1
|
Pho T, Janecka MA, Pustulka SM, Champion JA. Nanoetched Stainless Steel Architecture Enhances Cell Uptake of Biomacromolecules and Alters Protein Corona Abundancy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58427-58438. [PMID: 39417567 PMCID: PMC11533172 DOI: 10.1021/acsami.4c14492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
Nanotexture on biocompatible surfaces promotes cell adhesion and proliferation. High aspect ratio nanoachitecture serves as an ideal interface between implant materials and host cells that is well-suited for localized therapeutic delivery. Despite this potential, nanotextured surfaces have not been widely applied for biomacromolecule delivery. Here, we employed a low-cost, industrially relevant nanoetching process to modify the surface of biocompatible stainless steel 316 (SS316L), creating nanotextured SS316L (NT-SS316L) as a material for intracellular biomacromolecule delivery. As biomacromolecule cargoes are adsorbed to the steel and ultimately would be used in protein-rich environments, we performed serum protein corona analysis on unmodified SS316L and NT-SS316L using tandem mass spectrometry. We observed an increase in proteins associated with cell adhesion on the surface of NT-SS316L compared to that of SS316L, supporting literature reports of enhanced adhesion on nanotextured materials. For delivery to adherent cells, a "hard corona" of model biomacromolecule cargoes including superfolder green fluorescent protein (sfGFP) charge variants, cytochrome c, and siRNA was adsorbed on NT-SS316L to assess delivery. Nanotextured surfaces enhanced cellular biomacromolecule uptake and delivered cytosolic-functional proteins and nucleic acids through energy-dependent endocytosis. Collectively, these findings indicate that NT-SS316L holds potential as a surface modification for implants to achieve localized drug delivery for a variety of biomedical applications.
Collapse
Affiliation(s)
- Thomas Pho
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, Georgia 30332-2000, United States
- BioEngineering
Program, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Maeve A. Janecka
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, Georgia 30332-2000, United States
| | - Samantha M. Pustulka
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, Georgia 30332-2000, United States
| | - Julie A. Champion
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, Georgia 30332-2000, United States
- BioEngineering
Program, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Wang Z, Wang H, Lin S, Labib M, Ahmed S, Das J, Angers S, Sargent EH, Kelley SO. Efficient Delivery of Biological Cargos into Primary Cells by Electrodeposited Nanoneedles via Cell-Cycle-Dependent Endocytosis. NANO LETTERS 2023. [PMID: 37040490 DOI: 10.1021/acs.nanolett.2c05083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Nanoneedles are a useful tool for delivering exogenous biomolecules to cells. Although therapeutic applications have been explored, the mechanism regarding how cells interact with nanoneedles remains poorly studied. Here, we present a new approach for the generation of nanoneedles, validated their usefulness in cargo delivery, and studied the underlying genetic modulators during delivery. We fabricated arrays of nanoneedles based on electrodeposition and quantified its efficacy of delivery using fluorescently labeled proteins and siRNAs. Notably, we revealed that our nanoneedles caused the disruption of cell membranes, enhanced the expression of cell-cell junction proteins, and downregulated the expression of transcriptional factors of NFκB pathways. This perturbation trapped most of the cells in G2 phase, in which the cells have the highest endocytosis activities. Taken together, this system provides a new model for the study of interactions between cells and high-aspect-ratio materials.
Collapse
Affiliation(s)
- Zongjie Wang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
| | - Hansen Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
| | - Sichun Lin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Mahmoud Labib
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, Illinois 60208, United States
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, PL6 8BU, United Kingdom
| | - Sharif Ahmed
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jagotamoy Das
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Edward H Sargent
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto M5S 3G4, Canada
| | - Shana O Kelley
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biochemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
3
|
Bakhshandeh B, Ranjbar N, Abbasi A, Amiri E, Abedi A, Mehrabi M, Dehghani Z, Pennisi CP. Recent progress in the manipulation of biochemical and biophysical cues for engineering functional tissues. Bioeng Transl Med 2023; 8:e10383. [PMID: 36925674 PMCID: PMC10013802 DOI: 10.1002/btm2.10383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/28/2022] [Accepted: 07/16/2022] [Indexed: 11/11/2022] Open
Abstract
Tissue engineering (TE) is currently considered a cutting-edge discipline that offers the potential for developing treatments for health conditions that negatively affect the quality of life. This interdisciplinary field typically involves the combination of cells, scaffolds, and appropriate induction factors for the regeneration and repair of damaged tissue. Cell fate decisions, such as survival, proliferation, or differentiation, critically depend on various biochemical and biophysical factors provided by the extracellular environment during developmental, physiological, and pathological processes. Therefore, understanding the mechanisms of action of these factors is critical to accurately mimic the complex architecture of the extracellular environment of living tissues and improve the efficiency of TE approaches. In this review, we recapitulate the effects that biochemical and biophysical induction factors have on various aspects of cell fate. While the role of biochemical factors, such as growth factors, small molecules, extracellular matrix (ECM) components, and cytokines, has been extensively studied in the context of TE applications, it is only recently that we have begun to understand the effects of biophysical signals such as surface topography, mechanical, and electrical signals. These biophysical cues could provide a more robust set of stimuli to manipulate cell signaling pathways during the formation of the engineered tissue. Furthermore, the simultaneous application of different types of signals appears to elicit synergistic responses that are likely to improve functional outcomes, which could help translate results into successful clinical therapies in the future.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of ScienceUniversity of TehranTehranIran
| | - Nika Ranjbar
- Department of Biotechnology, College of ScienceUniversity of TehranTehranIran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Elahe Amiri
- Department of Life Science Engineering, Faculty of New Sciences and TechnologyUniversity of TehranTehranIran
| | - Ali Abedi
- Department of Life Science Engineering, Faculty of New Sciences and TechnologyUniversity of TehranTehranIran
| | - Mohammad‐Reza Mehrabi
- Department of Microbial Biotechnology, School of Biology, College of ScienceUniversity of TehranTehranIran
| | - Zahra Dehghani
- Department of Biotechnology, College of ScienceUniversity of TehranTehranIran
| | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and TechnologyAalborg UniversityAalborgDenmark
| |
Collapse
|
4
|
Rohr N, Fricke K, Bergemann C, Nebe JB, Fischer J. Efficacy of Plasma-Polymerized Allylamine Coating of Zirconia after Five Years. J Clin Med 2020; 9:jcm9092776. [PMID: 32867239 PMCID: PMC7565740 DOI: 10.3390/jcm9092776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Abstract
Plasma-polymerized allylamine (PPAAm) coatings of titanium enhance the cell behavior of osteoblasts. The purpose of the present study was to evaluate a PPAAm nanolayer on zirconia after a storage period of 5 years. Zirconia specimens were directly coated with PPAAm (ZA0) or stored in aseptic packages at room temperature for 5 years (ZA5). Uncoated zirconia specimens (Zmt) and the micro-structured endosseous surface of a zirconia implant (Z14) served as controls. The elemental compositions of the PPAAm coatings were characterized and the viability, spreading and gene expression of human osteoblastic cells (MG-63) were assessed. The presence of amino groups in the PPAAm layer was significantly decreased after 5 years due to oxidation processes. Cell viability after 24 h was significantly higher on uncoated specimens (Zmt) than on all other surfaces. Cell spreading after 20 min was significantly higher for Zmt = ZA0 > ZA5 > Z14, while, after 24 h, spreading also varied significantly between Zmt > ZA0 > ZA5 > Z14. The expression of the mRNA differentiation markers collagen I and osteocalcin was upregulated on untreated surfaces Z14 and Zmt when compared to the PPAAm specimens. Due to the high biocompatibility of zirconia itself, a PPAAm coating may not additionally improve cell behavior.
Collapse
Affiliation(s)
- Nadja Rohr
- Biomaterials and Technology, Department of Reconstructive Dentistry, University Center for Dental Medicine, University of Basel, 4058 Basel, Switzerland;
- Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany; (C.B.); (J.B.N.)
- Correspondence: ; Tel.: +41-612-672-799
| | - Katja Fricke
- Leibniz Institute for Plasma Science and Technology e.V. (INP), 17489 Greifswald, Germany;
| | - Claudia Bergemann
- Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany; (C.B.); (J.B.N.)
| | - J Barbara Nebe
- Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany; (C.B.); (J.B.N.)
| | - Jens Fischer
- Biomaterials and Technology, Department of Reconstructive Dentistry, University Center for Dental Medicine, University of Basel, 4058 Basel, Switzerland;
| |
Collapse
|
5
|
Ghezzi B, Lagonegro P, Fukata N, Parisi L, Calestani D, Galli C, Salviati G, Macaluso GM, Rossi F. Sub-Micropillar Spacing Modulates the Spatial Arrangement of Mouse MC3T3-E1 Osteoblastic Cells. NANOMATERIALS 2019; 9:nano9121701. [PMID: 31795174 PMCID: PMC6955749 DOI: 10.3390/nano9121701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022]
Abstract
Surface topography is one of the main factors controlling cell responses on implanted devices and a proper definition of the characteristics that optimize cell behavior may be crucial to improve the clinical performances of these implants. Substrate geometry is known to affect cell shape, as cells try to optimize their adhesion by adapting to the irregularities beneath, and this in turn profoundly affects their activity. In the present study, we cultured murine calvaria MC3T3-E1 cells on surfaces with pillars arranged as hexagons with two different spacings and observed their morphology during adhesion and growth. Cells on these highly ordered substrates attached and proliferated effectively, showing a marked preference for minimizing the inter-pillar distance, by following specific pathways across adjacent pillars and displaying consistent morphological modules. Moreover, cell behavior appeared to follow tightly controlled patterns of extracellular protein secretion, which preceded and matched cells and, on a sub-cellular level, cytoplasmic orientation. Taken together, these results outline the close integration of surface features, extracellular proteins alignment and cell arrangement, and provide clues on how to control and direct cell spatial order and cell morphology by simply acting on inter-pillar spacing.
Collapse
Affiliation(s)
- Benedetta Ghezzi
- Centro Universitario di Odontoiatria, Università di Parma, Via Gramsci 14, 43126 Parma, Italy; (L.P.); (G.M.M.)
- Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy;
- Correspondence:
| | - Paola Lagonegro
- ISMAC-CNR, Institute for macromolecular studies, Via Corti, 12, 20133 Milano, Italy;
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze, 37/A, 43124 Parma, Italy; (D.C.); (G.S.); (F.R.)
| | - Naoki Fukata
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan;
- Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan
| | - Ludovica Parisi
- Centro Universitario di Odontoiatria, Università di Parma, Via Gramsci 14, 43126 Parma, Italy; (L.P.); (G.M.M.)
- Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy;
- Labör für Orale Molekularbiologie, Klinik für Kieferorthopädie, Zahnmedizinische Klinik, Universität Bern, Freiburgstrasse 7, 3008 Bern, Switzerland
| | - Davide Calestani
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze, 37/A, 43124 Parma, Italy; (D.C.); (G.S.); (F.R.)
| | - Carlo Galli
- Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy;
| | - Giancarlo Salviati
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze, 37/A, 43124 Parma, Italy; (D.C.); (G.S.); (F.R.)
| | - Guido M. Macaluso
- Centro Universitario di Odontoiatria, Università di Parma, Via Gramsci 14, 43126 Parma, Italy; (L.P.); (G.M.M.)
- Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy;
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze, 37/A, 43124 Parma, Italy; (D.C.); (G.S.); (F.R.)
| | - Francesca Rossi
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze, 37/A, 43124 Parma, Italy; (D.C.); (G.S.); (F.R.)
| |
Collapse
|
6
|
Hasturk O, Ermis M, Demirci U, Hasirci N, Hasirci V. Square prism micropillars improve osteogenicity of poly(methyl methacrylate) surfaces. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:53. [PMID: 29721618 DOI: 10.1007/s10856-018-6059-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Osteogenicity and osteointegration of materials is one of the key elements of the success of bone implants. Poly(methyl methacrylate) (PMMA) is the basic compound of bone cement and has been widely investigated for other orthopedic applications, but its poor osteointegration and the subsequent loosening of implant material limits its widespread use as bone implants. Micropillar features on substrate surfaces were recently reported to modulate cell behavior through alteration of cell morphology and promotion of osteogenesis. Utilization of this pillar-decorated topography may be an effective approach to enhance osteogenicity of polymeric surfaces. The aim of this study was to investigate the effect of cell morphology on the micropillar features on attachment, proliferation, and osteogenic activity of human osteoblast-like cells. A series of solvent cast PMMA films decorated with 8 µm high square prism micropillars with pillar width and interpillar distances of 4, 8 and 16 µm were prepared from photolithographic templates, and primary human osteoblast-like cells (hOB) isolated from bone fragments were cultured on them. Micropillars increased cell attachment and early proliferation rate compared to unpatterned surfaces, and triggered distinct morphological changes in cell body and nucleus. Surfaces with pillar dimensions and gap width of 4 µm presented the best osteogenic activity. Expression of osteogenic marker genes was upregulated by micropillars, and cells formed bone nodule-like aggregates rich in bone matrix proteins and calcium phosphate. These results indicated that micropillar features enhance osteogenic activity on PMMA films, possibly by triggering morphological changes that promote the osteogenic phenotype of the cells.
Collapse
Affiliation(s)
- O Hasturk
- Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, 06800, Turkey
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - M Ermis
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey
- Graduate Department of Biomedical Engineering, METU, Ankara, 06800, Turkey
| | - U Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 942304, USA
- Electrical Engineering Department (by courtesy), Stanford University, Stanford, CA, 94305, USA
| | - N Hasirci
- Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, 06800, Turkey
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey
- Graduate Department of Biomedical Engineering, METU, Ankara, 06800, Turkey
- Department of Chemistry, METU, Ankara, 06800, Turkey
| | - V Hasirci
- Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, 06800, Turkey.
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey.
- Graduate Department of Biomedical Engineering, METU, Ankara, 06800, Turkey.
- Department of Biological Sciences, METU, Ankara, 06800, Turkey.
| |
Collapse
|
7
|
Zhang R, Elkhooly TA, Huang Q, Liu X, Yang X, Yan H, Xiong Z, Ma J, Feng Q, Shen Z. Effects of the hierarchical macro/mesoporous structure on the osteoblast-like cell response. J Biomed Mater Res A 2018. [DOI: 10.1002/jbm.a.36387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ranran Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
- Key Laboratory of Advanced Materials of Ministry of Education of China; Tsinghua University; Beijing 100084 China
| | - Tarek A. Elkhooly
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
- Key Laboratory of Advanced Materials of Ministry of Education of China; Tsinghua University; Beijing 100084 China
- Department of Ceramics; Inorganic Chemical Industries Division, National Research Center; Cairo 12622 Egypt
| | - Qianli Huang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
- Key Laboratory of Advanced Materials of Ministry of Education of China; Tsinghua University; Beijing 100084 China
| | - Xujie Liu
- Key Laboratory of Advanced Materials of Ministry of Education of China; Tsinghua University; Beijing 100084 China
- Graduate School at Shenzhen, Tsinghua University; Shenzhen 518055 China
| | - Xing Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
- Key Laboratory of Advanced Materials of Ministry of Education of China; Tsinghua University; Beijing 100084 China
| | - Hao Yan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
- Key Laboratory of Advanced Materials of Ministry of Education of China; Tsinghua University; Beijing 100084 China
| | - Zhiyuan Xiong
- Key Laboratory of Advanced Materials of Ministry of Education of China; Tsinghua University; Beijing 100084 China
| | - Jing Ma
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
| | - Qingling Feng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
- Key Laboratory of Advanced Materials of Ministry of Education of China; Tsinghua University; Beijing 100084 China
| | - Zhijian Shen
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory; Stockholm University; Stockholm S-106 91 Sweden
| |
Collapse
|
8
|
Ekambaram BK, Niepel MS, Fuhrmann B, Schmidt G, Groth T. Introduction of Laser Interference Lithography to Make Nanopatterned Surfaces for Fundamental Studies on Stem Cell Response. ACS Biomater Sci Eng 2018; 4:1820-1832. [DOI: 10.1021/acsbiomaterials.8b00060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|