1
|
DeMaria WG, Figueroa-Milla AE, Kaija A, Harrington AE, Tero B, Ryzhova L, Liaw L, Rolle MW. Endothelial Cells Increase Mesenchymal Stem Cell Differentiation in Scaffold-Free 3D Vascular Tissue. Tissue Eng Part A 2024. [PMID: 39109944 DOI: 10.1089/ten.tea.2024.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
In this study, we present a versatile, scaffold-free approach to create ring-shaped engineered vascular tissue segments using human mesenchymal stem cell-derived smooth muscle cells (hMSC-SMCs) and endothelial cells (ECs). We hypothesized that incorporation of ECs would increase hMSC-SMC differentiation without compromising tissue ring strength or fusion to form tissue tubes. Undifferentiated hMSCs and ECs were co-seeded into custom ring-shaped agarose wells using four different concentrations of ECs: 0%, 10%, 20%, and 30%. Co-seeded EC and hMSC rings were cultured in SMC differentiation medium for a total of 22 days. Tissue rings were then harvested for histology, Western blotting, wire myography, and uniaxial tensile testing to examine their structural and functional properties. Differentiated hMSC tissue rings comprising 20% and 30% ECs exhibited significantly greater SMC contractile protein expression, endothelin-1 (ET-1)-meditated contraction, and force at failure compared with the 0% EC rings. On average, the 0%, 10%, 20%, and 30% EC rings exhibited a contractile force of 0.745 ± 0.117, 0.830 ± 0.358, 1.31 ± 0.353, and 1.67 ± 0.351 mN (mean ± standard deviation [SD]) in response to ET-1, respectively. Additionally, the mean maximum force at failure for the 0%, 10%, 20%, and 30% EC rings was 88.5 ± 36. , 121 ± 59.1, 147 ± 43.1, and 206 ± 0.8 mN (mean ± SD), respectively. Based on these results, 30% EC rings were fused together to form tissue-engineered blood vessels (TEBVs) and compared with 0% EC TEBV controls. The addition of 30% ECs in TEBVs did not affect ring fusion but did result in significantly greater SMC protein expression (calponin and smoothelin). In summary, co-seeding hMSCs with ECs to form tissue rings resulted in greater contraction, strength, and hMSC-SMC differentiation compared with hMSCs alone and indicates a method to create a functional 3D human vascular cell coculture model.
Collapse
Affiliation(s)
- William G DeMaria
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Andre E Figueroa-Milla
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Abigail Kaija
- MaineHealth Institute for Research, Scarborough, Maine, USA
| | | | - Benjamin Tero
- MaineHealth Institute for Research, Scarborough, Maine, USA
- The Roux Institute, Northeastern University, Portland, Maine, USA
| | - Larisa Ryzhova
- MaineHealth Institute for Research, Scarborough, Maine, USA
| | - Lucy Liaw
- MaineHealth Institute for Research, Scarborough, Maine, USA
| | - Marsha W Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- The Roux Institute, Northeastern University, Portland, Maine, USA
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Schroeder G, Edalati M, Tom G, Kuntjoro N, Gutin M, Gurian M, Cuniberto E, Hirth E, Martiri A, Sposato MT, Aminzadeh S, Eichenbaum J, Alizadeh P, Baidya A, Haghniaz R, Nasiri R, Kaneko N, Mansouri A, Khademhosseini A, Sheikhi A. Assessing the aneurysm occlusion efficacy of a shear-thinning biomaterial in a 3D-printed model. J Mech Behav Biomed Mater 2022; 130:105156. [PMID: 35397405 PMCID: PMC9060636 DOI: 10.1016/j.jmbbm.2022.105156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 02/13/2022] [Accepted: 02/27/2022] [Indexed: 12/26/2022]
Abstract
Metallic coil embolization is a common method for the endovascular treatment of visceral artery aneurysms (VAA) and visceral artery pseudoaneurysms (VAPA); however, this treatment is suboptimal due to the high cost of coils, incomplete volume occlusion, poor reendothelialization, aneurysm puncture, and coil migration. Several alternative treatment strategies are available, including stent flow diverters, glue embolics, gelfoam slurries, and vascular mesh plugs-each of which have their own disadvantages. Here, we investigated the in vitro capability of a shear-thinning biomaterial (STB), a nanocomposite hydrogel composed of gelatin and silicate nanoplatelets, for the minimally-invasive occlusion of simple necked aneurysm models. We demonstrated the injectability of STB through various clinical catheters, engineered an in vitro testing apparatus to independently manipulate aneurysm neck diameter, fluid flow rate, and flow waveform, and tested the stability of STB within the models under various conditions. Our experiments show that STB is able to withstand at least 1.89 Pa of wall shear stress, as estimated by computational fluid dynamics. STB is also able to withstand up to 10 mL s-1 pulsatile flow with a waveform mimicking blood flow in the human femoral artery and tolerate greater pressure changes than those in the human aorta. We ultimately found that our in vitro system was limited by supraphysiologic pressure changes caused by aneurysm models with low compliance.
Collapse
Affiliation(s)
- Grant Schroeder
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095, USA; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Masoud Edalati
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095, USA; Department of Mechanical Engineering Rowan University, Rowan Hall 201 Mullica Hill Rd. Glassboro, NJ, 08028, USA
| | - Gregory Tom
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Nicole Kuntjoro
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Mark Gutin
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Melvin Gurian
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Edoardo Cuniberto
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Elisabeth Hirth
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alessia Martiri
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Maria Teresa Sposato
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Selda Aminzadeh
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - James Eichenbaum
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Parvin Alizadeh
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095, USA; Department of Materials Science & Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, Tehran, Iran
| | - Avijit Baidya
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Reihaneh Haghniaz
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095, USA; Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
| | - Rohollah Nasiri
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Naoki Kaneko
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Abraham Mansouri
- Department of Mechanical Engineering, Higher College of Technology, Dubai, 15825, United Arab Emirates
| | - Ali Khademhosseini
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095, USA; Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA.
| | - Amir Sheikhi
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095, USA; Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
4
|
Liu W, Dai D, Ding YH, Liu Y, Temnyk K, Shen TW, Cardinal KO, Kallmes DF, Kadirvel R. Cellular responses to flow diverters in a tissue-engineered aneurysm model. J Neurointerv Surg 2020; 13:746-751. [PMID: 33158994 DOI: 10.1136/neurintsurg-2020-016593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Notwithstanding the widespread implementation of flow diverters (FDs) in the treatment of intracranial aneurysms, the exact mechanism of action of these devices remains elusive. We aimed to advance the understanding of cellular responses to FD implantation using a 3D tissue-engineered in vitro aneurysm model. METHODS Aneurysm-like blood vessel mimics (aBVMs) were constructed by electrospinning polycaprolactone nanofibers onto desired aneurysm-like geometries. aBVMs were seeded with human aortic smooth muscle cells (SMCs) followed by human aortic endothelial cells (ECs). FDs were then deployed in the parent vessel of aBVMs covering the aneurysm neck and were cultivated for 7, 14, or 28 days (n=3 for each time point). The EC and SMC coverage in the neck was measured semi-quantitatively. RESULTS At day 7, the device segment in contact with the parent vessel was partially endothelialized. Also, the majority of device struts, but not pores, at the parent vessel and neck interface were partially covered with ECs and SMCs, while device struts in the middle of the neck lacked cell coverage. At 14 days, histology verified a neointimal-like lining had formed, partially covering both the struts and pores in the center of the neck. At 28 days, the majority of the neck was covered with a translucent neointimal-like layer. A higher degree of cellular coverage was seen on the struts and pores at the neck at 28 days compared with both 7 and 14 days. CONCLUSION aBVMs can be a valuable alternative tool for evaluating the healing mechanisms of endovascular aneurysm devices.
Collapse
Affiliation(s)
- Wenjing Liu
- Radiology, Mayo Clinic, Rochester, Minnesota, USA.,Geriatrics, China Medical University First Hospital, Shenyang, China
| | - Daying Dai
- Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Yang Liu
- Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kristen Temnyk
- Biomedical Engineering Department, Cal Poly, San Luis Obispo, California, USA
| | - Tiffany W Shen
- Biomedical Engineering Department, Cal Poly, San Luis Obispo, California, USA
| | | | | | | |
Collapse
|