far, some formulations for topical drug delivery have been developed, including hydrogels, microneedles, and electrospinning nanofibers. In addition, some high-performance dressings have been utilized, which also have great potential in wound healing. Here, research progress on the promotion of wound healing by animal-derived proteins and peptide components is summarized, and future research directions are discussed.
Collapse
Affiliation(s)
- Xiaoyu Fan
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jinhong Ye
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wanling Zhong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huijuan Shen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huahua Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhuyuan Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jie Bai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shouying Du
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
3
|
Rezaei ES, Poursamar SA, Naeimi M, Taheri MM, Rafienia M. An in vitro and in vivo study of electrospun polyvinyl alcohol/chitosan/sildenafil citrate mat on 3D-printed polycaprolactone membrane as a double layer wound dressing. Int J Biol Macromol 2024; 269:131859. [PMID: 38728875 DOI: 10.1016/j.ijbiomac.2024.131859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
Double-layer dermal substitutes (DS) generally provide more effective therapeutic outcomes than single-layer substitutes. The architectural design of DS incorporates an outer layer to protect against bacterial invasions and maintain wound hydration, thereby reducing the risk of infection and the frequency of dressing changes. Moreover, the outer layer is a mechanical support for the wound, preventing undue tension in the affected area. A 3D-printed polycaprolactone (PCL) membrane was utilized as the outer layer to fabricate DS wound dressing. Simultaneously, a polyvinyl alcohol/chitosan/sildenafil citrate (PVA/CS/SC) scaffold was electrospun onto the PCL membrane to facilitate cellular adhesion and proliferation. Scanning electron microscopy (SEM) analysis of the PCL filaments revealed a consistent cross-sectional surface and structure, with an average diameter of 562.72 ± 29.15 μm. SEM results also demonstrated uniform morphology and beadless structure for the PVA/CS/SC scaffold, with an average fiber diameter of 366.77 ± 1.81 nm for PVA/CS. The addition of SC led to an increase in fiber diameter while resulting in a reduction in tensile strength. However, drug release analysis indicated that the SC release from the sample can last up to 72 h. Animal experimentation confirmed that DS wound dressing positively accelerated wound closure and collagen deposition in the Wistar rat skin wound model.
Collapse
Affiliation(s)
- Elham Salar Rezaei
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Medical Technologies, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Ali Poursamar
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Medical Technologies, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mitra Naeimi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Mahdi Taheri
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Yin S, Wang Y, Yang X. Amphibian-derived wound healing peptides: chemical molecular treasure trove for skin wound treatment. Front Pharmacol 2023; 14:1120228. [PMID: 37377928 PMCID: PMC10291078 DOI: 10.3389/fphar.2023.1120228] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Amphibian-derived wound healing peptides thus offer new intervention measures and strategies for skin wound tissue regeneration. As novel drug lead molecules, wound healing peptides can help analyze new mechanisms and discover new drug targets. Previous studies have identified various novel wound healing peptides and analyzed novel mechanisms in wound healing, especially competing endogenous RNAs (ceRNAs) (e.g., inhibition of miR-663a promotes skin repair). In this paper, we review amphibian-derived wound healing peptides, including the acquisition, identification, and activity of peptides, a combination of peptides with other materials, and the analysis of underlying mechanisms, to better understand the characteristics of wound healing peptides and to provide a molecular template for the development of new wound repair drugs.
Collapse
Affiliation(s)
- Saige Yin
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission and Ministry of Education, School of Ethno-Medicine and Ethno-Pharmacy, Yunnan Minzu University, Kunming, China
| | - Xinwang Yang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| |
Collapse
|
5
|
Zhang J, Xu Y, Zhang Y, Chen L, Sun Y, Liu J, Rao Z. Facile construction of calcium titanate-loaded silk fibroin scaffolds hybrid frameworks for accelerating neuronal cell growth in peripheral nerve regeneration. Heliyon 2023; 9:e15074. [PMID: 37123900 PMCID: PMC10133665 DOI: 10.1016/j.heliyon.2023.e15074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Different concentrations of calcium titanate (CaTiO3) nanoparticles were loaded into the Silk fibroin (SF) solution to construct porous SF@CaTiO3 hybrid scaffolds, which were shown to have enhanced properties for stimulating peripheral nerve regeneration. Surface charges, crystallization intensity, wettability, porosity, and morphology were measured and analyzed. We analyzed the hybrid porous SF@CaTiO3 scaffolds that affected the expansion of Schwann cells. The results demonstrated a concentration-dependent influence on the dispersion of nanoparticles in the CaTiO3 hybridized SF scaffolds. Incorporating CaTiO3-NPs into the porous SF@CaTiO3 hybrid scaffolds can boost hydrophobicity while decreasing surface charge density and porosity. The hybridized scaffolds mostly had an orthorhombic calcium titanate crystal structure with amorphous Silk fibroin mixed. Schwann cell cultures revealed that SF@CaTiO3 hybrid scaffolds containing an optimal CaTiO3-NPs concentration could stimulate the proliferation, attachment, and protection of Schwann cell biological functions, suggesting the scaffolds' potential for use in peripheral nerve regeneration.
Collapse
|
6
|
Parlak ME, Uzuner K, Kirac FT, Ozdemir S, Dundar AN, Sahin OI, Dagdelen AF, Saricaoglu FT. Production and characterization of biodegradable bi-layer films from poly(lactic) acid and zein. Int J Biol Macromol 2023; 227:1027-1037. [PMID: 36462592 DOI: 10.1016/j.ijbiomac.2022.11.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Recently, packaging industry has turned to biodegradable packaging, and poly(lactic acid) has become the most remarkable polymer. However, the high oxygen permeability of PLA films significantly limits their use. Therefore, this study, it was aimed to improve the oxygen barrier properties of PLA films without adversely affecting the mechanical and water vapor barrier properties. Biodegradable PLA-Zein bi-layer films were produced by changing PLA and zein thickness. Transparent and UV barrier bi-layer films were obtained. Mechanical properties of PLA films were improved by the production of bi-layer films. Water vapor permeability of bi-layer films increased whereas the permeance decreased with zein coating of PLA. Multi-criteria decision hierarchy was used to select the best bi-layer films based on mechanical, permeance, and opacity results. Oxygen barrier properties of PLA film significantly improved by zein coating, and hydrophobicity of PLA film was not affected by zein coating. The crystallization and melting temperatures of films decreased when compared to PLA films, supporting the mechanical results. Homogeneous, non-porous, and smooth film surface was obtained and zein layer was in good compatibility with PLA layer. These results suggest that zein coatings could be used to decrease oxygen permeability of PLA films without negatively affecting other properties.
Collapse
Affiliation(s)
- Mahmud Ekrem Parlak
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey
| | - Kubra Uzuner
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey
| | - Fatma Tuba Kirac
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey
| | - Sebahat Ozdemir
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey
| | - Ayse Neslihan Dundar
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey
| | - Oya Irmak Sahin
- Department of Chemical Engineering, Faculty of Engineering, Yalova University, 77200 Yalova, Turkey
| | - Adnan Fatih Dagdelen
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey
| | - Furkan Turker Saricaoglu
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey.
| |
Collapse
|
7
|
|
8
|
Tortorella S, Maturi M, Vetri Buratti V, Vozzolo G, Locatelli E, Sambri L, Comes Franchini M. Zein as a versatile biopolymer: different shapes for different biomedical applications. RSC Adv 2021; 11:39004-39026. [PMID: 35492476 PMCID: PMC9044754 DOI: 10.1039/d1ra07424e] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/11/2021] [Indexed: 12/25/2022] Open
Abstract
In recent years, the interest regarding the use of proteins as renewable resources has deeply intensified. The strongest impact of these biomaterials is clear in the field of smart medicines and biomedical engineering. Zein, a vegetal protein extracted from corn, is a suitable biomaterial for all the above-mentioned purposes due to its biodegradability and biocompatibility. The controlled drug delivery of small molecules, fabrication of bioactive membranes, and 3D assembly of scaffold for tissue regeneration are just some of the topics now being extensively investigated and reported in the literature. Herein, we review the recent literature on zein as a biopolymer and its applications in the biomedical world, focusing on the different shapes and sizes through which it can be manipulated. Zein a versatile biomaterial in the biomedical field. Easy to chemically functionalize with good emulsification properties, can be employed in drug delivery, fabrication of bioactive membranes and 3D scaffolds for tissue regeneration.![]()
Collapse
Affiliation(s)
- Silvia Tortorella
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy .,Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore" (IEOS), Consiglio Nazionale delle Ricerche (CNR) Via S. Pansini 5 80131 Naples Italy
| | - Mirko Maturi
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Veronica Vetri Buratti
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Giulia Vozzolo
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Erica Locatelli
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Letizia Sambri
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Mauro Comes Franchini
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| |
Collapse
|
9
|
Essa WK, Yasin SA, Saeed IA, Ali GAM. Nanofiber-Based Face Masks and Respirators as COVID-19 Protection: A Review. MEMBRANES 2021; 11:250. [PMID: 33808380 PMCID: PMC8066241 DOI: 10.3390/membranes11040250] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 01/12/2023]
Abstract
Wearing face masks, use of respirators, social distancing, and practicing personal hygiene are all measures to prevent the spread of the coronavirus disease (COVID-19). This pandemic has revealed the deficiency of face masks and respirators across the world. Therefore, significant efforts are needed to develop air filtration and purification technologies, as well as innovative, alternative antibacterial and antiviral treatment methods. It has become urgent-in order for humankind to have a sustainable future-to provide a feasible solution to air pollution, particularly to capture fine inhalable particulate matter in the air. In this review, we present, concisely, the air pollutants and adverse health effects correlated with long- and short-term exposure to humans; we provide information about certified face masks and respirators, their compositions, filtration mechanisms, and the variations between surgical masks and N95 respirators, in order to alleviate confusion and misinformation. Then, we summarize the electrospun nanofiber-based filters and their unique properties to improve the filtration efficiency of face masks and respirators.
Collapse
Affiliation(s)
- Wafa K. Essa
- College of Science, University of Duhok, Duhok 42001, Iraq; (W.K.E.); (I.A.S.)
| | - Suhad A. Yasin
- College of Science, University of Duhok, Duhok 42001, Iraq; (W.K.E.); (I.A.S.)
| | - Ibtisam A. Saeed
- College of Science, University of Duhok, Duhok 42001, Iraq; (W.K.E.); (I.A.S.)
| | - Gomaa A. M. Ali
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
10
|
Wang LP, Wang HJ, Hou XS, Raza A, Koyama Y, Ito T, Wang JY. Preparation of stretchable composite film and its application in skin burn repair. J Mech Behav Biomed Mater 2020; 113:104114. [PMID: 33045517 DOI: 10.1016/j.jmbbm.2020.104114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/20/2020] [Accepted: 09/24/2020] [Indexed: 01/09/2023]
Abstract
The poor elasticity of wound dressings often leads to wound healing failure due to rupture and fall off. In this study, the composite films of zein and hydrogel poly (acrylic acid) were developed in order to obtain stretchable wound dressing for skin burn repair. The mechanical test revealed that the maximum elongation of break of composite films could reach 349.76% when the mass ratio of zein to poly (acrylic acid) was 1.5. SEM and FTIR analysis demonstrated the good elasticity of composite films might be due to the formation of a dense structure and the strong interaction between zein and poly (acrylic acid). Interestingly, the composite films exhibited great adhesiveness to human finger skin and stretchable ability under strenuous joint exercise. CCK-8 assay and fluorescence staining showed that the composite films and their extract had good cytocompatibility on human foreskin fibroblasts (L929) cells. The in vivo experiment on rat's skin burning model indicated that the composite films could promote wound healing and collagen synthesis by comparison with commercial gauze. It could be concluded that the stretchable composite films of zein and hydrogel poly (acrylic acid) had the potential as the wound dressing.
Collapse
Affiliation(s)
- Li-Ping Wang
- School of Biomedical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Hua-Jie Wang
- School of Biomedical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, PR China; Jiaxing Yaojiao Medical Device Co. Ltd., 321 Jiachuang Road, Jiaxing 314032, China
| | - Xue-Song Hou
- School of Biomedical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Ali Raza
- School of Biomedical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Yoshiyuki Koyama
- Japan Anti-tuberculosis Association, Shin-Yamanote Hospital, 3-6-1, Suwa-cho, Higashimurayama, Tokyo, 189-0021, Japan
| | - Tomoko Ito
- Japan Anti-tuberculosis Association, Shin-Yamanote Hospital, 3-6-1, Suwa-cho, Higashimurayama, Tokyo, 189-0021, Japan
| | - Jin-Ye Wang
- School of Biomedical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, PR China.
| |
Collapse
|
11
|
Cui T, Yu J, Li Q, Wang CF, Chen S, Li W, Wang G. Large-Scale Fabrication of Robust Artificial Skins from a Biodegradable Sealant-Loaded Nanofiber Scaffold to Skin Tissue via Microfluidic Blow-Spinning. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000982. [PMID: 32627895 DOI: 10.1002/adma.202000982] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Given that many people suffer from large-area skin damage, skin regeneration is a matter of high concern. Here, an available method is developed for the formation of large-area robust skins through three stages: fabrication of a biodegradable sealant-loaded nanofiber scaffold (SNS), skin tissue reconstruction, and skin regeneration. First, a microfluidic blow-spinning strategy is proposed to fabricate a large-scale nanofiber scaffold with an area of 140 cm × 40 cm, composed of fibrinogen-loaded polycaprolactone/silk fibroin (PCL/SF) ultrafine core-shell nanofibers with mean diameter of 65 nm. Then, the SNS forms, where the gelling reaction of fibrin sealant occurs in situ between thrombin and fibrinogen on PCL/SF nanofiber surface, to promote the migration and proliferation of fibroblasts, accelerating skin regeneration. Through an in vivo study, it is shown that the SNS can rapidly repair acute tissue damage such as vascular bleeding and hepatic hemorrhage, and also promote angiogenesis, large-area abdominal wall defect repair, and wound tissue regeneration for medical problems in the world. Besides, it avoids the risk of immune rejection and secondary surgery in clinical applications. This strategy offers a facile route to regenerate large-scale robust skin, which shows great potential in abdominal wall defect repair.
Collapse
Affiliation(s)
- Tingting Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Jiafei Yu
- Department of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, P. R. China
| | - Qing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Weijie Li
- Department of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, P. R. China
| | - Gefei Wang
- Department of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, P. R. China
| |
Collapse
|
12
|
Ji X, Liu G, Cui Y, Jia W, Luo Y, Cheng Z. A hybrid system of hydrogel/frog egg‐like microspheres accelerates wound healing via sustained delivery of
RCSPs. J Appl Polym Sci 2020. [DOI: 10.1002/app.49521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xuan Ji
- Department of StomatologyThe Second Hospital of Jilin University Changchun China
| | - Guomin Liu
- Department of OrthopedicsThe Second Hospital of Jilin University Changchun China
| | - Yutao Cui
- Department of OrthopedicsThe Second Hospital of Jilin University Changchun China
| | - Wenyuan Jia
- Department of OrthopedicsThe Second Hospital of Jilin University Changchun China
| | - Yungang Luo
- Department of StomatologyThe Second Hospital of Jilin University Changchun China
| | - Zhiqiang Cheng
- College of Resources and Environment, Jilin Agriculture University Changchun China
| |
Collapse
|
13
|
Ghorbani M, Nezhad-Mokhtari P, Ramazani S. Aloe vera-loaded nanofibrous scaffold based on Zein/Polycaprolactone/Collagen for wound healing. Int J Biol Macromol 2020; 153:921-930. [PMID: 32151718 DOI: 10.1016/j.ijbiomac.2020.03.036] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/22/2022]
Abstract
Recently, the use of nanofibers (NFs) for tissue engineering has been more developed. For this purpose, we fabricated the NFs (Zein/Polycaprolactone/Collagen) (Zein/PCL/Collagen) incorporated by zinc oxide NPs (ZnO NPs) and Aloe-vera (NFs/ZnO/Alv) using the electrospinning method. Prepared NFs were studied for their morphological, mechanical, thermal stability, and hydrophilic properties. Among the developed NFs, those loaded by ZnO (1 wt%) and Alv (8 wt%) and with Zein/PCL (70:30) displayed the suitable thermal stability and mechanical properties. The water contact angle of NFs improved by decreasing the Zein/PCL blending ratio. Cell culture results showed that the NFs had good cytocompatibility. The cell adhesion potential of this mats were certified with studying by fibroblast cells for various time intervals (24 h and 72 h). The NFs/ZnO/Alv sample revealed inhibition activity against S. aureus (19.23 ± 1.35 mm) and E. coli (15.38 ± 1.12 mm) bacteria. Thus, these results offered that the prepared NFs can be promised as an active scaffold for wound healing uses.
Collapse
Affiliation(s)
- Marjan Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Parinaz Nezhad-Mokhtari
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soghra Ramazani
- Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, Zanjan, Iran.
| |
Collapse
|
14
|
Amjadi S, Almasi H, Ghorbani M, Ramazani S. Reinforced ZnONPs/ rosemary essential oil-incorporated zein electrospun nanofibers by κ-carrageenan. Carbohydr Polym 2019; 232:115800. [PMID: 31952599 DOI: 10.1016/j.carbpol.2019.115800] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/06/2019] [Accepted: 12/27/2019] [Indexed: 12/18/2022]
Abstract
In this study, the reinforced ZnONPs/ rosemary essential oil-incorporated zein nanofibers with κ-carrageenan (Z/KC/ZnONPs/RE) were fabricated using the electrospinning technique for application in food packaging. The SEM images of Z/KC/ZnONPs/RE nanofiber displayed bead-free homogeneous morphology that its average fiber diameter was 672 ± 240 nm. The formation of new hydrogen bonds by addition of κ-carrageenan and active agents was approved by FT-IR and DSC structural conformations. The Z/KC/ZnONPs/RE nanofiber exhibited satisfactory thermal and mechanical properties, as well as high surface hydrophobicity. In addition, the Z/KC/ZnONPs/RE sample showed inhibition activity against S. aureus (18.5 ± 1.9 mm) and E. coli (14.7 ± 1.5 mm) bacteria. The DPPH scavenging activity of Z/KC/ZnONPs/RE nanofiber was 54.5 ± 3.6 %. Additionally, the fabricated nanofibers showed no cell cytotoxicity, indicating their good biocompatibility. Thus, we believe that the fabricated Z/KC/ZnONPs/RE electrospun nanofiber is a potential candidate for using as an active layer in food packaging system.
Collapse
Affiliation(s)
- Sajed Amjadi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, P.O. Box 57561-51818, Iran
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, P.O. Box 57561-51818, Iran
| | - Marjan Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soghra Ramazani
- Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, Zanjan, Iran.
| |
Collapse
|
15
|
Asadi H, Ghaee A, Nourmohammadi J, Mashak A. Electrospun zein/graphene oxide nanosheet composite nanofibers with controlled drug release as antibacterial wound dressing. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1552861] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hamid Asadi
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Azadeh Ghaee
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Jhamak Nourmohammadi
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Arezou Mashak
- Department of novel drug delivery systems, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
16
|
Potential of rhBMP-2 and dexamethasone-loaded Zein/PLLA scaffolds for enhanced in vitro osteogenesis of mesenchymal stem cells. Colloids Surf B Biointerfaces 2018; 169:384-394. [DOI: 10.1016/j.colsurfb.2018.05.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/25/2018] [Accepted: 05/18/2018] [Indexed: 01/09/2023]
|
17
|
Bian W, Meng B, Li X, Wang S, Cao X, Liu N, Yang M, Tang J, Wang Y, Yang X. OA-GL21, a novel bioactive peptide from Odorrana andersonii, accelerated the healing of skin wounds. Biosci Rep 2018; 38:BSR20180215. [PMID: 29752337 PMCID: PMC6013704 DOI: 10.1042/bsr20180215] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/20/2018] [Accepted: 05/08/2018] [Indexed: 01/24/2023] Open
Abstract
Nowadays, the number of chronic trauma cases caused by a variety of factors such as the world's population-ageing and chronic diseases is increasing steadily, and thus effective treatment for chronic wounds has become a severe clinical challenge, which also burdens the patient both physically and financially. Therefore, it is urgent to develop new drugs to accelerate the healing of wounds. Bioactive peptides, which are relatively low cost, easy to produce, store and transport, have become an excellent choice. In this research, we identified a novel peptide OA-GL21, with an amino acid sequence of 'GLLSGHYGRVVSTQSGHYGRG', from the skin secretions of Odorrana andersonii Our results showed that OA-GL21 exerted the ability to promote wound healing of human keratinocytes (HaCaT) and human fibroblasts in a dose- and time-denpendent manner. However, OA-GL21 had no significant effect on the proliferation of these two cells. Significantly, OA-GL21 showed obvious ability to promote wound healing in the full-thickness skin wound model in dose- and scar-free manners. Further studies showed that OA-GL21 had no direct antibacterial, hemolytic, and acute toxic activity; it had weak antioxidant activities but high stability. In conclusion, this research proved the promoting effects of OA-GL21 on cellular and animal wounds, and thus provided a new peptide template for the development of wound-repairing drugs.
Collapse
Affiliation(s)
- Wenxin Bian
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Buliang Meng
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiaojie Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Siyuan Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission and Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming, Yunnan 650500, China
| | - Xiaoqing Cao
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Naixin Liu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Meifeng Yang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jing Tang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission and Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming, Yunnan 650500, China
| | - Xinwang Yang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| |
Collapse
|
18
|
Souriyan-Reyhani pour H, Khajavi R, Yazdanshenas ME, Zahedi P, Mirjalili M. Cellulose acetate/poly(vinyl alcohol) hybrid fibrous mat containing tetracycline hydrochloride and phenytoin sodium: Morphology, drug release, antibacterial, and cell culture studies. J BIOACT COMPAT POL 2018. [DOI: 10.1177/0883911518779186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objective of this study was to introduce an electrospun hybrid fibrous mat (a dual-fiber drug delivery system) based on cellulose acetate and poly(vinyl alcohol) containing tetracycline hydrochloride and phenytoin sodium, respectively. Characterization of samples was carried by morphology, drug release, cell cytotoxicity, adhesion, antibacterial property, and wettability investigations. The results showed a uniform shape and a narrow diameter distribution of fibers (between 160 ± 20 nm) for fabricated cellulose acetate/poly(vinyl alcohol) hybrid fibrous mat. The tetracycline hydrochloride release from cellulose acetate significantly decreased due to gel formation of poly(vinyl alcohol) in aqueous media. The best fit for drug release kinetic of hybrid sample was Higuchi model. Sample with tetracycline hydrochloride and phenytoin sodium drugs showed improved cell growth, viability, and antibacterial activity against Escherichia coli (~89%) and Staphylococcus aureus (~98%) in comparison with sample without drugs. The hydrophilic property of cellulose acetate/poly(vinyl alcohol) fibrous sample containing the drugs was also remarkable (~45°). To consider the obtained results, the presented hybrid fibrous mat shows a high potent for biomedical applications.
Collapse
Affiliation(s)
| | - Ramin Khajavi
- Department of Polymer and Textile Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran
| | | | - Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Mirjalili
- Department of Textile Engineering, Islamic Azad University, Yazd Branch, Yazd, Iran
| |
Collapse
|
19
|
Shakibaie M, Tabandeh F, Shariati P, Norouzy A. Synthesis of a thin-layer gelatin nanofiber mat for cultivating retinal cell. J BIOACT COMPAT POL 2018. [DOI: 10.1177/0883911518776337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thin-layer gelatin nanofiber mats were fabricated as a biodegradable scaffold for proliferating human retinal pigment epithelium. Together with MTT assay, the glucose consumption rate, lactate formation, and lactate dehydrogenase activity of the human retinal pigment epithelium cells—on the gelatin nanofibers—were analyzed as indicators for cell growth and viability. The results showed that gelatin nanofiber did not make any toxic effect on the cells and the growth rate was comparable to the tissue culture plates. Using the fabricated thin-layer nanofibers let the by-product to leave which in turn cause less adverse effect on the cells. The biodegradability and stability of the gelatin nanofibers were optimized as a function of reaction time.
Collapse
Affiliation(s)
- Mehdi Shakibaie
- Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Fatemeh Tabandeh
- Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Parvin Shariati
- Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Amir Norouzy
- Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
20
|
Wen P, Wen Y, Zong MH, Linhardt RJ, Wu H. Encapsulation of Bioactive Compound in Electrospun Fibers and Its Potential Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9161-9179. [PMID: 28949530 DOI: 10.1021/acs.jafc.7b02956] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Electrospinning is a simple and versatile encapsulation technology. Since electrospinning does not involve severe conditions of temperature or pressure or the use of harsh chemicals, it has great potential for effectively entrapping and delivering bioactive compounds. Recently, electrospinning has been used in the food industry to encapsulate bioactive compounds into different biopolymers (carbohydrates and proteins), protecting them from adverse environmental conditions, maintaining the health-promoting properties, and achieving their controlled release. Electrospinning opens a new horizon in food technology with possible commercialization in the near future. This review summarizes the principles and the types of electrospinning processes. The electrospinning of biopolymers and their application in encapsulating of bioactive compounds are highlighted. The existing scope, limitations, and future prospects of electrospinning bioactive compounds are also presented.
Collapse
Affiliation(s)
- Peng Wen
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Yan Wen
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640, China
| |
Collapse
|