1
|
Pham T, Nguyen TT, Nguyen NH, Hayles A, Li W, Pham DQ, Nguyen CK, Nguyen T, Vongsvivut J, Ninan N, Sabri Y, Zhang W, Vasilev K, Truong VK. Transforming Spirulina maxima Biomass into Ultrathin Bioactive Coatings Using an Atmospheric Plasma Jet: A New Approach to Healing of Infected Wounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305469. [PMID: 37715087 DOI: 10.1002/smll.202305469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Indexed: 09/17/2023]
Abstract
The challenge of wound healing, particularly in patients with comorbidities such as diabetes, is intensified by wound infection and the accelerating problem of bacterial resistance to current remedies such as antibiotics and silver. One promising approach harnesses the bioactive and antibacterial compound C-phycocyanin from the microalga Spirulina maxima. However, the current processes of extracting this compound and developing coatings are unsustainable and difficult to achieve. To circumvent these obstacles, a novel, sustainable argon atmospheric plasma jet (Ar-APJ) technology that transforms S. maxima biomass into bioactive coatings is presented. This Ar-APJ can selectively disrupt the cell walls of S. maxima, converting them into bioactive ultrathin coatings, which are found to be durable under aqueous conditions. The findings demonstrate that Ar-APJ-transformed bioactive coatings show better antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Moreover, these coatings exhibit compatibility with macrophages, induce an anti-inflammatory response by reducing interleukin 6 production, and promote cell migration in keratinocytes. This study offers an innovative, single-step, sustainable technology for transforming microalgae into bioactive coatings. The approach reported here has immense potential for the generation of bioactive coatings for combating wound infections and may offer a significant advance in wound care research and application.
Collapse
Affiliation(s)
- Tuyet Pham
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Tien Thanh Nguyen
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
- College of Medicine and Pharmacy, Tra Vinh University, Tra Vinh, 87000, Vietnam
| | - Ngoc Huu Nguyen
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
- School of Biomedical Engineering, University of Sydney, Darlington, NSW, 2006, Australia
| | - Andrew Hayles
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Wenshao Li
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Duy Quang Pham
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
- School of Engineering, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Chung Kim Nguyen
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Trung Nguyen
- College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy Beamline, ANSTO Australian Synchrotron, Clayton, Victoria, 3168, Australia
| | - Neethu Ninan
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Ylias Sabri
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| | - Wei Zhang
- Advanced Marine Biomanufacturing Laboratory, Centre for Marine Bioproduct Development, College of Medicine and Public Health, Flinders University, Adelaide, 5042, Australia
| | - Krasimir Vasilev
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Vi Khanh Truong
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| |
Collapse
|
2
|
Dujardin C, Habeler W, Monville C, Letourneur D, Simon-Yarza T. Advances in the engineering of the outer blood-retina barrier: From in-vitro modelling to cellular therapy. Bioact Mater 2024; 31:151-177. [PMID: 37637086 PMCID: PMC10448242 DOI: 10.1016/j.bioactmat.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
The outer blood-retina barrier (oBRB), crucial for the survival and the proper functioning of the overlying retinal layers, is disrupted in numerous diseases affecting the retina, leading to the loss of the photoreceptors and ultimately of vision. To study the oBRB and/or its degeneration, many in vitro oBRB models have been developed, notably to investigate potential therapeutic strategies against retinal diseases. Indeed, to this day, most of these pathologies are untreatable, especially once the first signs of degeneration are observed. To cure those patients, a current strategy is to cultivate in vitro a mature oBRB epithelium on a custom membrane that is further implanted to replace the damaged native tissue. After a description of the oBRB and the related diseases, this review presents an overview of the oBRB models, from the simplest to the most complex. Then, we propose a discussion over the used cell types, for their relevance to study or treat the oBRB. Models designed for in vitro applications are then examined, by paying particular attention to the design evolution in the last years, the development of pathological models and the benefits of co-culture models, including both the retinal pigment epithelium and the choroid. Lastly, this review focuses on the models developed for in vivo implantation, with special emphasis on the choice of the material, its processing and its characterization, before discussing the reported pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Chloé Dujardin
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS) INSERM-U1148, 75018 Paris, France
| | - Walter Habeler
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
- U861, I-Stem, AFM, Université Paris-Saclay, Université D’Evry, 91100, Corbeil-Essonnes, France
- CECS, Centre D’étude des Cellules Souches, 91100, Corbeil-Essonnes, France
| | - Christelle Monville
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
- U861, I-Stem, AFM, Université Paris-Saclay, Université D’Evry, 91100, Corbeil-Essonnes, France
| | - Didier Letourneur
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS) INSERM-U1148, 75018 Paris, France
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS) INSERM-U1148, 75018 Paris, France
| |
Collapse
|
3
|
Davies AE, Williams RL, Lugano G, Pop SR, Kearns VR. In vitro and computational modelling of drug delivery across the outer blood-retinal barrier. Interface Focus 2020; 10:20190132. [PMID: 32194934 PMCID: PMC7061949 DOI: 10.1098/rsfs.2019.0132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2020] [Indexed: 12/22/2022] Open
Abstract
The ability to produce rapid, cost-effective and human-relevant data has the potential to accelerate the development of new drug delivery systems. Intraocular drug delivery is an area undergoing rapid expansion, due to the increase in sight-threatening diseases linked to increasing age and lifestyle factors. The outer blood-retinal barrier (OBRB) is important in this area of drug delivery, as it separates the eye from the systemic blood flow. This study reports the development of complementary in vitro and in silico models to study drug transport from silicone oil across the OBRB. Monolayer cultures of a human retinal pigmented epithelium cell line, ARPE-19, were added to chambers and exposed to a controlled flow to simulate drug clearance across the OBRB. Movement of dextran molecules and release of ibuprofen from silicone oil in this model were measured. Corresponding simulations were developed using COMSOL Multiphysics computational fluid dynamics software and validated using independent in vitro datasets. Computational simulations were able to predict dextran movement and ibuprofen release, with all of the features of the experimental release profiles being observed in the simulated data. Simulated values for peak concentrations of permeated dextran and ibuprofen released from silicone oil were within 18% of the in vitro results. This model could be used as a predictive tool for drug transport across this important tissue.
Collapse
Affiliation(s)
- Alys E. Davies
- Department of Eye and Vision Science, University of Liverpool, Liverpool, UK
| | - Rachel L. Williams
- Department of Eye and Vision Science, University of Liverpool, Liverpool, UK
| | - Gaia Lugano
- Department of Eye and Vision Science, University of Liverpool, Liverpool, UK
| | - Serban R. Pop
- Department of Computer Science, University of Chester, Chester, UK
| | - Victoria R. Kearns
- Department of Eye and Vision Science, University of Liverpool, Liverpool, UK
| |
Collapse
|