1
|
Carreira M, Pires-Santos M, Correia CR, Nadine S, Mano JF. Liquefied capsules containing nanogrooved microdiscs and umbilical cord-derived cells for bone tissue engineering. OPEN RESEARCH EUROPE 2024; 4:94. [PMID: 39279819 PMCID: PMC11393531 DOI: 10.12688/openreseurope.17000.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 09/18/2024]
Abstract
Background Surface topography has been shown to influence cell behavior and direct stromal cell differentiation into distinct lineages. Whereas this phenomenon has been verified in two-dimensional cultures, there is an urgent need for a thorough investigation of topography's role within a three-dimensional (3D) environment, as it better replicates the natural cellular environment. Methods A co-culture of Wharton's jelly-derived mesenchymal stem/stromal cells (WJ-MSCs) and human umbilical vein endothelial cells (HUVECs) was encapsulated in a 3D system consisting of a permselective liquefied environment containing freely dispersed spherical microparticles (spheres) or nanogrooved microdiscs (microdiscs). Microdiscs presenting 358 ± 23 nm grooves and 944 ± 49 nm ridges were produced via nanoimprinting of spherical polycaprolactone microparticles between water-soluble polyvinyl alcohol counter molds of nanogrooved templates. Spheres and microdiscs were cultured in vitro with umbilical cord-derived cells in a basal or osteogenic medium within liquefied capsules for 21 days. Results WJ-MSCs and HUVECs were successfully encapsulated within liquefied capsules containing spheres and microdiscs, ensuring high cellular viability. Results show an enhanced osteogenic differentiation in microdiscs compared to spheres, even in basal medium, evidenced by alkaline phosphatase activity and osteopontin expression. Conclusions This work suggests that the topographical features present in microdiscs induce the osteogenic differentiation of adhered WJ-MSCs along the contact guidance, without additional differentiation factors. The developed 3D bioencapsulation system comprising topographical features might be suitable for bone tissue engineering approaches with minimum in vitro manipulation.
Collapse
Affiliation(s)
- Mariana Carreira
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| | - Manuel Pires-Santos
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| | - Clara R Correia
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| | - Sara Nadine
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| | - João F Mano
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| |
Collapse
|
2
|
Mei L, Yuwei Y, Weiping L, Zhiran X, Bingzheng F, Jibing C, Hongjun G. Strategy for Clinical Setting of Co-transplantation of Mesenchymal Stem Cells and Pancreatic Islets. Cell Transplant 2024; 33:9636897241259433. [PMID: 38877672 PMCID: PMC11179456 DOI: 10.1177/09636897241259433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 06/16/2024] Open
Abstract
Islet transplantation may be the most efficient therapeutic technique for patients with type 1 diabetes mellitus (T1DM). However, the clinical application of this method is faced with numerous limitations, including isolated islet apoptosis, recipient rejection, and graft vascular reconstruction. Mesenchymal stem cells (MSCs) possess anti-apoptotic, immunomodulatory, and angiogenic properties. Here, we review recent studies on co-culture and co-transplantation of islets with MSCs. We have summarized the methods of preparation of co-transplantation, especially the merits of co-culture, and the effects of co-transplantation. Accumulating experimental evidence shows that co-culture of islets with MSCs promotes islet survival, enhances islet secretory function, and prevascularizes islets through various pretransplant preparations. This review is expected to provide a reference for exploring the use of MSCs for clinical islet co-transplantation.
Collapse
Affiliation(s)
- Liang Mei
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Yang Yuwei
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Liang Weiping
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Xu Zhiran
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Feng Bingzheng
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Chen Jibing
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Clinical Research Center for Kidney Diseases of Integrated Traditional Chinese and Western Medicine, Nanning, China
| | - Gao Hongjun
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Clinical Research Center for Kidney Diseases of Integrated Traditional Chinese and Western Medicine, Nanning, China
| |
Collapse
|
3
|
Li M, Cheng X, Feng S, Zhu H, Lu P, Zhang P, Cai X, Qiao P, Gu X, Wang G, Xue C, Wang H. Skin precursor‐derived Schwann cells accelerate in vivo prevascularization of tissue‐engineered nerves to promote peripheral nerve regeneration. Glia 2023; 71:1755-1769. [PMID: 36971489 DOI: 10.1002/glia.24367] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Prevascularization strategies have become a hot spot in tissue engineering. As one of the potential candidates for seed cells, skin precursor-derived Schwann cells (SKP-SCs) were endowed with a new role to more efficiently construct prevascularized tissue-engineered peripheral nerves. The silk fibroin scaffolds seeded with SKP-SCs were prevascularized through subcutaneously implantation, which was further assembled with the SKP-SC-containing chitosan conduit. SKP-SCs expressed pro-angiogenic factors in vitro and in vivo. SKP-SCs significantly accelerated the satisfied prevascularization in vivo of silk fibroin scaffolds compared with VEGF. Moreover, the NGF expression revealed that pregenerated blood vessels adapted to the nerve regeneration microenvironment through reeducation. The short-term nerve regeneration of SKP-SCs-prevascularization was obviously superior to that of non-prevascularization. At 12 weeks postinjury, both SKP-SCs-prevascularization and VEGF-prevascularization significantly improved nerve regeneration with a comparable degree. Our figures provide a new enlightenment for the optimization of prevascularization strategies and how to further utilize tissue engineering for better repair.
Collapse
Affiliation(s)
- Meiyuan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Xiyang Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Shuyue Feng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Hui Zhu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Panjian Lu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Ping Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Xiaodong Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Pingping Qiao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Gang Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Chengbin Xue
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Hongkui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| |
Collapse
|
4
|
Paez-Mayorga J, Lukin I, Emerich D, de Vos P, Orive G, Grattoni A. Emerging strategies for beta cell transplantation to treat diabetes. Trends Pharmacol Sci 2021; 43:221-233. [PMID: 34887129 DOI: 10.1016/j.tips.2021.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 02/08/2023]
Abstract
Beta cell replacement has emerged as an attractive therapeutic alternative to traditional exogenous insulin administration for management of type 1 diabetes (T1D). Beta cells deliver insulin dynamically based on individual glycometabolic requirements, providing glycemic control while significantly reducing patient burden. Although transplantation into the portal circulation is clinically available, poor engraftment, low cell survival, and immune rejection have sparked investigation of alternative strategies for beta cell transplantation. In this review, we focus on current micro- and macroencapsulation technologies for beta cell transplantation and evaluate their advantages and challenges. Specifically, we comment on recent methods to ameliorate graft hypoxia including enhanced vascularization, reduction of pericapsular fibrotic overgrowth (PFO), and oxygen supplementation. We also discuss emerging beta cell-sourcing strategies to overcome donor shortage and provide insight into potential approaches to address outstanding challenges in the field.
Collapse
Affiliation(s)
- Jesus Paez-Mayorga
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Izeia Lukin
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | | | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical biology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Ghezelayagh Z, Zabihi M, Kazemi Ashtiani M, Ghezelayagh Z, Lynn FC, Tahamtani Y. Recapitulating pancreatic cell-cell interactions through bioengineering approaches: the momentous role of non-epithelial cells for diabetes cell therapy. Cell Mol Life Sci 2021; 78:7107-7132. [PMID: 34613423 PMCID: PMC11072828 DOI: 10.1007/s00018-021-03951-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Over the past few years, extensive efforts have been made to generate in-vitro pancreatic micro-tissue, for disease modeling or cell replacement approaches in pancreatic related diseases such as diabetes mellitus. To obtain these goals, a closer look at the diverse cells participating in pancreatic development is necessary. Five major non-epithelial pancreatic (pN-Epi) cell populations namely, pancreatic endothelium, mesothelium, neural crests, pericytes, and stellate cells exist in pancreas throughout its development, and they are hypothesized to be endogenous inducers of the development. In this review, we discuss different pN-Epi cells migrating to and existing within the pancreas and their diverse effects on pancreatic epithelium during organ development mediated via associated signaling pathways, soluble factors or mechanical cell-cell interactions. In-vivo and in-vitro experiments, with a focus on N-Epi cells' impact on pancreas endocrine development, have also been considered. Pluripotent stem cell technology and multicellular three-dimensional organoids as new approaches to generate pancreatic micro-tissues have also been discussed. Main challenges for reaching a detailed understanding of the role of pN-Epi cells in pancreas development in utilizing for in-vitro recapitulation have been summarized. Finally, various novel and innovative large-scale bioengineering approaches which may help to recapitulate cell-cell interactions and are crucial for generation of large-scale in-vitro multicellular pancreatic micro-tissues, are discussed.
Collapse
Affiliation(s)
- Zahra Ghezelayagh
- Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Zabihi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Mohammad Kazemi Ashtiani
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zeinab Ghezelayagh
- Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery and School of Biomedical Engineering , University of British Columbia, Vancouver, BC, Canada
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
6
|
Smink AM, Skrzypek K, Liefers-Visser JAL, Kuwabara R, de Haan BJ, de Vos P, Stamatialis D. In vivovascularization and islet function in a microwell device for pancreatic islet transplantation. Biomed Mater 2021; 16. [PMID: 33831849 DOI: 10.1088/1748-605x/abf5ec] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/08/2021] [Indexed: 11/12/2022]
Abstract
Islet encapsulation in membrane-based devices could allow for transplantation of donor islet tissue in the absence of immunosuppression. To achieve long-term survival of islets, the device should allow rapid exchange of essential nutrients and be vascularized to guarantee continued support of islet function. Recently, we have proposed a membrane-based macroencapsulation device consisting of a microwell membrane for islet separation covered by a micropatterned membrane lid. The device can prevent islet aggregation and support functional islet survivalin vitro. Here, based on previous modeling studies, we develop an improved device with smaller microwell dimensions, decreased spacing between the microwells and reduced membrane thickness and investigate its performancein vitroandin vivo. This improved device allows for encapsulating higher islet numbers without islet aggregation and by applying anin vivoimaging system we demonstrate very good perfusion of the device when implanted intraperitoneally in mice. Besides, when it is implanted subcutaneously in mice, islet viability is maintained and a vascular network in close proximity to the device is developed. All these important findings demonstrate the potential of this device for islet transplantation.
Collapse
Affiliation(s)
- Alexandra M Smink
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Katarzyna Skrzypek
- (Bio)artificial Organs, Department of Biomaterials Science and Technology, Technical Medical Center, University of Twente, Enschede, The Netherlands
| | - Jolanda A L Liefers-Visser
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rei Kuwabara
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart J de Haan
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Paul de Vos
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dimitrios Stamatialis
- (Bio)artificial Organs, Department of Biomaterials Science and Technology, Technical Medical Center, University of Twente, Enschede, The Netherlands
| |
Collapse
|
7
|
Sousa AR, Mano JF, Oliveira MB. Engineering Strategies for Allogeneic Solid Tissue Acceptance. Trends Mol Med 2021; 27:572-587. [PMID: 33865718 DOI: 10.1016/j.molmed.2021.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Abstract
Advances in allogeneic transplantation of solid organs and tissues depend on our understanding of mechanisms that mediate the prevention of graft rejection. For the past decades, clinical practice has established guidelines to prevent allograft rejection, which mostly rely on the intake of nontargeted immunosuppressants as the gold standard. However, such lifelong regimens have been reported to trigger severe morbidities and commonly fail in preventing late allograft loss. In this review, the biology of allogeneic rejection and self-tolerance is analyzed, as well as the mechanisms of cellular-based therapeutics driving suppression and/or tolerance. Bioinspired engineering strategies that take advantage of cells, biomaterials, or combinations thereof to prevent allograft rejection are addressed, as well as biological mechanisms that drive their efficacy.
Collapse
Affiliation(s)
- Ana Rita Sousa
- Department of Chemistry, CICECO - Aveiro Institute of Materials, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
8
|
Paez-Mayorga J, Capuani S, Hernandez N, Farina M, Chua CYX, Blanchard R, Sizovs A, Liu HC, Fraga DW, Niles JA, Salazar HF, Corradetti B, Sikora AG, Kloc M, Li XC, Gaber AO, Nichols JE, Grattoni A. Neovascularized implantable cell homing encapsulation platform with tunable local immunosuppressant delivery for allogeneic cell transplantation. Biomaterials 2020; 257:120232. [DOI: 10.1016/j.biomaterials.2020.120232] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 01/10/2023]
|
9
|
Kuppan P, Seeberger K, Kelly S, Rosko M, Adesida A, Pepper AR, Korbutt GS. Co‐transplantation of human adipose‐derived mesenchymal stem cells with neonatal porcine islets within a prevascularized subcutaneous space augments the xenograft function. Xenotransplantation 2020; 27:e12581. [DOI: 10.1111/xen.12581] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Purushothaman Kuppan
- Alberta Diabetes Institute University of Alberta Edmonton AB Canada
- Department of Surgery University of Alberta Edmonton AB Canada
| | - Karen Seeberger
- Alberta Diabetes Institute University of Alberta Edmonton AB Canada
- Department of Surgery University of Alberta Edmonton AB Canada
| | - Sandra Kelly
- Alberta Diabetes Institute University of Alberta Edmonton AB Canada
- Department of Surgery University of Alberta Edmonton AB Canada
| | - Mandy Rosko
- Alberta Diabetes Institute University of Alberta Edmonton AB Canada
- Department of Surgery University of Alberta Edmonton AB Canada
| | - Adetola Adesida
- Department of Surgery University of Alberta Edmonton AB Canada
| | - Andrew R. Pepper
- Alberta Diabetes Institute University of Alberta Edmonton AB Canada
- Department of Surgery University of Alberta Edmonton AB Canada
| | - Gregory S. Korbutt
- Alberta Diabetes Institute University of Alberta Edmonton AB Canada
- Department of Surgery University of Alberta Edmonton AB Canada
| |
Collapse
|
10
|
Navarro-Tableros V, Gomez Y, Brizzi MF, Camussi G. Generation of Human Stem Cell-Derived Pancreatic Organoids (POs) for Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:179-220. [PMID: 31025308 DOI: 10.1007/5584_2019_340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insulin-dependent diabetes mellitus or type 1 diabetes mellitus (T1DM) is an auto-immune condition characterized by the loss of pancreatic β-cells. The curative approach for highly selected patients is the pancreas or the pancreatic islet transplantation. Nevertheless, these options are limited by a growing shortage of donor organs and by the requirement of immunosuppression.Xenotransplantation of porcine islets has been extensively investigated. Nevertheless, the strong xenoimmunity and the risk of transmission of porcine endogenous retroviruses, have limited their application in clinic. Generation of β-like cells from stem cells is one of the most promising strategies in regenerative medicine. Embryonic, and more recently, adult stem cells are currently the most promising cell sources exploited to generate functional β-cells in vitro. A number of studies demonstrated that stem cells could generate functional pancreatic organoids (POs), able to restore normoglycemia when implanted in different preclinical diabetic models. Nevertheless, a gradual loss of function and cell dead are commonly detected when POs are transplanted in immunocompetent animals. So far, the main issue to be solved is the post-transplanted islet loss, due to the host immune attack. To avoid this hurdle, nanotechnology has provided a number of polymers currently under investigation for islet micro and macro-encapsulation. These new approaches, besides conferring PO immune protection, are able to supply oxygen and nutrients and to preserve PO morphology and long-term viability.Herein, we summarize the current knowledge on bioengineered POs and the stem cell differentiation platforms. We also discuss the in vitro strategies used to generate functional POs, and the protocols currently used to confer immune-protection against the host immune attack (micro- and macro-encapsulation). In addition, the most relevant ongoing clinical trials, and the most relevant hurdles met to move towards clinical application are revised.
Collapse
Affiliation(s)
- Victor Navarro-Tableros
- 2i3T Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico Scarl, University of Turin, Turin, Italy
| | - Yonathan Gomez
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy.
- Fondazione per la Ricerca Biomedica-ONLUS, Turin, Italy.
| |
Collapse
|