1
|
Luo R, Wan Y, Liu G, Chen J, Luo X, Li Z, Su D, Lu N, Luo Z. Engineering Self-Assembling Peptide Hydrogel to Enhance the Capacity of Dendritic Cells to Activate In Vivo T-Cell Immunity. Biomacromolecules 2024; 25:1408-1428. [PMID: 38236703 DOI: 10.1021/acs.biomac.3c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The efficacy of the dendritic cell (DC) has failed to meet expectations thus far, and crucial problems such as the immature state of DCs, low targeting efficiency, insufficient number of dendritic cells, and microenvironment are still the current focus. To address these problems, we developed two self-assembling peptides, RLDI and RQDT, that mimic extracellular matrix (ECM). These peptides can be self-assembled into highly ordered three-dimensional nanofiber scaffold structures, where RLDI can form gelation immediately. In addition, we found that RLDI and RQDT enhance the biological function of DCs, including releasing antigens sustainably, adhering to DCs, promoting the maturation of DCs, and increasing the ability of DC antigen presentation. Moreover, peptide hydrogel-based DC treatment significantly achieved prophylactic and treatment effects on colon cancer. These results have certain implications for the design of new broad-spectrum vaccines in the future.
Collapse
Affiliation(s)
- Ruyue Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Yuan Wan
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Guicen Liu
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Jialei Chen
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Xinyi Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhaoxu Li
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Di Su
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Na Lu
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhongli Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
2
|
Wang X, Dai G, Jiang G, Zhang D, Wang L, Zhang W, Chen H, Cheng T, Zhou Y, Wei X, Li F, Ma D, Tan S, Wei R, Xi L. A TMVP1-modified near-infrared nanoprobe: molecular imaging for tumor metastasis in sentinel lymph node and targeted enhanced photothermal therapy. J Nanobiotechnology 2023; 21:130. [PMID: 37069646 PMCID: PMC10108508 DOI: 10.1186/s12951-023-01883-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND TMVP1 is a novel tumor targeting polypeptide screened by our laboratory with a core sequence of five amino acids LARGR. It specially binds to vascular endothelial growth factor receptor-3 (VEGFR-3), which is mainly expressed on neo-lymphatic vessels in sentinel lymph node (SLN) with tumor metastasis in adults. Here, we prepared a targeted nanoprobe using TMVP1-modified nanomaterials for tumor metastasis SLN imaging. RESULTS In this study, TMVP1-modified polymer nanomaterials were loaded with the near-infrared (NIR) fluorescent dye, indocyanine green (ICG), to prepare a molecular imaging TMVP1-ICG nanoparticles (NPs) to identify tumor metastasis in SLN at molecular level. TMVP1-ICG-NPs were successfully prepared using the nano-precipitation method. The particle diameter, morphology, drug encapsulation efficiency, UV absorption spectrum, cytotoxicity, safety, and pharmacokinetic properties were determined. The TMVP1-ICG-NPs had a diameter of approximately 130 nm and an ICG loading rate of 70%. In vitro cell experiments and in vivo mouse experiments confirmed that TMVP1-ICG-NPs have good targeting ability to tumors in situ and to SLN with tumor metastasis by binding to VEGFR-3. Effective photothermal therapy (PTT) with TMVP1-ICG-NPs was confirmed in vitro and in vivo. As expected, TMVP1-ICG-NPs improved ICG blood stability, targeted tumor metastasis to SLN, and enhanced PTT/photodynamic (PDT) therapy, without obvious cytotoxicity, making it a promising theranostic nanomedicine. CONCLUSION TMVP1-ICG-NPs identified SLN with tumor metastasis and were used to perform imaging-guided PTT, which makes it a promising strategy for providing real-time NIR fluorescence imaging and intraoperative PTT for patients with SLN metastasis.
Collapse
Affiliation(s)
- Xueqian Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Geyang Dai
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Guiying Jiang
- Department of Gynecology, West China Second University Hospital, Chengdu, 610000, China
| | - Danya Zhang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Ling Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Wen Zhang
- Hubei University of Medicine, Shiyan, 442000, China
| | - Huang Chen
- School of Medicine, Jianghan University, Wuhan, 430000, China
| | - Teng Cheng
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Zhou
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xiao Wei
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Fei Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Songwei Tan
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Rui Wei
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| | - Ling Xi
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
3
|
Wang P, Sun W, Guo J, Zhang K, Liu Y, Jiang Q, Su D, Sun X. One pot synthesis of zwitteronic 99mTc doped ultrasmall iron oxide nanoparticles for SPECT/T1-weighted MR dual-modality tumor imaging. Colloids Surf B Biointerfaces 2020; 197:111403. [PMID: 33099146 DOI: 10.1016/j.colsurfb.2020.111403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
In this study, we have synthesized 99mTc intrinsically labeled ultrasmall magnetic iron oxide nanoparticles with zwitterionic surface coating (99mTc-ZW-USIONPs) via one pot synthesis using sulfobetains functionalized poly (acrylic acid) as stabilizer and Na99mTcO4 and SnCl2 as additives. The commercialization of single photon emission computed tomography (SPECT)/magnetic resonance imaging (MRI) scanner made the combination use of 99mTc and iron oxide nanoparticles attracting much attention. Direct doping radioisotope into nanoparticles has the advantages of excellent radiochemical stability and no restriction on the surface functionalization. The complex Technetium chemistry made it challenging to direct dope 99mTc into IONPs, especially those ultrasmall ones without precipitation. We proved that it is possible to prepare 99mTc doped USIONPs with excellent water solubility and favorable T1 signal by controlling the radioactivity and reducing agent amount. With no need of chelator, the zwitterionic surface resists the protein corona formation, resulting in a reduced RES uptake and higher tumor contrast. The 99mTc-ZW-USIONPs demonstrated excellent performance of tumor SPECT and T1-weighted MR imaging capability in 4T1 tumor bearing mice. Together with their ease of preparation and superior biocompatibility, we believe these 99mTc-ZW-USIONPs represent a type of promising dual contrast agent for SPECT/T1 MRI.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Zhongshan Road 321, Nanjing, 210008, China
| | - Wenjing Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 261005, China
| | - Jingru Guo
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Kaijia Zhang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Zhongshan Road 321, Nanjing, 210008, China
| | - Yi Liu
- School of Engineering, China Pharmaceutical University, 211198, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Zhongshan Road 321, Nanjing, 210008, China.
| | - Dan Su
- Oncology Department, Zhejiang Provincial People's Hospital, Hangzhou 310014, China.
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|