1
|
Ran S, Xue L, Wei X, Huang J, Yan X, He TC, Tang Z, Zhang H, Gu M. Recent advances in injectable hydrogel therapies for periodontitis. J Mater Chem B 2024; 12:6005-6032. [PMID: 38869470 DOI: 10.1039/d3tb03070a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Periodontitis is an immune-inflammatory disease caused by dental plaque, and deteriorates the periodontal ligament, causes alveolar bone loss, and may lead to tooth loss. To treat periodontitis, antibacterial and anti-inflammation approaches are required to reduce bone loss. Thus, appropriate drug administration methods are significant. Due to their "syringeability", biocompatibility, and convenience, injectable hydrogels and associated methods have been extensively studied and used for periodontitis therapy. Such hydrogels are made from natural and synthetic polymer materials using physical and/or chemical cross-linking approaches. Interestingly, some injectable hydrogels are stimuli-responsive hydrogels, which respond to the local microenvironment and form hydrogels that release drugs. Therefore, as injectable hydrogels are different and highly varied, we systematically reviewed the periodontal treatment field from three perspectives: raw material sources, cross-linking methods, and stimuli-responsive methods. We then discussed current challenges and opportunities for the translation of hydrogels to clinic, which may guide further injectable hydrogel designs for periodontitis.
Collapse
Affiliation(s)
- Shidian Ran
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Linyu Xue
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Xiaorui Wei
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Jindie Huang
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Xingrui Yan
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Zhurong Tang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Hongmei Zhang
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Mengqin Gu
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| |
Collapse
|
2
|
Alsalhi A. Applications of selected polysaccharides and proteins in dentistry: A review. Int J Biol Macromol 2024; 260:129215. [PMID: 38185301 DOI: 10.1016/j.ijbiomac.2024.129215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
In the last ten years, remarkable characteristics and a variety of functionalities have been created in biopolymeric materials for clinical dental applications. This review gives an overview of current knowledge of natural biopolymers (biological macromolecules) in terms of structural, functional, and property interactions. Natural biopolymers such as polysaccharides (chitosan, bacterial cellulose, hyaluronic acid, and alginate) and polypeptides (collagen and silk fibroin) have been discussed for dental uses. These biopolymers exhibit excellent properties alone and when employed with other composite molecules making them ideal for treatment of periodontitis, endodontics, dental pulp regeneration and oral wound healing. These biopolymers together with the composite materials exhibit better biocompatibility, inertness, elasticity and flexibility which makes them a leading candidate to be used for other dental applications like caries management, oral appliances, dentures, dental implants and oral surgeries.
Collapse
Affiliation(s)
- Abdullah Alsalhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia.
| |
Collapse
|
3
|
Saurav S, Sharma P, Kumar A, Tabassum Z, Girdhar M, Mamidi N, Mohan A. Harnessing Natural Polymers for Nano-Scaffolds in Bone Tissue Engineering: A Comprehensive Overview of Bone Disease Treatment. Curr Issues Mol Biol 2024; 46:585-611. [PMID: 38248340 PMCID: PMC10814241 DOI: 10.3390/cimb46010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
Numerous surgeries are carried out to replace tissues that have been harmed by an illness or an accident. Due to various surgical interventions and the requirement of bone substitutes, the emerging field of bone tissue engineering attempts to repair damaged tissues with the help of scaffolds. These scaffolds act as template for bone regeneration by controlling the development of new cells. For the creation of functional tissues and organs, there are three elements of bone tissue engineering that play very crucial role: cells, signals and scaffolds. For the achievement of these aims, various types of natural polymers, like chitosan, chitin, cellulose, albumin and silk fibroin, have been used for the preparation of scaffolds. Scaffolds produced from natural polymers have many advantages: they are less immunogenic as well as being biodegradable, biocompatible, non-toxic and cost effective. The hierarchal structure of bone, from microscale to nanoscale, is mostly made up of organic and inorganic components like nanohydroxyapatite and collagen components. This review paper summarizes the knowledge and updates the information about the use of natural polymers for the preparation of scaffolds, with their application in recent research trends and development in the area of bone tissue engineering (BTE). The article extensively explores the related research to analyze the advancement of nanotechnology for the treatment of bone-related diseases and bone repair.
Collapse
Affiliation(s)
- Sushmita Saurav
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| | - Prashish Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi 110067, Delhi, India;
| | - Zeba Tabassum
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| | - Madhuri Girdhar
- Division of Research and Development, Lovely Professional University, Phagwara 144401, Punjab, India;
| | - Narsimha Mamidi
- Wisconsin Centre for Nano Biosystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| |
Collapse
|
4
|
Paradowska-Stolarz A, Mikulewicz M, Laskowska J, Karolewicz B, Owczarek A. The Importance of Chitosan Coatings in Dentistry. Mar Drugs 2023; 21:613. [PMID: 38132934 PMCID: PMC10744558 DOI: 10.3390/md21120613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
A Chitosan is a copolymer of N-acetyl-D-glucose amine and D-glucose amine that can be easily produced. It is a polymer that is widely utilized to create nanoparticles (NPs) with specific properties for applications in a wide range of human activities. Chitosan is a substance with excellent prospects due to its antibacterial, anti-inflammatory, antifungal, haemostatic, analgesic, mucoadhesive, and osseointegrative qualities, as well as its superior film-forming capacity. Chitosan nanoparticles (NPs) serve a variety of functions in the pharmaceutical and medical fields, including dentistry. According to recent research, chitosan and its derivatives can be embedded in materials for dental adhesives, barrier membranes, bone replacement, tissue regeneration, and antibacterial agents to improve the management of oral diseases. This narrative review aims to discuss the development of chitosan-containing materials for dental and implant engineering applications, as well as the challenges and future potential. For this purpose, the PubMed database (Medline) was utilised to search for publications published less than 10 years ago. The keywords used were "chitosan coating" and "dentistry". After carefully selecting according to these keywords, 23 articles were studied. The review concluded that chitosan is a biocompatible and bioactive material with many benefits in surgery, restorative dentistry, endodontics, prosthetics, orthodontics, and disinfection. Furthermore, despite the fact that it is a highly significant and promising coating, there is still a demand for various types of coatings. Chitosan is a semi-synthetic polysaccharide that has many medical applications because of its antimicrobial properties. This article aims to review the role of chitosan in dental implantology.
Collapse
Affiliation(s)
- Anna Paradowska-Stolarz
- Division of Dentofacial Anomalies, Department of Orthodontics and Dentofacial Orthopedics, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (M.M.); (J.L.)
| | - Marcin Mikulewicz
- Division of Dentofacial Anomalies, Department of Orthodontics and Dentofacial Orthopedics, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (M.M.); (J.L.)
| | - Joanna Laskowska
- Division of Dentofacial Anomalies, Department of Orthodontics and Dentofacial Orthopedics, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (M.M.); (J.L.)
| | - Bożena Karolewicz
- Department of Drug Forms Technology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Artur Owczarek
- Department of Drug Forms Technology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| |
Collapse
|
5
|
Jiang T, Su W, Li Y, Jiang M, Zhang Y, Xian CJ, Zhai Y. Research Progress on Nanomaterials for Tissue Engineering in Oral Diseases. J Funct Biomater 2023; 14:404. [PMID: 37623649 PMCID: PMC10455101 DOI: 10.3390/jfb14080404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/25/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Due to their superior antibacterial properties, biocompatibility and high conductivity, nanomaterials have shown a broad prospect in the biomedical field and have been widely used in the prevention and treatment of oral diseases. Also due to their small particle sizes and biodegradability, nanomaterials can provide solutions for tissue engineering, especially for oral tissue rehabilitation and regeneration. At present, research on nanomaterials in the field of dentistry focuses on the biological effects of various types of nanomaterials on different oral diseases and tissue engineering applications. In the current review, we have summarized the biological effects of nanoparticles on oral diseases, their potential action mechanisms and influencing factors. We have focused on the opportunities and challenges to various nanomaterial therapy strategies, with specific emphasis on overcoming the challenges through the development of biocompatible and smart nanomaterials. This review will provide references for potential clinical applications of novel nanomaterials in the field of oral medicine for the prevention, diagnosis and treatment of oral diseases.
Collapse
Affiliation(s)
- Tong Jiang
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Wen Su
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Yan Li
- Department of Pharmacy, Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Mingyuan Jiang
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Yonghong Zhang
- Department of Orthopaedics, The 2nd Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Cory J. Xian
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Yuankun Zhai
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| |
Collapse
|
6
|
Haque MM, Yerex K, Kelekis-Cholakis A, Duan K. Advances in novel therapeutic approaches for periodontal diseases. BMC Oral Health 2022; 22:492. [PMID: 36380339 PMCID: PMC9664646 DOI: 10.1186/s12903-022-02530-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractPeriodontal diseases are pathological processes resulting from infections and inflammation affecting the periodontium or the tissue surrounding and supporting the teeth. Pathogenic bacteria living in complex biofilms initiate and perpetuate this disease in susceptible hosts. In some cases, broad-spectrum antibiotic therapy has been a treatment of choice to control bacterial infection. However, increasing antibiotic resistance among periodontal pathogens has become a significant challenge when treating periodontal diseases. Thanks to the improved understanding of the pathogenesis of periodontal disease, which involves the host immune response, and the importance of the human microbiome, the primary goal of periodontal therapy has shifted, in recent years, to the restoration of homeostasis in oral microbiota and its harmonious balance with the host periodontal tissues. This shift in therapeutic goals and the drug resistance challenge call for alternative approaches to antibiotic therapy that indiscriminately eliminate harmful or beneficial bacteria. In this review, we summarize the recent advancement of alternative methods and new compounds that offer promising potential for the treatment and prevention of periodontal disease. Agents that target biofilm formation, bacterial quorum-sensing systems and other virulence factors have been reviewed. New and exciting microbiome approaches, such as oral microbiota replacement therapy and probiotic therapy for periodontal disease, are also discussed.
Collapse
|
7
|
Tharmatt A, Chhina A, Saini M, Trehan K, Singh S, Bedi N. Novel Therapeutics Involving Antibiotic Polymer Conjugates for Treating Various Ailments: A Review. Assay Drug Dev Technol 2022; 20:137-148. [DOI: 10.1089/adt.2022.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Abhay Tharmatt
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Aashveen Chhina
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Muskaan Saini
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Karan Trehan
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sahilpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
8
|
Natural Polymers for the Maintenance of Oral Health: Review of Recent Advances and Perspectives. Int J Mol Sci 2021; 22:ijms221910337. [PMID: 34638678 PMCID: PMC8508910 DOI: 10.3390/ijms221910337] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022] Open
Abstract
The success of modern dental treatment is strongly dependent on the materials used both temporarily and permanently. Among all dental materials, polymers are a very important class with a wide spectrum of applications. This review aims to provide a state-of-the-art overview of the recent advances in the field of natural polymers used to maintain or restore oral health. It focuses on the properties of the most common proteins and polysaccharides of natural origin in terms of meeting the specific biological requirements in the increasingly demanding field of modern dentistry. The use of naturally derived polymers in different dental specialties for preventive and therapeutic purposes has been discussed. The major fields of application cover caries and the management of periodontal diseases, the fabrication of membranes and scaffolds for the regeneration of dental structures, the manufacturing of oral appliances and dentures as well as providing systems for oral drug delivery. This paper also includes a comparative characteristic of natural and synthetic dental polymers. Finally, the current review highlights new perspectives, possible future advancements, as well as challenges that may be encountered by researchers in the field of dental applications of polymers of natural origin.
Collapse
|
9
|
Küçüktürkmen B, Öz UC, Toptaş M, Devrim B, Saka OM, Bilgili H, Deveci MS, Ünsal E, Bozkır A. Development of Zoledronic Acid Containing Biomaterials for Enhanced Guided Bone Regeneration. J Pharm Sci 2021; 110:3200-3207. [PMID: 33984339 DOI: 10.1016/j.xphs.2021.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/17/2022]
Abstract
In recent years, biomaterial-based treatments, also called guided bone regeneration (GBR), which aim to establish a bone regeneration site and prevent the migration of gingival connective tissue and / or peripheral epithelium through the defective area during periodontal surgical procedures have come to the fore. In this report, we have developed a nanoparticle bearing thermosensitive in situ gel formulation of Pluronic F127 and poly(D,L-lactic acid) based membrane to reveal their utilization at GBR by in-vivo applications. In addition, the encouragement of the bone formation in defect area via inhibition of osteoclastic activity is intended by fabrication these biodegradable biomaterials at a lowered Zoledronic Acid (ZA) dose. Both of the developed materials remained stable under specified stability conditions (25 °C, 6 months) and provided the extended release profile of ZA. The in-vivo efficacy of nanoparticle bearing in situ gel formulation, membrane formulation and simultaneous application for guided bone regeneration was investigated in New Zealand female rabbits with a critical size defect of 0.5 × 0.5 cm in the tibia bone for eight weeks. Based on the histopathological findings, lamellar bone and primarily woven bone formations were observed after 8 weeks of post-implantation of both formulations, while fibrosis was detected only in the untreated group. Lamellar bone growth was remarkably achieved just four weeks after the simultaneous application of formulations. Consequently, the simultaneous application of ZA-membrane and ZA-nanoparticles loaded in-situ gel formulations offers enhanced and faster GBR therapy alternatives.
Collapse
Affiliation(s)
- Berrin Küçüktürkmen
- Faculty of Pharmacy Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
| | - Umut Can Öz
- Faculty of Pharmacy Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey.
| | - Mete Toptaş
- Faculty of Dentistry Department of Periodontology, Bezmialem University, İstanbul, Turkey
| | - Burcu Devrim
- Faculty of Pharmacy Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
| | - Ongun Mehmet Saka
- Faculty of Pharmacy Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
| | - Hasan Bilgili
- Faculty of Veterinary Medicine Department of Surgery, Ankara University, Ankara, Turkey
| | - Mehmet Salih Deveci
- Health Sciences University Gulhane Medical Faculty Pathology Department, Ankara, Turkey
| | - Elif Ünsal
- Faculty of Dentistry Department of Periodontology, Ankara University, Ankara, Turkey
| | - Asuman Bozkır
- Faculty of Pharmacy Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
| |
Collapse
|
10
|
Pinto IC, Seibert JB, Pinto LS, Santos VR, de Sousa RF, Sousa LRD, Amparo TR, Dos Santos VMR, do Nascimento AM, de Souza GHB, Vasconcellos WA, Vieira PMA, Andrade ÂL. Preparation of glass-ionomer cement containing ethanolic Brazilian pepper extract (Schinus terebinthifolius Raddi) fruits: chemical and biological assays. Sci Rep 2020; 10:22312. [PMID: 33339861 PMCID: PMC7749175 DOI: 10.1038/s41598-020-79257-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Plants may contain beneficial or potentially dangerous substances to humans. This study aimed to prepare and evaluate a new drug delivery system based on a glass-ionomer-Brazilian pepper extract composite, to check for its activity against pathogenic microorganisms of the oral cavity, along with its in vitro biocompatibility. The ethanolic Brazilian pepper extract (BPE), the glass-ionomer cement (GIC) and the composite GIC-BPE were characterized by scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and thermal analysis. The BPE compounds were identified by UPLC–QTOF–MS/MS. The release profile of flavonoids and the mechanical properties of the GIC-BPE composite were assessed. The flavonoids were released through a linear mechanism governing the diffusion for the first 48 h, as evidenced by the Mt/M∞ relatively to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sqrt t$$\end{document}t, at a diffusion coefficient of 1.406 × 10–6 cm2 s−1. The ATR-FTIR analysis indicated that a chemical bond between the GIC and BPE components may have occurred, but the compressive strength of GIC-BPE does not differ significantly from that of this glass-ionomer. The GIC-BPE sample revealed an ample bacterial activity at non-cytotoxic concentrations for the human fibroblast MRC-5 cells. These results suggest that the prepared composite may represent an alternative agent for endodontic treatment.
Collapse
Affiliation(s)
- Isabelle C Pinto
- Departamento de Química, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, 35400-000, Brazil
| | - Janaína B Seibert
- Departamento de Química, Universidade Federal de São Carlos, UFSCar, São Carlos, 13565-905, Brazil
| | - Luciano S Pinto
- Departamento de Química, Universidade Federal de São Carlos, UFSCar, São Carlos, 13565-905, Brazil
| | - Vagner R Santos
- Departamento de Clínica, Patologia e Cirurgias Odontológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, 31270-901, Brazil
| | - Rafaela F de Sousa
- Departamento de Química, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, 35400-000, Brazil
| | - Lucas R D Sousa
- Departamento de Química, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, 35400-000, Brazil.,Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, 35400-000, Brazil
| | - Tatiane R Amparo
- Laboratório de Fitotecnologia, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, 35400-000, Brazil
| | - Viviane M R Dos Santos
- Departamento de Química, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, 35400-000, Brazil
| | - Andrea M do Nascimento
- Departamento de Química, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, 35400-000, Brazil
| | | | - Walisson A Vasconcellos
- Departamento de Odontologia Restauradora, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, 31270-901, Brazil
| | - Paula M A Vieira
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, 35400-000, Brazil
| | - Ângela L Andrade
- Departamento de Química, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, 35400-000, Brazil.
| |
Collapse
|
11
|
Fakhri E, Eslami H, Maroufi P, Pakdel F, Taghizadeh S, Ganbarov K, Yousefi M, Tanomand A, Yousefi B, Mahmoudi S, Kafil HS. Chitosan biomaterials application in dentistry. Int J Biol Macromol 2020; 162:956-974. [DOI: 10.1016/j.ijbiomac.2020.06.211] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022]
|
12
|
Öz UC, Toptaş M, Küçüktürkmen B, Devrim B, Saka OM, Deveci MS, Bilgili H, Ünsal E, Bozkır A. Guided bone regeneration by the development of alendronate sodium loaded in-situ gel and membrane formulations. Eur J Pharm Sci 2020; 155:105561. [PMID: 32950618 DOI: 10.1016/j.ejps.2020.105561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/03/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Biocompatible materials applied in guided bone regeneration are needed to prevent leakage caused by the invasion of peripheral epithelium. (2.1) The aim of this study is to develop a thermosensitive in situ gel system containing alendronate sodium loaded PLGA nanoparticles and alendronate sodium loaded membranes for guided bone regeneration. Thermosensitive Pluronic F127 gel system was preferred to prevent soft tissue migration to the defect site and prolong the residence time of the nanoparticles in this region. In situ gel system was combined with membrane formulation to enhance bone regenaration activity. Efficacy of combination system was investigated by implanting in 0.5 × 0.5 cm critical size defect in tibia of New Zealand female rabbits. According to the histopathological results, fibroblast formations were found at defect area after 6 weeks of post implantation. In contrast, treatment with the combination of in-situ gel containing nanoparticles with membrane provided woven bone formation with mature bone after 4 weeks of post implantation. As a results, the combination of in-situ gel formulation containing alendronate sodium-loaded nanoparticles with membrane formulation could be effectively applided for guided bone regeneration.
Collapse
Affiliation(s)
- Umut Can Öz
- Ankara University Faculty of Pharmacy Department of Pharmaceutical Technology, 06560 Yenimahalle-Ankara, Ankara, Turkey
| | - Mete Toptaş
- Bezmialem University Faculty of Dentistry Department of Periodontology, İstanbul, Turkey
| | - Berrin Küçüktürkmen
- Ankara University Faculty of Pharmacy Department of Pharmaceutical Technology, 06560 Yenimahalle-Ankara, Ankara, Turkey
| | - Burcu Devrim
- Ankara University Faculty of Pharmacy Department of Pharmaceutical Technology, 06560 Yenimahalle-Ankara, Ankara, Turkey.
| | - Ongun Mehmet Saka
- Ankara University Faculty of Pharmacy Department of Pharmaceutical Technology, 06560 Yenimahalle-Ankara, Ankara, Turkey
| | - Mehmet Salih Deveci
- Health Sciences University Gulhane Medical Faculty Pathology Department, Ankara, Turkey
| | - Hasan Bilgili
- Ankara University Faculty of Veterinary Medicine Department of Surgery, Ankara, Turkey
| | - Elif Ünsal
- Ankara University Faculty of Dentistry Department of Periodontology, Ankara, Turkey
| | - Asuman Bozkır
- Ankara University Faculty of Pharmacy Department of Pharmaceutical Technology, 06560 Yenimahalle-Ankara, Ankara, Turkey
| |
Collapse
|
13
|
Application of Chitosan in Bone and Dental Engineering. Molecules 2019; 24:molecules24163009. [PMID: 31431001 PMCID: PMC6720623 DOI: 10.3390/molecules24163009] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 12/30/2022] Open
Abstract
Chitosan is a deacetylated polysaccharide from chitin, the natural biopolymer primarily found in shells of marine crustaceans and fungi cell walls. Upon deacetylation, the protonation of free amino groups of the d-glucosamine residues of chitosan turns it into a polycation, which can easily interact with DNA, proteins, lipids, or negatively charged synthetic polymers. This positive-charged characteristic of chitosan not only increases its solubility, biodegradability, and biocompatibility, but also directly contributes to the muco-adhesion, hemostasis, and antimicrobial properties of chitosan. Combined with its low-cost and economic nature, chitosan has been extensively studied and widely used in biopharmaceutical and biomedical applications for several decades. In this review, we summarize the current chitosan-based applications for bone and dental engineering. Combining chitosan-based scaffolds with other nature or synthetic polymers and biomaterials induces their mechanical properties and bioactivities, as well as promoting osteogenesis. Incorporating the bioactive molecules into these biocomposite scaffolds accelerates new bone regeneration and enhances neovascularization in vivo.
Collapse
|
14
|
Investigation on solution-to-gel characteristic of thermosensitive and mucoadhesive biopolymers for the development of moxifloxacin-loaded sustained release periodontal in situ gels. Drug Deliv Transl Res 2019; 9:434-443. [PMID: 29392681 DOI: 10.1007/s13346-018-0488-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The objectives of present research were to develop and characterize thermosensitive and mucoadhesive polymer-based sustained release moxifloxacin in situ gels for the treatment of periodontal diseases. Poloxamer- and chitosan-based in situ gels are in liquid form at room temperature and transform into gel once administered into periodontal pocket due to raise in temperature to 37 °C. Besides solution-to-gel characteristic of polymers, their mucoadhesive nature aids the gel to adhere to mucosa in periodontal pocket for prolonged time and releases the drug in sustained manner. These formulations were prepared using cold method and evaluated for pH, solution-gel temperature, syringeability and viscosity. In vitro drug release studies were conducted using dialysis membrane at 37 °C and 50 rpm. Antimicrobial studies carried out against Aggregatibacter actinomycetemcomitans (A.A.) and Streptococcus mutans (S. Mutans) using agar cup-plate method. The prepared formulations were clear and pH was at 7.01-7.40. The viscosity of formulations was found to be satisfactory. Among the all, formulations comprising of 21% poloxamer 407 and 2% poloxamer 188 (P5) and in combination with 0.5% HPMC (P6) as well as 2% chitosan and 70% β-glycerophosphate (C6) demonstrated an ideal gelation temperature (33-37 °C) and sustained the drug release for 8 h. Formulations P6 and C6 showed promising antimicrobial efficacy with zone of inhibition of 27 mm for A.A. and 55 mm for S. Mutans. The developed sustained release in situ gel formulations could enhance patient's compliance by reducing the dosing frequency and also act as an alternative treatment to curb periodontitis.
Collapse
|
15
|
Casadidio C, Peregrina DV, Gigliobianco MR, Deng S, Censi R, Di Martino P. Chitin and Chitosans: Characteristics, Eco-Friendly Processes, and Applications in Cosmetic Science. Mar Drugs 2019; 17:E369. [PMID: 31234361 PMCID: PMC6627199 DOI: 10.3390/md17060369] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/05/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
Huge amounts of chitin and chitosans can be found in the biosphere as important constituents of the exoskeleton of many organisms and as waste by worldwide seafood companies. Presently, politicians, environmentalists, and industrialists encourage the use of these marine polysaccharides as a renewable source developed by alternative eco-friendly processes, especially in the production of regular cosmetics. The aim of this review is to outline the physicochemical and biological properties and the different bioextraction methods of chitin and chitosan sources, focusing on enzymatic deproteinization, bacteria fermentation, and enzymatic deacetylation methods. Thanks to their biodegradability, non-toxicity, biocompatibility, and bioactivity, the applications of these marine polymers are widely used in the contemporary manufacturing of biomedical and pharmaceutical products. In the end, advanced cosmetics based on chitin and chitosans are presented, analyzing different therapeutic aspects regarding skin, hair, nail, and oral care. The innovative formulations described can be considered excellent candidates for the prevention and treatment of several diseases associated with different body anatomical sectors.
Collapse
Affiliation(s)
| | | | | | - Siyuan Deng
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy.
| | - Roberta Censi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy.
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy.
| |
Collapse
|
16
|
Chi M, Qi M, A L, Wang P, Weir MD, Melo MA, Sun X, Dong B, Li C, Wu J, Wang L, Xu HHK. Novel Bioactive and Therapeutic Dental Polymeric Materials to Inhibit Periodontal Pathogens and Biofilms. Int J Mol Sci 2019; 20:E278. [PMID: 30641958 PMCID: PMC6359151 DOI: 10.3390/ijms20020278] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/19/2022] Open
Abstract
Periodontitis is a common infectious disease characterized by loss of tooth-supporting structures, which eventually leads to tooth loss. The heavy burden of periodontal disease and its negative consequence on the patient's quality of life indicate a strong need for developing effective therapies. According to the World Health Organization, 10⁻15% of the global population suffers from severe periodontitis. Advances in understanding the etiology, epidemiology and microbiology of periodontal pocket flora have called for antibacterial therapeutic strategies for periodontitis treatment. Currently, antimicrobial strategies combining with polymer science have attracted tremendous interest in the last decade. This review focuses on the state of the art of antibacterial polymer application against periodontal pathogens and biofilms. The first part focuses on the different polymeric materials serving as antibacterial agents, drug carriers and periodontal barrier membranes to inhibit periodontal pathogens. The second part reviews cutting-edge research on the synthesis and evaluation of a new generation of bioactive dental polymers for Class-V restorations with therapeutic effects. They possess antibacterial, acid-reduction, protein-repellent, and remineralization capabilities. In addition, the antibacterial photodynamic therapy with polymeric materials against periodontal pathogens and biofilms is also briefly described in the third part. These novel bioactive and therapeutic polymeric materials and treatment methods have great potential to inhibit periodontitis and protect tooth structures.
Collapse
Affiliation(s)
- Minghan Chi
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun 130021, China.
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun 130021, China.
| | - Manlin Qi
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun 130021, China.
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun 130021, China.
| | - Lan A
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun 130021, China.
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun 130021, China.
| | - Ping Wang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
| | - Mary Anne Melo
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
| | - Xiaolin Sun
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun 130021, China.
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun 130021, China.
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Chunyan Li
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun 130021, China.
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun 130021, China.
| | - Junling Wu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Prosthodontics, School of Stomatology, Shandong University, Jinan 250012, China.
| | - Lin Wang
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun 130021, China.
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun 130021, China.
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
17
|
Cosmetics and Cosmeceutical Applications of Chitin, Chitosan and Their Derivatives. Polymers (Basel) 2018; 10:polym10020213. [PMID: 30966249 PMCID: PMC6414895 DOI: 10.3390/polym10020213] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 12/19/2022] Open
Abstract
Marine resources are well recognized for their biologically active substances with great potential applications in the cosmeceutical industry. Among the different compounds with a marine origin, chitin and its deacetylated derivative—chitosan—are of great interest to the cosmeceutical industry due to their unique biological and technological properties. In this review, we explore the different functional roles of chitosan as a skin care and hair care ingredient, as an oral hygiene agent and as a carrier for active compounds, among others. The importance of the physico-chemical properties of the polymer in its use in cosmetics are particularly highlighted. Moreover, we analyse the market perspectives of this polymer and the presence in the market of chitosan-based products.
Collapse
|
18
|
Investigation on solution-to-gel characteristic of thermosensitive and mucoadhesive biopolymers for the development of moxifloxacin-loaded sustained release periodontal in situ gels. Drug Deliv Transl Res 2018. [PMID: 29392681 DOI: 10.1007/s13346-018-0488-6 10.1007/s13346-018-0488-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The objectives of present research were to develop and characterize thermosensitive and mucoadhesive polymer-based sustained release moxifloxacin in situ gels for the treatment of periodontal diseases. Poloxamer- and chitosan-based in situ gels are in liquid form at room temperature and transform into gel once administered into periodontal pocket due to raise in temperature to 37 °C. Besides solution-to-gel characteristic of polymers, their mucoadhesive nature aids the gel to adhere to mucosa in periodontal pocket for prolonged time and releases the drug in sustained manner. These formulations were prepared using cold method and evaluated for pH, solution-gel temperature, syringeability and viscosity. In vitro drug release studies were conducted using dialysis membrane at 37 °C and 50 rpm. Antimicrobial studies carried out against Aggregatibacter actinomycetemcomitans (A.A.) and Streptococcus mutans (S. Mutans) using agar cup-plate method. The prepared formulations were clear and pH was at 7.01-7.40. The viscosity of formulations was found to be satisfactory. Among the all, formulations comprising of 21% poloxamer 407 and 2% poloxamer 188 (P5) and in combination with 0.5% HPMC (P6) as well as 2% chitosan and 70% β-glycerophosphate (C6) demonstrated an ideal gelation temperature (33-37 °C) and sustained the drug release for 8 h. Formulations P6 and C6 showed promising antimicrobial efficacy with zone of inhibition of 27 mm for A.A. and 55 mm for S. Mutans. The developed sustained release in situ gel formulations could enhance patient's compliance by reducing the dosing frequency and also act as an alternative treatment to curb periodontitis.
Collapse
|