1
|
Saini A, Ahluwalia KK, Ahluwalia AS, Thakur N, Negi P, Hashem A, Almutairi KF, Abd_Allah EF. Titanium Dioxide Nanoparticles-Induced Genotoxic Effects in Mosquito Culex quinquefaciatus. TOXICS 2024; 12:871. [PMID: 39771086 PMCID: PMC11678978 DOI: 10.3390/toxics12120871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Titanium dioxide (TiO2) nanoparticles are being extensively used in a wide range of industrial applications for producing a variety of different consumer products, including medicines and even food items. The consumption of these products is increasing at an alarming rate, and this results in the release of these nanoparticles in the environment, causing a threat to organisms thriving in aquatic as well as terrestrial ecosystems. That is why screening such materials for their genotoxic effects, if any, becomes essential. A toxicity assay was performed to determine the LD20 of these nanoparticles for the mosquito Culex quinquefaciatus by Probit analysis. Early fourth instar larvae were exposed to the selected dose of 50 µg/mL, which is
Collapse
Affiliation(s)
- Aastha Saini
- Department of Zoology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur 173101, Himachal Pradesh, India;
| | - Kanwaljit Kaur Ahluwalia
- Department of Zoology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur 173101, Himachal Pradesh, India;
| | - Amrik Singh Ahluwalia
- Department of Botany, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur 173101, Himachal Pradesh, India;
| | - Neelam Thakur
- Department of Zoology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur 173101, Himachal Pradesh, India;
| | - Puneet Negi
- Department of Physics, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur 173101, Himachal Pradesh, India;
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia;
| | - Khalid F. Almutairi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (K.F.A.); (E.F.A.)
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (K.F.A.); (E.F.A.)
| |
Collapse
|
2
|
Yin F, Zhou Y, Xie D, Hu J, Luo X. Effects of nanomaterial exposure on telomere dysfunction, hallmarks of mammalian and zebrafish cell senescence, and zebrafish mortality. Ageing Res Rev 2023; 91:102062. [PMID: 37673133 DOI: 10.1016/j.arr.2023.102062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Environmental and occupational exposure to hazardous substances accelerates biological aging. However, the toxic effects of nanomaterials on telomere and cellular senescence (major hallmarks of the biological aging) remained controversial. This study was to synthesize all published evidence to explore the effects of nanomaterial exposure on the telomere change, cellular senescence and mortality of model animals. Thirty-five studies were included by searching electronic databases (PubMed, Embase and Web of Science). The pooled analysis by Stata 15.0 software showed that compared with the control, nanomaterial exposure could significantly shorten the telomere length [measured as kbp: standardized mean difference (SMD) = -1.88; 95% confidence interval (CI) = -3.13 - - 0.64; % of control: SMD = -1.26; 95%CI = -2.11- - 0.42; < 3 kbp %: SMD = 5.76; 95%CI = 2.92 - 8.60), increase the telomerase activity (SMD = -1.00; 95%CI = -1.74 to -0.26), senescence-associated β-galactosidase levels in cells (SMD = 8.20; 95%CI = 6.05 - 10.34) and zebrafish embryos (SMD = 7.32; 95%CI = 4.70 - 9.94) as well as the mortality of zebrafish (SMD = 3.83; 95%CI = 2.94 - 4.72)]. The expression levels of telomerase TERT, shelterin components (TRF1, TRF2 and POT1) and senescence biomarkers (p21, p16) were respectively identified to be decreased or increased in subgroup analyses. In conclusion, this meta-analysis demonstrates that nanomaterial exposure is associated with telomere attrition, cell senescence and organismal death.
Collapse
Affiliation(s)
- Fei Yin
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| | - Yang Zhou
- School of Textile Science and Engineering/State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, China.
| | - Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| | - Jianchen Hu
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| | - Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China.
| |
Collapse
|
3
|
Firouzamandi M, Hejazy M, Mohammadi A, Shahbazfar AA, Norouzi R. In Vivo Toxicity of Oral Administrated Nano-SiO 2: Can Food Additives Increase Apoptosis? Biol Trace Elem Res 2023; 201:4769-4778. [PMID: 36626031 DOI: 10.1007/s12011-022-03542-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023]
Abstract
Nano-silicon dioxide (nano-SiO2) has a great deal of application in food packaging, as antibacterial food additives, and in drug delivery systems but this nanoparticle, despite its wide range of utilizations, can generate destructive effects on organs such as the liver, kidney, and lungs. This study is aimed at investigating the toxicological effects of nano-SiO2 through apoptotic factors. For this purpose, 40 female rats in 4 groups (n = 10) received 300, 600, and 900 mg/kg/day of nano-SiO2 at 20-30 nm size orally for 20 days. Relative expression of Caspase3, Bcl-2, and BAX genes in kidney and liver was evaluated in real time-PCR. The results indicated the overexpression of BAX and Caspase3 genes in the liver and kidney in groups receiving 300 and 900 mg/kg/day of nano-SiO2. Bcl-2 gene was up-regulated in the liver and kidney at 600 mg/kg/day compared to the control group. Overexpression of the Bcl-2 gene in the kidney in 300 and 900 mg/kg/day recipient groups was observed (P ≤ 0.05). Histopathological examination demonstrated 600 mg/kg/day hyperemia in the kidney and lungs. In addition, at 900 mg/kg/day were distinguished scattered necrosis and hyperemia in the liver. The rate of epithelialization in the lungs increased. The nano-SiO2 at 300 and 900 mg/kg/day can induce more cytotoxicity in the liver and lung after oral exposure. However, cytotoxicity of nano-SiO2 at 600 mg/kg/day in the kidney and lung was noticed. Hence, the using of nano-SiO2 as an additive and food packaging should be more considered due to their deleterious effects.
Collapse
Affiliation(s)
- Masoumeh Firouzamandi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Marzie Hejazy
- Toxicopharmacology Division, Basic Science Department, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Alaleh Mohammadi
- DVM, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Amir Ali Shahbazfar
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
4
|
Rahimi B, Panahi M, Lotfi H, Khalili M, Salehi A, Saraygord-Afshari N, Alizadeh E. Sodium selenite preserves rBM-MSCs' stemness, differentiation potential, and immunophenotype and protects them against oxidative stress via activation of the Nrf2 signaling pathway. BMC Complement Med Ther 2023; 23:131. [PMID: 37098557 PMCID: PMC10127330 DOI: 10.1186/s12906-023-03952-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 04/10/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND The physiological level of reactive oxygen species (ROS) is necessary for many cellular functions. However, during the in-vitro manipulations, cells face a high level of ROS, leading to reduced cell quality. Preventing this abnormal ROS level is a challenging task. Hence, here we evaluated the effect of sodium selenite supplementation on the antioxidant potential, stemness capacity, and differentiation of rat-derived Bone Marrow MSCs (rBM-MSCs) and planned to check our hypothesis on the molecular pathways and networks linked to sodium selenite's antioxidant properties. METHODS MTT assay was used to assess the rBM-MSCs cells' viability following sodium selenite supplementation (concentrations of: 0.001, 0.01, 0.1, 1, 10 µM). The expression level of OCT-4, NANOG, and SIRT1 was explored using qPCR. The adipocyte differentiation capacity of MSCs was checked after Sodium Selenite treatment. The DCFH-DA assay was used to determine intracellular ROS levels. Sodium selenite-related expression of HIF-1α, GPX, SOD, TrxR, p-AKT, Nrf2, and p38 markers was determined using western blot. Significant findings were investigated by the String tool to picture the probable molecular network. RESULTS Media supplemented with 0.1 µM sodium selenite helped to preserve rBM-MSCs multipotency and keep their surface markers presentation; this also reduced the ROS level and improved the rBM-MSCs' antioxidant and stemness capacity. We observed enhanced viability and reduced senescence for rBM-MSCs. Moreover, sodium selenite helped in rBM-MSCs cytoprotection by regulating the expression of HIF-1 of AKT, Nrf2, SOD, GPX, and TrxR markers. CONCLUSIONS We showed that sodium selenite could help protect MSCs during in-vitro manipulations, probably via the Nrf2 pathway.
Collapse
Affiliation(s)
- Bahareh Rahimi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences (IUMS), Shahid Hemmat Highway, Tehran, 1449614535, Iran
| | - Mohammad Panahi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mostafa Khalili
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Astireh Salehi
- Biology Department, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences (IUMS), Shahid Hemmat Highway, Tehran, 1449614535, Iran.
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Shi J, Zhang Y, Ma Y, Chen Z, Jia G. Long Non-Coding RNA Expression Profile Alteration Induced by Titanium Dioxide Nanoparticles in HepG2 Cells. TOXICS 2022; 10:724. [PMID: 36548557 PMCID: PMC9785481 DOI: 10.3390/toxics10120724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The liver is considered the major target organ affected by oral exposure to titanium dioxide nanoparticles (TiO2 NPs), but the mechanism of hepatotoxicity is not fully understood. This study investigated the effect of TiO2 NPs on the expression profile of long non-coding RNA (lncRNA) in hepatocytes and tried to understand the potential mechanism of hepatotoxicity through bioinformatics analysis. The human hepatocellular carcinoma cells (HepG2) were treated with TiO2 NPs at doses of 0-200 μg/mL for 48 h and then RNA sequencing was implemented. The differential lncRNAs between the control and TiO2 NPs-treated groups were screened, then the lncRNA-mRNA network and enrichment pathways were analyzed via multivariate statistics. As a result, 46,759 lncRNAs were identified and 129 differential lncRNAs were screened out. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the targeted mRNAs of those differential lncRNAs were enriched in the Hedgehog signaling pathway, Vasopressin-regulated water reabsorption, and Glutamatergic synapse. Moreover, two lncRNA-mRNA networks, including lncRNA NONHSAT256380.1-JRK and lncRNA NONHSAT173563.1-SMIM22, were verified by mRNA detection. This study demonstrated that an alteration in the lncRNA expression profile could be induced by TiO2 NPs and epigenetics may play an important role in the mechanism of hepatotoxicity.
Collapse
Affiliation(s)
- Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Yi Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Ying Ma
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
6
|
DNA Oxidative Damage as a Sensitive Genetic Endpoint to Detect the Genotoxicity Induced by Titanium Dioxide Nanoparticles. NANOMATERIALS 2022; 12:nano12152616. [PMID: 35957047 PMCID: PMC9370504 DOI: 10.3390/nano12152616] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022]
Abstract
The genotoxicity of nanomaterials has attracted great attention in recent years. As a possible occupational carcinogen, the genotoxic effects and underlying mechanisms of titanium dioxide nanoparticles (TiO2 NPs) have been of particular concern. In this study, the effect of TiO2 NPs (0, 25, 50 and 100 µg/mL) on DNA damage and the role of oxidative stress were investigated using human bronchial epithelial cells (BEAS-2B) as an in vitro model. After detailed characterization, the cytotoxicity of TiO2 NPs was detected. Through transmission electron microscopy (TEM), we found that TiO2 NPs entered the cytoplasm but did not penetrate deep into the nucleus of cells. The intracellular levels of reactive oxygen species (ROS) significantly increased in a dose-dependent manner and the ratios of GSH/GSSG also significantly decreased. The results of the normal comet assay were negative, while the Fpg-modified comet assay that specifically detected DNA oxidative damage was positive. Meanwhile, N-acetyl-L-cysteine (NAC) intervention inhibited the oxidative stress and genotoxicity induced by TiO2 NPs. Therefore, it was suggested that TiO2 NPs could induce cytotoxicity, oxidative stress and DNA oxidative damage in BEAS-2B cells. DNA oxidative damage may be a more sensitive genetic endpoint to detect the genotoxicity of TiO2 NPs.
Collapse
|