1
|
Bhinderwala F, Vu T, Smith TG, Kosacki J, Marshall DD, Xu Y, Morton M, Powers R. Leveraging the HMBC to Facilitate Metabolite Identification. Anal Chem 2022; 94:16308-16318. [PMID: 36374521 PMCID: PMC10948112 DOI: 10.1021/acs.analchem.2c02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The accuracy and ease of metabolite assignments from a complex mixture are expected to be facilitated by employing a multispectral approach. The two-dimensional (2D) 1H-13C heteronuclear single quantum coherence (HSQC) and 2D 1H-1H-total correlation spectroscopy (TOCSY) are the experiments commonly used for metabolite assignments. The 2D 1H-13C HSQC-TOCSY and 2D 1H-13C heteronuclear multiple-bond correlation (HMBC) are routinely used by natural products chemists but have seen minimal usage in metabolomics despite the unique information, the nearly complete 1H-1H and 1H-13C and spin systems provided by these experiments that may improve the accuracy and reliability of metabolite assignments. The use of a 13C-labeled feedstock such as glucose is a routine practice in metabolomics to improve sensitivity and to emphasize the detection of specific metabolites but causes severe artifacts and an increase in spectral complexity in the HMBC experiment. To address this issue, the standard HMBC pulse sequence was modified to include carbon decoupling. Nonuniform sampling was also employed for rapid data collection. A dataset of reference 2D 1H-13C HMBC spectra was collected for 94 common metabolites. 13C-13C spin connectivity was then obtained by generating a covariance pseudo-spectrum from the carbon-decoupled HMBC and the 1H-13C HSQC-TOCSY spectra. The resulting 13C-13C pseudo-spectrum provides a connectivity map of the entire carbon backbone that uniquely describes each metabolite and would enable automated metabolite identification.
Collapse
Affiliation(s)
- Fatema Bhinderwala
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln Nebraska 68588-0304
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln Nebraska 68588-0304
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - Thao Vu
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0963, United States
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045-2609
| | - Thomas G. Smith
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln Nebraska 68588-0304
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln Nebraska 68588-0304
| | - Julian Kosacki
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln Nebraska 68588-0304
| | - Darrell D. Marshall
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln Nebraska 68588-0304
| | - Yuhang Xu
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0963, United States
- Department of Applied Statistics and Operations Research, Bowling Green State University, Bowling Green, Ohio 43403-0001
| | - Martha Morton
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln Nebraska 68588-0304
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln Nebraska 68588-0304
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln Nebraska 68588-0304
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln Nebraska 68588-0304
| |
Collapse
|
2
|
Gołowicz D, Shchukina A, Kazimierczuk K. Enhanced Nuclear Magnetic Resonance Spectroscopy with Isotropic Mixing as a Pseudodimension. Anal Chem 2022; 94:9114-9121. [PMID: 35695926 PMCID: PMC9244872 DOI: 10.1021/acs.analchem.2c01471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chemical analysis based on liquid-state nuclear magnetic resonance spectroscopy exploits numerous observables, mainly chemical shifts, relaxation rates, and internuclear coupling constants. Regarding the latter, the efficiencies of internuclear coherence transfers may be encoded in spectral peak intensities. The dependencies of these intensities on the experimental parameter that influences the transfer, for example, mixing time, are an important source of structural information. Yet, they are costly to measure and difficult to analyze. Here, we show that peak intensity build-up curves in two-dimensional total correlation spectroscopy (2D TOCSY) experiments may be quickly measured by employing nonuniform sampling and that their analysis can be effective if supported by quantum mechanical calculations. Thus, such curves can be used to form a new, third pseudodimension of the TOCSY spectrum. Similarly to the other two frequency dimensions, this one also resolves ambiguities and provides characteristic information. We show how the approach supports the analysis of a fragment of protein Tau Repeat-4 domain. Yet, its potential applications are far broader, including the analysis of complex mixtures or other polymers.
Collapse
Affiliation(s)
- Dariusz Gołowicz
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Alexandra Shchukina
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | | |
Collapse
|
3
|
Lane D, Bermel W, Ning P, Jeong TY, Martin R, Soong R, Wu B, Tabatabaei-Anaraki M, Heumann H, Gundy M, Boenisch H, Adamo A, Arhonditsis G, Simpson AJ. Targeting the Lowest Concentration of a Toxin That Induces a Detectable Metabolic Response in Living Organisms: Time-Resolved In Vivo 2D NMR during a Concentration Ramp. Anal Chem 2020; 92:9856-9865. [DOI: 10.1021/acs.analchem.0c01370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Daniel Lane
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6
| | - Wolfgang Bermel
- Bruker BioSpin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Paris Ning
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Tae-Yong Jeong
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Richard Martin
- IMicrosolder, 57 Marshall Street West, Meaford, Ontario, Canada N4L 1E4
| | - Ronald Soong
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Bing Wu
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Maryam Tabatabaei-Anaraki
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | | | | | | | - Antonio Adamo
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - George Arhonditsis
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - André J. Simpson
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6
| |
Collapse
|
4
|
Van Aalst E, Yekefallah M, Mehta AK, Eason I, Wylie B. Codon Harmonization of a Kir3.1-KirBac1.3 Chimera for Structural Study Optimization. Biomolecules 2020; 10:biom10030430. [PMID: 32164257 PMCID: PMC7175280 DOI: 10.3390/biom10030430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/27/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
The expression of functional, folded, and isotopically enriched membrane proteins is an enduring bottleneck for nuclear magnetic resonance (NMR) studies. Indeed, historically, protein yield optimization has been insufficient to allow NMR analysis of many complex Eukaryotic membrane proteins. However, recent work has found that manipulation of plasmid codons improves the odds of successful NMR-friendly protein production. In the last decade, numerous studies showed that matching codon usage patterns in recombinant gene sequences to those in the native sequence is positively correlated with increased protein yield. This phenomenon, dubbed codon harmonization, may be a powerful tool in optimizing recombinant expression of difficult-to-produce membrane proteins for structural studies. Here, we apply this technique to an inward rectifier K+ Channel (Kir) 3.1-KirBac1.3 chimera. Kir3.1 falls within the G protein-coupled inward rectifier K+ (GIRK) channel family, thus NMR studies may inform on the nuances of GIRK gating action in the presence and absence of its G Protein, lipid, and small molecule ligands. In our hands, harmonized plasmids increase protein yield nearly two-fold compared to the traditional ‘fully codon optimized’ construct. We then employ a fluorescence-based functional assay and solid-state NMR correlation spectroscopy to show the final protein product is folded and functional.
Collapse
Affiliation(s)
- Evan Van Aalst
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79423, USA; (E.V.A.); (M.Y.); (I.E.)
| | - Maryam Yekefallah
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79423, USA; (E.V.A.); (M.Y.); (I.E.)
| | - Anil K. Mehta
- National High Magnetic Field Laboratory and McKnight Brain Institute, University of Florida, Box 10015, Gainesville, FL 32610, USA;
| | - Isaac Eason
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79423, USA; (E.V.A.); (M.Y.); (I.E.)
| | - Benjamin Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79423, USA; (E.V.A.); (M.Y.); (I.E.)
- Correspondence:
| |
Collapse
|
5
|
Kohl B, Granitzka V, Singh A, Quintas P, Xiromeriti E, Mörtel F, Wright PE, Kroon G, Dyson HJ, Stoll R. Comparison of backbone dynamics of the p50 dimerization domain of NFκB in the homodimeric transcription factor NFκB1 and in its heterodimeric complex with RelA (p65). Protein Sci 2019; 28:2064-2072. [PMID: 31587407 PMCID: PMC6863704 DOI: 10.1002/pro.3736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 11/25/2022]
Abstract
The nuclear factor of kappa light polypeptide gene enhancer in B‐cells (NFκB) transcription factors play a critical role in human immune response. The family includes homodimers and heterodimers of five component proteins, which mediate different transcriptional responses and bind preferentially to different DNA sequences. Crystal structures of DNA complexes show that the dimers of the Rel‐homology regions are structurally very similar. Differing DNA sequence preference together with structural similarity suggests that the dimers may differ in their dynamics. In this study, we present the first near‐complete 15N, 13Cα/β, and HN backbone resonance assignments of two dimers of the dimerization domain (DD) of the NFκB1 (p50) protein (residues 241–351): the homodimer of two p50 domains and a heterodimer of the p50 DD with the p65 DD. As expected, the two dimers behave very similarly, with chemical shift differences between them largely concentrated in the dimer interface and attributable to specific differences in the amino acid sequences of p50 and p65. A comparison of the picosecond‐nanosecond dynamics of the homo‐ and heterodimers also shows that the environment of p50 is similar, with an overall slightly reduced correlation time for the homodimer compared to the heterodimer, consistent with its slightly smaller molecular weight. These results demonstrate that NMR spectroscopy can be used to explore subtle changes in structure and dynamics that have the potential to give insights into differences in specificity that can be exploited in the design of new therapeutic agents.
Collapse
Affiliation(s)
- Bastian Kohl
- Biomolecular NMR spectroscopy, Ruhr University of Bochum, Bochum, Germany
| | - Vanessa Granitzka
- Biomolecular NMR spectroscopy, Ruhr University of Bochum, Bochum, Germany
| | - Amrinder Singh
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | - Pedro Quintas
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | - Elli Xiromeriti
- Biomolecular NMR spectroscopy, Ruhr University of Bochum, Bochum, Germany
| | - Fabian Mörtel
- Biomolecular NMR spectroscopy, Ruhr University of Bochum, Bochum, Germany
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | - Gerard Kroon
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | - Raphael Stoll
- Biomolecular NMR spectroscopy, Ruhr University of Bochum, Bochum, Germany
| |
Collapse
|
6
|
Beer F, Urbat F, Franz CMAP, Huch M, Kulling SE, Bunzel M, Bunzel D. The Human Fecal Microbiota Metabolizes Foodborne Heterocyclic Aromatic Amines by Reuterin Conjugation and Further Transformations. Mol Nutr Food Res 2019; 63:e1801177. [PMID: 30815965 DOI: 10.1002/mnfr.201801177] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/01/2019] [Indexed: 01/16/2023]
Abstract
SCOPE Heterocyclic aromatic amines (HAAs) are process-induced food contaminants with high mutagenic and/or carcinogenic potential. Although the human gut microbiota is known to affect the metabolism of dietary constituents, its impact on HAA metabolism and toxicity has been little studied. Here, the glycerol-dependent metabolism of seven foodborne HAAs (AαC, Trp-P-1, harman, norharman, PhIP, MeIQx, and MeIQ) by the human fecal microbiota is investigated. METHODS AND RESULTS As analyzed by HPLC-DAD/FLD, the extent of conversion is strongly dependent on glycerol supplementation and HAA structure. AαC (60-100%) and the 2-aminoimidazoazarenes (up to 58%) are especially prone to microbial conversion. Based on high-resolution MS and/or NMR spectroscopy data, 70 fecal metabolites are identified in total, mainly formed by chemical reactions with one or two molecules of microbially derived reuterin. Moreover, it has been demonstrated that the human fecal microbiota can further transform reuterin adducts by reduction and/or hydroxylation reactions. Upon isolation, some reuterin-induced HAA metabolites appear to be partially unstable, complicating structural identification. CONCLUSION The formation of microbial metabolites needs to be incorporated into risk assessment considerations for HAAs in human health. In this study, several HAA metabolites, mainly reuterin-dependent, are identified in vitro, providing the basis for future human studies investigating microbial HAA metabolism.
Collapse
Affiliation(s)
- Falco Beer
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut (MRI), Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Felix Urbat
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut (MRI), Federal Research Institute of Nutrition and Food, Hermann-Weigmann-Straße 1, 24103, Kiel, Germany
| | - Melanie Huch
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut (MRI), Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut (MRI), Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Diana Bunzel
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut (MRI), Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| |
Collapse
|
7
|
Henrich E, Löhr F, Mezhyrova J, Laguerre A, Bernhard F, Dötsch V. Synthetic Biology-Based Solution NMR Studies on Membrane Proteins in Lipid Environments. Methods Enzymol 2018; 614:143-185. [PMID: 30611423 DOI: 10.1016/bs.mie.2018.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although membrane proteins are in the focus of biochemical research for many decades the general knowledge of this important class is far behind soluble proteins. Despite several recent technical developments, the most challenging feature still is the generation of high-quality samples in environments suitable for the selected application. Reconstitution of membrane proteins into lipid bilayers will generate the most native-like environment and is therefore commonly desired. However, it poses tremendous problems to solution-state NMR analysis due to the dramatic increase in particle size resulting in high rotational correlation times. Nevertheless, a few promising strategies for the solution NMR analysis of membrane inserted proteins are emerging and will be discussed in this chapter. We focus on the generation of membrane protein samples in nanodisc membranes by cell-free systems and will describe the characteristic advantages of that platform in providing tailored protein expression and folding environments. We indicate frequent problems that have to be overcome in cell-free synthesis, nanodisc preparation, and customization for samples dedicated for solution-state NMR. Detailed instructions for sample preparation are given, and solution NMR approaches suitable for membrane proteins in bilayers are compiled. We further discuss the current strategies applied for signal detection from such difficult samples and describe the type of information that can be extracted from the various experiments. In summary, a comprehensive guideline for the analysis of membrane proteins in native-like membrane environments by solution-state NMR techniques will be provided.
Collapse
Affiliation(s)
- Erik Henrich
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Julija Mezhyrova
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Aisha Laguerre
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Ghosh S, Sengupta A, Chandra K. SOFAST-HMQC-an efficient tool for metabolomics. Anal Bioanal Chem 2017; 409:6731-6738. [PMID: 29030664 DOI: 10.1007/s00216-017-0676-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/13/2017] [Accepted: 09/22/2017] [Indexed: 11/25/2022]
Abstract
Nuclear magnetic resonance (NMR)-based metabolomics relies mostly on 1D NMR; however, the technique is limited by overlap of the signals from the metabolites. In order to circumvent this problem, 2D 1H-13C correlation spectroscopy techniques are often used. However owing to poorer natural abundance and gyromagnetic ratio of 13C, the acquisition time for 2D 1H-13C heteronuclear single quantum coherence spectroscopy (HSQC) is long. This makes it almost impossible to be used in high throughput study. We have reported the application of selective optimized flip angle short transient (SOFAST) technique coupled to heteronuclear multiple quantum correlation (HMQC) along with nonlinear sampling (NUS) in urine and serum samples. This technique takes sevenfold less experimental time than the conventional 1H-13C HSQC experiment with retention of almost all molecular information. Hence, this can be used for high throughput study. Graphical abstract SOFAST-HMQC is a two-dimensional NMR technique that significantly decreases experimental time without loss of information. This technique is applied in complex biofluid samples that are used for high throughput metabolomics studies and shows promise of better information recovery than conventional two-dimensional NMR technique in shorter time.
Collapse
Affiliation(s)
- Soumita Ghosh
- Department of Systems Pharmacology and Systems and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd., Philadelphia, PA, 19104-6160, USA
| | - Arjun Sengupta
- Department of Systems Pharmacology and Systems and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd., Philadelphia, PA, 19104-6160, USA
| | - Kousik Chandra
- Indian Institute of Science, CV Raman Rd., Bangalore, Karnataka, 560012, India.
| |
Collapse
|
9
|
Hein C, Löhr F, Schwarz D, Dötsch V. Acceleration of protein backbone NMR assignment by combinatorial labeling: Application to a small molecule binding study. Biopolymers 2017; 107. [PMID: 28035667 DOI: 10.1002/bip.23013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 12/21/2022]
Abstract
Selective labeling with stable isotopes has long been recognized as a valuable tool in protein NMR to alleviate signal overlap and sensitivity limitations. In this study, combinatorial 15 N-, 13 Cα -, and 13 C'-selective labeling has been used during the backbone assignment of human cyclophilin D to explore binding of an inhibitor molecule. Using a cell-free expression system, a scheme that involves 15 N, 1-13 C, 2-13 C, fully 15 N/13 C, and unlabeled amino acids was optimized to gain a maximum of assignment information from three samples. This scheme was combined with time-shared triple-resonance NMR experiments, which allows a fast and efficient backbone assignment by giving the unambiguous assignment of unique amino acid pairs in the protein, the identity of ambiguous pairs and information about all 19 non-proline amino acid types. It is therefore well suited for binding studies where de novo assignments of amide 1 H and 15 N resonances need to be obtained, even in cases where sensitivity is the limiting factor.
Collapse
Affiliation(s)
- Christopher Hein
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, 60438, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, 60438, Germany
| | - Daniel Schwarz
- Merck KGaA, Discovery Pharmacology, Global Research and Development, Darmstadt, 64293, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, 60438, Germany
| |
Collapse
|
10
|
Trautwein M, Fredriksson K, Möller HM, Exner TE. Automated assignment of NMR chemical shifts based on a known structure and 4D spectra. JOURNAL OF BIOMOLECULAR NMR 2016; 65:217-236. [PMID: 27484442 DOI: 10.1007/s10858-016-0050-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/28/2016] [Indexed: 06/06/2023]
Abstract
Apart from their central role during 3D structure determination of proteins the backbone chemical shift assignment is the basis for a number of applications, like chemical shift perturbation mapping and studies on the dynamics of proteins. This assignment is not a trivial task even if a 3D protein structure is known and needs almost as much effort as the assignment for structure prediction if performed manually. We present here a new algorithm based solely on 4D [(1)H,(15)N]-HSQC-NOESY-[(1)H,(15)N]-HSQC spectra which is able to assign a large percentage of chemical shifts (73-82 %) unambiguously, demonstrated with proteins up to a size of 250 residues. For the remaining residues, a small number of possible assignments is filtered out. This is done by comparing distances in the 3D structure to restraints obtained from the peak volumes in the 4D spectrum. Using dead-end elimination, assignments are removed in which at least one of the restraints is violated. Including additional information from chemical shift predictions, a complete unambiguous assignment was obtained for Ubiquitin and 95 % of the residues were correctly assigned in the 251 residue-long N-terminal domain of enzyme I. The program including source code is available at https://github.com/thomasexner/4Dassign .
Collapse
Affiliation(s)
- Matthias Trautwein
- Institute of Pharmacy, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Kai Fredriksson
- Institute of Pharmacy, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Heiko M Möller
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam OT Golm, Germany
| | - Thomas E Exner
- Institute of Pharmacy, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| |
Collapse
|
11
|
Karlsson G, Persson C, Mayzel M, Hedenström M, Backman L. Solution structure of the calmodulin-like C-terminal domain of Entamoeba α-actinin2. Proteins 2016; 84:461-6. [PMID: 26800385 DOI: 10.1002/prot.24992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 11/12/2022]
Abstract
Cell motility is dependent on a dynamic meshwork of actin filaments that is remodelled continuously. A large number of associated proteins that are severs, cross-links, or caps the filament ends have been identified and the actin cross-linker α-actinin has been implied in several important cellular processes. In Entamoeba histolytica, the etiological agent of human amoebiasis, α-actinin is believed to be required for infection. To better understand the role of α-actinin in the infectious process we have determined the solution structure of the C-terminal calmodulin-like domain using NMR. The final structure ensemble of the apo form shows two lobes, that both resemble other pairs of calcium-binding EF-hand motifs, connected with a mobile linker.
Collapse
Affiliation(s)
- Göran Karlsson
- Swedish NMR Centre at the University of Gothenburg, PO Box 465, Gothenburg, SE-40530, Sweden
| | - Cecilia Persson
- Swedish NMR Centre at the University of Gothenburg, PO Box 465, Gothenburg, SE-40530, Sweden
| | - Maxim Mayzel
- Swedish NMR Centre at the University of Gothenburg, PO Box 465, Gothenburg, SE-40530, Sweden
| | | | - Lars Backman
- Department of Chemistry, Umeå University, Umeå, SE-901 87, Sweden
| |
Collapse
|
12
|
Nowakowski M, Saxena S, Stanek J, Żerko S, Koźmiński W. Applications of high dimensionality experiments to biomolecular NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 90-91:49-73. [PMID: 26592945 DOI: 10.1016/j.pnmrs.2015.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 07/03/2015] [Accepted: 07/03/2015] [Indexed: 05/23/2023]
Abstract
High dimensionality NMR experiments facilitate resonance assignment and precise determination of spectral parameters such as coupling constants. Sparse non-uniform sampling enables acquisition of experiments of high dimensionality with high resolution in acceptable time. In this review we present and compare some significant applications of NMR experiments of dimensionality higher than three in the field of biomolecular studies in solution.
Collapse
Affiliation(s)
- Michał Nowakowski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Saurabh Saxena
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Jan Stanek
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Szymon Żerko
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Wiktor Koźmiński
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland.
| |
Collapse
|
13
|
Wiedemann C, Goradia N, Häfner S, Herbst C, Görlach M, Ohlenschläger O, Ramachandran R. HN-NCA heteronuclear TOCSY-NH experiment for (1)H(N) and (15)N sequential correlations in ((13)C, (15)N) labelled intrinsically disordered proteins. JOURNAL OF BIOMOLECULAR NMR 2015; 63:201-212. [PMID: 26282620 DOI: 10.1007/s10858-015-9976-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/08/2015] [Indexed: 06/04/2023]
Abstract
A simple triple resonance NMR experiment that leads to the correlation of the backbone amide resonances of each amino acid residue 'i' with that of residues 'i-1' and 'i+1' in ((13)C, (15)N) labelled intrinsically disordered proteins (IDPs) is presented. The experimental scheme, {HN-NCA heteronuclear TOCSY-NH}, exploits the favourable relaxation properties of IDPs and the presence of (1) J CαN and (2) J CαN couplings to transfer the (15)N x magnetisation from amino acid residue 'i' to adjacent residues via the application of a band-selective (15)N-(13)C(α) heteronuclear cross-polarisation sequence of ~100 ms duration. Employing non-uniform sampling in the indirect dimensions, the efficacy of the approach has been demonstrated by the acquisition of 3D HNN chemical shift correlation spectra of α-synuclein. The experimental performance of the RF pulse sequence has been compared with that of the conventional INEPT-based HN(CA)NH pulse scheme. As the availability of data from both the HCCNH and HNN experiments will make it possible to use the information extracted from one experiment to simplify the analysis of the data of the other and lead to a robust approach for unambiguous backbone and side-chain resonance assignments, a time-saving strategy for the simultaneous collection of HCCNH and HNN data is also described.
Collapse
Affiliation(s)
- Christoph Wiedemann
- Research Group Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research, Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany
- Institute of Biochemistry/Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120, Halle/Salle, Germany
| | - Nishit Goradia
- Research Group Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research, Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany
| | - Sabine Häfner
- Research Group Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research, Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany
| | - Christian Herbst
- Research Group Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research, Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany
- Department of Physics, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Matthias Görlach
- Research Group Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research, Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany
| | - Oliver Ohlenschläger
- Research Group Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research, Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany
| | - Ramadurai Ramachandran
- Research Group Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research, Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany.
| |
Collapse
|
14
|
Didenko T, Proudfoot A, Dutta SK, Serrano P, Wüthrich K. Non-Uniform Sampling and J-UNIO Automation for Efficient Protein NMR Structure Determination. Chemistry 2015; 21:12363-9. [PMID: 26227870 PMCID: PMC4576834 DOI: 10.1002/chem.201502544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 11/10/2022]
Abstract
High-resolution structure determination of small proteins in solution is one of the big assets of NMR spectroscopy in structural biology. Improvements in the efficiency of NMR structure determination by advances in NMR experiments and automation of data handling therefore attracts continued interest. Here, non-uniform sampling (NUS) of 3D heteronuclear-resolved [(1)H,(1)H]-NOESY data yielded two- to three-fold savings of instrument time for structure determinations of soluble proteins. With the 152-residue protein NP_372339.1 from Staphylococcus aureus and the 71-residue protein NP_346341.1 from Streptococcus pneumonia we show that high-quality structures can be obtained with NUS NMR data, which are equally well amenable to robust automated analysis as the corresponding uniformly sampled data.
Collapse
Affiliation(s)
- Tatiana Didenko
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA) http://www.jcsg.org
- Joint Center for Structural Genomics, La Jolla, CA 92037 (USA), Fax: (+1) 858-784-8014
- GPCR-Network, 3430 S. Vermont Ave., TRF 105, Los Angeles, CA 90089-3301 (USA), Fax: (+1) 858-784-8014 http://gpcr.usc.edu
| | - Andrew Proudfoot
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA) http://www.jcsg.org
- Joint Center for Structural Genomics, La Jolla, CA 92037 (USA), Fax: (+1) 858-784-8014
| | - Samit Kumar Dutta
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA) http://www.jcsg.org
- Joint Center for Structural Genomics, La Jolla, CA 92037 (USA), Fax: (+1) 858-784-8014
| | - Pedro Serrano
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA) http://www.jcsg.org
- Joint Center for Structural Genomics, La Jolla, CA 92037 (USA), Fax: (+1) 858-784-8014
| | - Kurt Wüthrich
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA) http://www.jcsg.org. , ,
- Joint Center for Structural Genomics, La Jolla, CA 92037 (USA), Fax: (+1) 858-784-8014. , ,
- GPCR-Network, 3430 S. Vermont Ave., TRF 105, Los Angeles, CA 90089-3301 (USA), Fax: (+1) 858-784-8014 http://gpcr.usc.edu. , ,
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA), Fax: (+1) 858-784-8014. , ,
| |
Collapse
|
15
|
Ueda T, Yoshiura C, Matsumoto M, Kofuku Y, Okude J, Kondo K, Shiraishi Y, Takeuchi K, Shimada I. Development of a method for reconstruction of crowded NMR spectra from undersampled time-domain data. JOURNAL OF BIOMOLECULAR NMR 2015; 62:31-41. [PMID: 25677224 PMCID: PMC4432090 DOI: 10.1007/s10858-015-9908-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/07/2015] [Indexed: 05/27/2023]
Abstract
NMR is a unique methodology for obtaining information about the conformational dynamics of proteins in heterogeneous biomolecular systems. In various NMR methods, such as transferred cross-saturation, relaxation dispersion, and paramagnetic relaxation enhancement experiments, fast determination of the signal intensity ratios in the NMR spectra with high accuracy is required for analyses of targets with low yields and stabilities. However, conventional methods for the reconstruction of spectra from undersampled time-domain data, such as linear prediction, spectroscopy with integration of frequency and time domain, and analysis of Fourier, and compressed sensing were not effective for the accurate determination of the signal intensity ratios of the crowded two-dimensional spectra of proteins. Here, we developed an NMR spectra reconstruction method, "conservation of experimental data in analysis of Fourier" (Co-ANAFOR), to reconstruct the crowded spectra from the undersampled time-domain data. The number of sampling points required for the transferred cross-saturation experiments between membrane proteins, photosystem I and cytochrome b 6 f, and their ligand, plastocyanin, with Co-ANAFOR was half of that needed for linear prediction, and the peak height reduction ratios of the spectra reconstructed from truncated time-domain data by Co-ANAFOR were more accurate than those reconstructed from non-uniformly sampled data by compressed sensing.
Collapse
Affiliation(s)
- Takumi Ueda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, 102-0075 Japan
| | - Chie Yoshiura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Masahiko Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- Japan Biological Informatics Consortium, Aomi, Koto-ku, Tokyo, 135-8073 Japan
| | - Yutaka Kofuku
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Junya Okude
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Keita Kondo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yutaro Shiraishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Koh Takeuchi
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, 102-0075 Japan
- Molecular Profiling Research Center, National Institute of Advanced Industrial Science and Technology, Aomi, Koto-ku, Tokyo, 135-0064 Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
16
|
Brutscher B, Felli IC, Gil-Caballero S, Hošek T, Kümmerle R, Piai A, Pierattelli R, Sólyom Z. NMR Methods for the Study of Instrinsically Disordered Proteins Structure, Dynamics, and Interactions: General Overview and Practical Guidelines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:49-122. [PMID: 26387100 DOI: 10.1007/978-3-319-20164-1_3] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thanks to recent improvements in NMR instrumentation, pulse sequence design, and sample preparation, a panoply of new NMR tools has become available for atomic resolution characterization of intrinsically disordered proteins (IDPs) that are optimized for the particular chemical and spectroscopic properties of these molecules. A wide range of NMR observables can now be measured on increasingly complex IDPs that report on their structural and dynamic properties in isolation, as part of a larger complex, or even inside an entire living cell. Herein we present basic NMR concepts, as well as optimised tools available for the study of IDPs in solution. In particular, the following sections are discussed hereafter: a short introduction to NMR spectroscopy and instrumentation (Sect. 3.1), the effect of order and disorder on NMR observables (Sect. 3.2), particular challenges and bottlenecks for NMR studies of IDPs (Sect. 3.3), 2D HN and CON NMR experiments: the fingerprint of an IDP (Sect. 3.4), tools for overcoming major bottlenecks of IDP NMR studies (Sect. 3.5), 13C detected experiments (Sect. 3.6), from 2D to 3D: from simple snapshots to site-resolved characterization of IDPs (Sect. 3.7), sequential NMR assignment: 3D experiments (Sect. 3.8), high-dimensional NMR experiments (nD, with n>3) (Sect. 3.9) and conclusions and perspectives (Sect. 3.10).
Collapse
Affiliation(s)
- Bernhard Brutscher
- Institut de Biologie Structurale, Université Grenoble 1, CNRS, CEA, 71 avenue des Martyrs, 38044, Grenoble Cedex 9, France.
| | - Isabella C Felli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, 50019, Via Luigi Sacconi 6, Sesto Fiorentino, Florence, Italy.
| | | | - Tomáš Hošek
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, 50019, Via Luigi Sacconi 6, Sesto Fiorentino, Florence, Italy
| | - Rainer Kümmerle
- Bruker BioSpin AG, Industriestrasse 26, 8117, Fällanden, Switzerland
| | - Alessandro Piai
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, 50019, Via Luigi Sacconi 6, Sesto Fiorentino, Florence, Italy
| | - Roberta Pierattelli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, 50019, Via Luigi Sacconi 6, Sesto Fiorentino, Florence, Italy.
| | - Zsófia Sólyom
- Institut de Biologie Structurale, Université Grenoble 1, CNRS, CEA, 71 avenue des Martyrs, 38044, Grenoble Cedex 9, France
| |
Collapse
|
17
|
Frueh DP. Practical aspects of NMR signal assignment in larger and challenging proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 78:47-75. [PMID: 24534088 PMCID: PMC3951217 DOI: 10.1016/j.pnmrs.2013.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/05/2013] [Accepted: 12/06/2013] [Indexed: 05/03/2023]
Abstract
NMR has matured into a technique routinely employed for studying proteins in near physiological conditions. However, applications to larger proteins are impeded by the complexity of the various correlation maps necessary to assign NMR signals. This article reviews the data analysis techniques traditionally employed for resonance assignment and describes alternative protocols necessary for overcoming challenges in large protein spectra. In particular, simultaneous analysis of multiple spectra may help overcome ambiguities or may reveal correlations in an indirect manner. Similarly, visualization of orthogonal planes in a multidimensional spectrum can provide alternative assignment procedures. We describe examples of such strategies for assignment of backbone, methyl, and nOe resonances. We describe experimental aspects of data acquisition for the related experiments and provide guidelines for preliminary studies. Focus is placed on large folded monomeric proteins and examples are provided for 37, 48, 53, and 81 kDa proteins.
Collapse
Affiliation(s)
- Dominique P Frueh
- Johns Hopkins University School of Medicine, Biophysics and Biophysical Chemistry, 725 N. Wolfe Street, 701 Hunterian, Baltimore, MD 21205-2105, United States.
| |
Collapse
|
18
|
Mayzel M, Rosenlöw J, Isaksson L, Orekhov VY. Time-resolved multidimensional NMR with non-uniform sampling. JOURNAL OF BIOMOLECULAR NMR 2014; 58:129-39. [PMID: 24435565 PMCID: PMC3929766 DOI: 10.1007/s10858-013-9811-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/30/2013] [Indexed: 05/11/2023]
Abstract
Time-resolved experiments demand high resolution both in spectral dimensions and in time of the studied kinetic process. The latter requirement traditionally prohibits applications of the multidimensional experiments, which, although capable of providing invaluable information about structure and dynamics and almost unlimited spectral resolution, require too lengthy data collection. Our work shows that the problem has a solution in using modern methods of NMR data collection and signal processing. A continuous fast pulsing three-dimensional experiment is acquired using non-uniform sampling during full time of the studied reaction. High sensitivity and time-resolution of a few minutes is achieved by simultaneous processing of the full data set with the multi-dimensional decomposition. The method is verified and illustrated in realistic simulations and by measuring deuterium exchange rates of amide protons in ubiquitin. We applied the method for characterizing kinetics of in vitro phosphorylation of two tyrosine residues in an intrinsically disordered cytosolic domain of the B cell receptor protein CD79b. Signals of many residues including tyrosines in both phosphorylated and unmodified forms of CD79b are found in a heavily crowded region of 2D ¹H-¹⁵N correlation spectrum and the significantly enhanced spectral resolution provided by the 3D time-resolved approach was essential for the quantitative site-specific analysis.
Collapse
Affiliation(s)
- Maxim Mayzel
- The Swedish NMR Centre, University of Gothenburg, Box 465, 40530 Göteborg, Sweden
| | - Joakim Rosenlöw
- The Swedish NMR Centre, University of Gothenburg, Box 465, 40530 Göteborg, Sweden
| | - Linnéa Isaksson
- The Swedish NMR Centre, University of Gothenburg, Box 465, 40530 Göteborg, Sweden
| | - Vladislav Y. Orekhov
- The Swedish NMR Centre, University of Gothenburg, Box 465, 40530 Göteborg, Sweden
| |
Collapse
|
19
|
Wu Y, D'Agostino C, Holland DJ, Gladden LF. In situ study of reaction kinetics using compressed sensing NMR. Chem Commun (Camb) 2014; 50:14137-40. [DOI: 10.1039/c4cc06051b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CS-NMR improves the temporal resolution of conventional multi-dimensional NMR for species identification and study of reaction kinetics.
Collapse
Affiliation(s)
- Yuting Wu
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Cambridge, UK
| | - Carmine D'Agostino
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Cambridge, UK
| | - Daniel J. Holland
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Cambridge, UK
| | - Lynn F. Gladden
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Cambridge, UK
| |
Collapse
|
20
|
Lin EC, Opella SJ. Sampling scheme and compressed sensing applied to solid-state NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 237:40-48. [PMID: 24140622 PMCID: PMC3851314 DOI: 10.1016/j.jmr.2013.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/07/2013] [Accepted: 09/24/2013] [Indexed: 05/11/2023]
Abstract
We describe the incorporation of non-uniform sampling (NUS) compressed sensing (CS) into oriented sample (OS) solid-state NMR for stationary aligned samples and magic angle spinning (MAS) Solid-state NMR for unoriented 'powder' samples. Both simulated and experimental results indicate that 25-33% of a full linearly sampled data set is required to reconstruct two- and three-dimensional solid-state NMR spectra with high fidelity. A modest increase in signal-to-noise ratio accompanies the reconstruction.
Collapse
Affiliation(s)
- Eugene C Lin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0307, United States
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0307, United States.
| |
Collapse
|
21
|
Frueh DP, Goodrich AC, Mishra SH, Nichols SR. NMR methods for structural studies of large monomeric and multimeric proteins. Curr Opin Struct Biol 2013; 23:734-9. [PMID: 23850141 PMCID: PMC3805735 DOI: 10.1016/j.sbi.2013.06.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/13/2013] [Accepted: 06/21/2013] [Indexed: 12/16/2022]
Abstract
NMR structural studies of large monomeric and multimeric proteins face distinct challenges. In large monomeric proteins, the common occurrence of frequency degeneracies between residues impedes unambiguous assignment of NMR signals. To overcome this barrier, nonuniform sampling (NUS) is used to measure spectra with optimal resolution within reasonable time, new correlation maps resolve previous impasses in assignment strategies, and novel selective methyl labeling schemes provide additional structural probes without cluttering NMR spectra. These advances push the limits of NMR studies of large monomeric proteins. Large multimeric and multidomain proteins are studied by NMR when individual components can also be studied by NMR and have known structures. The structural properties of large assemblies are obtained by identifying binding surfaces, by orienting domains, and employing limited distance constraints. Segmental labeling and the combination of NMR with other methods have helped popularize NMR studies of such systems.
Collapse
Affiliation(s)
- Dominique P Frueh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
22
|
Stanek J, Podbevšek P, Koźmiński W, Plavec J, Cevec M. 4D Non-uniformly sampled C,C-NOESY experiment for sequential assignment of 13C, 15N-labeled RNAs. JOURNAL OF BIOMOLECULAR NMR 2013; 57:1-9. [PMID: 23963723 DOI: 10.1007/s10858-013-9771-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/10/2013] [Indexed: 05/16/2023]
Abstract
A 4D (13)C(aromatic),(13)C(ribose)-edited NOESY experiment is introduced to improve sequential assignment of non-coding RNA, often hampered by a limited dispersion of (1)H and (13)C chemical shifts. The (13)C-labeling of RNA is fully utilized by inclusion of two (13)C evolution periods. These dimensions provide enhanced dispersion of resonances in the 4D spectrum. High spectral resolution is obtained using random non-uniform sampling in three indirect dimensions. The autocorrelation peaks are efficiently suppressed using band-selective pulses. Since the dynamic range of observed resonances is significantly decreased, the reconstruction of the 4D spectrum is greatly simplified. The experiment can replace two conventionally sampled 3D NOESY spectra (either ribose-(13)C- or aromatic-(13)C-separated), and remove most ambiguities encountered during sequential walks. The assignment strategy based on a homonuclear and 4D C,C-edited NOESY experiments is proposed and verified on a 34-nt RNA showing typical structure elements.
Collapse
Affiliation(s)
- Jan Stanek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warszawa, Poland
| | | | | | | | | |
Collapse
|
23
|
Rodts S, Bytchenkoff D. Extrapolation and phase correction of non-uniformly broadened signals. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 233:64-73. [PMID: 23735873 DOI: 10.1016/j.jmr.2013.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 06/02/2023]
Abstract
The initial part of FID-signals cannot always be acquired experimentally. This is particularly true for signals characterised by strong inhomogeneous broadening, such as those in porous materials, e.g. cements, soils and rocks, those measured by portable NMR-apparatus, or EPR-signals. Here we report on a numerical method we designed to extrapolate those initial missing parts, i.e. to retrieve their amplitude and phase. Should the entire signal be available from an experiment, the algorithm can still be used as an automatic phase-corrector and a low-pass filter. The method is based on the use of cardinal series, applies to any oversampled signals and requires no prior knowledge of the system under study. We show that the method can also be used to restore entire one-dimensional MRI-data sets from those in which less than half of the k-space was sampled, thus not only potentially allowing to speed up data acquisition - when extended to two or three dimensions, but also to circumvent phase-distortions usually encountered when exploring the k-space near its origin.
Collapse
Affiliation(s)
- Stéphane Rodts
- Ecole Nationale des Ponts et Chaussées, Laboratoire Navier, 2 allée Kepler, 77420 Champs-sur-Marne, France.
| | | |
Collapse
|
24
|
Tikole S, Jaravine V, Orekhov VY, Güntert P. Effects of NMR spectral resolution on protein structure calculation. PLoS One 2013; 8:e68567. [PMID: 23874675 PMCID: PMC3713035 DOI: 10.1371/journal.pone.0068567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/30/2013] [Indexed: 11/18/2022] Open
Abstract
Adequate digital resolution and signal sensitivity are two critical factors for protein structure determinations by solution NMR spectroscopy. The prime objective for obtaining high digital resolution is to resolve peak overlap, especially in NOESY spectra with thousands of signals where the signal analysis needs to be performed on a large scale. Achieving maximum digital resolution is usually limited by the practically available measurement time. We developed a method utilizing non-uniform sampling for balancing digital resolution and signal sensitivity, and performed a large-scale analysis of the effect of the digital resolution on the accuracy of the resulting protein structures. Structure calculations were performed as a function of digital resolution for about 400 proteins with molecular sizes ranging between 5 and 33 kDa. The structural accuracy was assessed by atomic coordinate RMSD values from the reference structures of the proteins. In addition, we monitored also the number of assigned NOESY cross peaks, the average signal sensitivity, and the chemical shift spectral overlap. We show that high resolution is equally important for proteins of every molecular size. The chemical shift spectral overlap depends strongly on the corresponding spectral digital resolution. Thus, knowing the extent of overlap can be a predictor of the resulting structural accuracy. Our results show that for every molecular size a minimal digital resolution, corresponding to the natural linewidth, needs to be achieved for obtaining the highest accuracy possible for the given protein size using state-of-the-art automated NOESY assignment and structure calculation methods.
Collapse
Affiliation(s)
- Suhas Tikole
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, and Frankfurt Institute of Advanced Studies, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Victor Jaravine
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, and Frankfurt Institute of Advanced Studies, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | | | - Peter Güntert
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, and Frankfurt Institute of Advanced Studies, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
- * E-mail:
| |
Collapse
|
25
|
Stanek J, Nowakowski M, Saxena S, Ruszczyńska-Bartnik K, Ejchart A, Koźmiński W. Selective diagonal-free (13)C, (13)C-edited aliphatic-aromatic NOESY experiment with non-uniform sampling. JOURNAL OF BIOMOLECULAR NMR 2013; 56:217-26. [PMID: 23657844 PMCID: PMC3699708 DOI: 10.1007/s10858-013-9739-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/27/2013] [Indexed: 05/20/2023]
Abstract
A band-selective aromatic-aliphatic C,C-edited four-dimensional NOESY experiment is proposed here. Its key advantage is the absence of auto-correlation signals which makes it very attractive for joint use with non-uniform sampling. It is demonstrated here that the sensitivity of the experiment is not significantly affected by utilization of selective pulses (for either aromatic-13C or aliphatic-13C spins). The method was applied to the sample of E32Q mutant of human S100A1 protein, a homodimer of total molecular mass ~20 kDa. High-resolution 4D spectra were obtained from ~1.5 % of sampling points required conventionally. It is shown that superior resolution facilitates unambiguous assignment of observed aliphatic-aromatic cross-peaks. Additionally, the addition of aliphatic-13C dimension enables to resolve peaks with degenerated aliphatic (1)H chemical shifts. All observed cross-peaks were validated against previously determined 3D structure of E32Q mutant of S100A1 protein (PDB 2LHL). The increased reliability of structural constraints obtained from the proposed high-resolution 4D 13C(ali),13C(aro)-edited NOESY can be exploited in the automated protocols of structure determination of proteins.
Collapse
Affiliation(s)
- Jan Stanek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland
| | - Michał Nowakowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland
| | - Saurabh Saxena
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland
| | | | - Andrzej Ejchart
- Institute of Biochemistry and Biophysics, Polish Academy of Science, 02106 Warsaw, Poland
| | - Wiktor Koźmiński
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland
| |
Collapse
|
26
|
Kazimierczuk K, Stanek J, Zawadzka-Kazimierczuk A, Koźmiński W. High-Dimensional NMR Spectra for Structural Studies of Biomolecules. Chemphyschem 2013; 14:3015-25. [DOI: 10.1002/cphc.201300277] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Indexed: 11/06/2022]
|
27
|
Li Y, Hu B, Chen Q, Wang Q, Zhang Z, Yang J, Noda I, Trébosc J, Lafon O, Amoureux JP, Deng F. Comparison of various sampling schemes and accumulation profiles in covariance spectroscopy with exponentially decaying 2D signals. Analyst 2013; 138:2411-9. [DOI: 10.1039/c3an36375a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Thiele CM, Bermel W. Speeding up the measurement of one-bond scalar (1J) and residual dipolar couplings (1D) by using non-uniform sampling (NUS). JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 216:134-43. [PMID: 22342269 DOI: 10.1016/j.jmr.2012.01.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/12/2012] [Accepted: 01/22/2012] [Indexed: 05/16/2023]
Abstract
The accurate and precise measurement of one-bond scalar and residual dipolar coupling (RDC) constants is of prime importance to be able to use RDCs for structure determination. If coupling constants are to be extracted from the indirect dimension of HSQC spectra a significant saving of measurement time can be achieved by non-uniform sampling (NUS). Coupling constants can either be obtained with the same precision as in traditionally acquired spectra in a fraction of the measurement time or the precision can be significantly improved if the same amount of measurement time as for traditionally acquired spectra is invested. The application of NUS for the measurement of (1)J (scalar coupling constants) and (1)T (total couplings constants) from different kinds of ω(1)-coupled spectra (including also J-scaled ones) is examined in detail and the possible gains in time or resolution are discussed. When using the newly proposed compressed sensing (CS) algorithm for processing, the quality of the spectra is comparable to the traditionally sampled ones.
Collapse
Affiliation(s)
- Christina M Thiele
- Clemens Schöpf Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstr. 22, 64287 Darmstadt, Germany.
| | | |
Collapse
|
29
|
Stanek J, Augustyniak R, Koźmiński W. Suppression of sampling artefacts in high-resolution four-dimensional NMR spectra using signal separation algorithm. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 214:91-102. [PMID: 22070970 DOI: 10.1016/j.jmr.2011.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/10/2011] [Accepted: 10/17/2011] [Indexed: 05/04/2023]
Abstract
The development of non-uniform sampling (NUS) strategies permits to obtain high-dimensional spectra with increased resolution in significantly reduced experimental time. We extended a previously proposed signal separation algorithm (SSA) to process sparse four-dimensional NMR data. It is employed for two experiments carried out for a partially unstructured 114-residue construct of chicken Engrailed 2 protein, namely 4D HCCH-TOCSY and 4D C,N-edited NOESY. The SSA allowed us to obtain high-quality spectra using only as little as 0.16% of the available samples, with low sampling artefacts approaching the thermal noise level in most spectral regions. It is demonstrated that NUS 4D HCCH-TOCSY is dominated by sampling noise and requires efficient artefact suppression. On the other hand, 4D C,N-edited NOESY is a particularly attractive experiment for NUS, as the absence of diagonal peaks renders the problem of artefacts less critical. We also present a transverse-relaxation optimized sequence for HMQC that is especially designed for longer evolution periods in the indirectly detected proton dimension in high-dimensional pulse sequences. In conjunction with novel sampling strategies and efficient processing methods, this improvement enabled us to obtain unique structural information about aliphatic-amide contacts.
Collapse
Affiliation(s)
- Jan Stanek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland
| | | | | |
Collapse
|
30
|
Eddy MT, Ruben D, Griffin RG, Herzfeld J. Deterministic schedules for robust and reproducible non-uniform sampling in multidimensional NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 214:296-301. [PMID: 22200565 PMCID: PMC3257378 DOI: 10.1016/j.jmr.2011.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/16/2011] [Accepted: 12/02/2011] [Indexed: 05/20/2023]
Abstract
We show that a simple, general, and easily reproducible method for generating non-uniform sampling (NUS) schedules preserves the benefits of random sampling, including inherently reduced sampling artifacts, while removing the pitfalls associated with choosing an arbitrary seed. Sampling schedules are generated from a discrete cumulative distribution function (CDF) that closely fits the continuous CDF of the desired probability density function. We compare random and deterministic sampling using a Gaussian probability density function applied to 2D HSQC spectra. Data are processed using the previously published method of Spectroscopy by Integration of Frequency and Time domain data (SIFT). NUS spectra from deterministic sampling schedules were found to be at least as good as those from random schedules at the SIFT critical sampling density, and significantly better at half that sampling density. The method can be applied to any probability density function and generalized to greater than two dimensions.
Collapse
Affiliation(s)
- Matthew T. Eddy
- Department of Chemistry Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Ruben
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert G. Griffin
- Department of Chemistry Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Judith Herzfeld
- Department of Chemistry, Brandeis University, Waltham, MA 02454, USA
- Corresponding author: voice 781-736-2538, fax 781-736-2516,
| |
Collapse
|
31
|
Orekhov VY, Jaravine VA. Analysis of non-uniformly sampled spectra with multi-dimensional decomposition. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2011; 59:271-92. [PMID: 21920222 DOI: 10.1016/j.pnmrs.2011.02.002] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 02/21/2011] [Indexed: 05/04/2023]
Affiliation(s)
- Vladislav Yu Orekhov
- Swedish NMR Centre, University of Gothenburg, Box 465, 40530 Gothenburg, Sweden.
| | | |
Collapse
|
32
|
Rodts S, Bytchenkoff D. Cardinal series to restore NMR-signals dominated by strong inhomogeneous broadening. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 212:26-39. [PMID: 21737327 DOI: 10.1016/j.jmr.2011.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/27/2011] [Accepted: 06/06/2011] [Indexed: 05/31/2023]
Abstract
We have devised two numerical methods of restoring incomplete band-limited NMR-signals to integrity by either interpolating or extrapolating them. Both methods are based on use of the finite cardinal series, whose filtering properties were discussed previously, to model signals. They require no prior knowledge about the system under study, but only that the available parts of the signal were oversampled enough. The methods were tested on two types of computer-simulated signal. It proved superior to the linear prediction methods and Lagrange interpolation when applied to signals measured in highly inhomogeneous magnetic fields. The extrapolation method was then applied to restore experimentally-measured refocused FID-signals of a porous medium. The missing parts of the signal of up to several times the size of its Nyquist period could be recovered by either method.
Collapse
Affiliation(s)
- Stéphane Rodts
- Université Paris Est, Laboratoire Navier, UMR 8205 ENPC-IFSTTAR-CNRS, 2 allée Kepler, 77420 Champs-sur-Marne, France.
| | | |
Collapse
|
33
|
Ikeya T, Jee JG, Shigemitsu Y, Hamatsu J, Mishima M, Ito Y, Kainosho M, Güntert P. Exclusively NOESY-based automated NMR assignment and structure determination of proteins. JOURNAL OF BIOMOLECULAR NMR 2011; 50:137-146. [PMID: 21448734 DOI: 10.1007/s10858-011-9502-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/11/2011] [Indexed: 05/30/2023]
Abstract
A fully automated method is presented for determining NMR solution structures of proteins using exclusively NOESY spectra as input, obviating the need to measure any spectra only for obtaining resonance assignments but devoid of structural information. Applied to two small proteins, the approach yielded structures that coincided closely with conventionally determined structures.
Collapse
Affiliation(s)
- Teppei Ikeya
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, and Frankfurt Institute for Advanced Studies, Goethe University Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Qureshi T, Goto NK. Contemporary methods in structure determination of membrane proteins by solution NMR. Top Curr Chem (Cham) 2011; 326:123-85. [PMID: 22160391 DOI: 10.1007/128_2011_306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Integral membrane proteins are vital to life, being responsible for information and material exchange between a cell and its environment. Although high-resolution structural information is needed to understand how these functions are achieved, membrane proteins remain an under-represented subset of the protein structure databank. Solution NMR is increasingly demonstrating its ability to help address this knowledge shortfall, with the development of a diverse array of techniques to counter the challenges presented by membrane proteins. Here we document the advances that are helping to define solution NMR as an effective tool for membrane protein structure determination. Developments introduced over the last decade in the production of isotope-labeled samples, reconstitution of these samples into the growing selection of NMR-compatible membrane-mimetic systems, and the approaches used for the acquisition and application of structural restraints from these complexes are reviewed.
Collapse
Affiliation(s)
- Tabussom Qureshi
- Department of Chemistry, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
35
|
Lemak A, Gutmanas A, Chitayat S, Karra M, Farès C, Sunnerhagen M, Arrowsmith CH. A novel strategy for NMR resonance assignment and protein structure determination. JOURNAL OF BIOMOLECULAR NMR 2011; 49:27-38. [PMID: 21161328 PMCID: PMC3715383 DOI: 10.1007/s10858-010-9458-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/16/2010] [Indexed: 05/11/2023]
Abstract
The quality of protein structures determined by nuclear magnetic resonance (NMR) spectroscopy is contingent on the number and quality of experimentally-derived resonance assignments, distance and angular restraints. Two key features of protein NMR data have posed challenges for the routine and automated structure determination of small to medium sized proteins; (1) spectral resolution - especially of crowded nuclear Overhauser effect spectroscopy (NOESY) spectra, and (2) the reliance on a continuous network of weak scalar couplings as part of most common assignment protocols. In order to facilitate NMR structure determination, we developed a semi-automated strategy that utilizes non-uniform sampling (NUS) and multidimensional decomposition (MDD) for optimal data collection and processing of selected, high resolution multidimensional NMR experiments, combined it with an ABACUS protocol for sequential and side chain resonance assignments, and streamlined this procedure to execute structure and refinement calculations in CYANA and CNS, respectively. Two graphical user interfaces (GUIs) were developed to facilitate efficient analysis and compilation of the data and to guide automated structure determination. This integrated method was implemented and refined on over 30 high quality structures of proteins ranging from 5.5 to 16.5 kDa in size.
Collapse
Affiliation(s)
- Alexander Lemak
- Ontario Cancer Institute and The Campbell Family Cancer Research Institute, Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
- The Northeast Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Aleksandras Gutmanas
- Ontario Cancer Institute and The Campbell Family Cancer Research Institute, Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
- The Northeast Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Seth Chitayat
- Ontario Cancer Institute and The Campbell Family Cancer Research Institute, Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Murthy Karra
- Ontario Cancer Institute and The Campbell Family Cancer Research Institute, Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Christophe Farès
- Ontario Cancer Institute and The Campbell Family Cancer Research Institute, Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
- The Northeast Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Maria Sunnerhagen
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| | - Cheryl H. Arrowsmith
- Ontario Cancer Institute and The Campbell Family Cancer Research Institute, Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
- The Northeast Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada,
| |
Collapse
|
36
|
Abstract
This chapter presents the NMR technique APSY (automated projection spectroscopy) and its applications for sequence-specific resonance assignments of proteins. The result of an APSY experiment is a list of chemical shift correlations for an N-dimensional NMR spectrum (N≥3). This list is obtained in a fully automated way by the dedicated algorithm GAPRO (geometric analysis of projections) from a geometric analysis of experimentally recorded, low-dimensional projections. Because the positions of corresponding peaks in multiple projections are correlated, thermal noise and other uncorrelated artifacts are efficiently suppressed. We describe the theoretical background of the APSY method and discuss technical aspects that guide its optimal use. Further, applications of APSY-NMR spectroscopy for fully automated sequence-specific backbone and side chain assignments of proteins are described. We discuss the choice of suitable experiments for this purpose and show several examples. APSY is of particular interest for the assignment of soluble unfolded proteins, which is a time-consuming task by conventional means. With this class of proteins, APSY-NMR experiments with up to seven dimensions have been recorded. Sequence-specific assignments of protein side chains in turn are obtained from a 5D TOCSY-APSY-NMR experiment.
Collapse
Affiliation(s)
- Sebastian Hiller
- Biozentrum, Universität Basel, Klingelbergstr. 70, 4056, Basel, Switzerland.
| | | |
Collapse
|
37
|
Kazimierczuk K, Misiak M, Stanek J, Zawadzka-Kazimierczuk A, Koźmiński W. Generalized Fourier Transform for Non-Uniform Sampled Data. Top Curr Chem (Cham) 2011; 316:79-124. [DOI: 10.1007/128_2011_186] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
38
|
Kazimierczuk K, Stanek J, Zawadzka-Kazimierczuk A, Koźmiński W. Random sampling in multidimensional NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2010; 57:420-34. [PMID: 20920758 DOI: 10.1016/j.pnmrs.2010.07.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 07/27/2010] [Indexed: 05/16/2023]
|
39
|
Wu B, Skarina T, Yee A, Jobin MC, DiLeo R, Semesi A, Fares C, Lemak A, Coombes BK, Arrowsmith CH, Singer AU, Savchenko A. NleG Type 3 effectors from enterohaemorrhagic Escherichia coli are U-Box E3 ubiquitin ligases. PLoS Pathog 2010; 6:e1000960. [PMID: 20585566 PMCID: PMC2891834 DOI: 10.1371/journal.ppat.1000960] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 05/24/2010] [Indexed: 01/11/2023] Open
Abstract
NleG homologues constitute the largest family of Type 3 effectors delivered by pathogenic E. coli, with fourteen members in the enterohaemorrhagic (EHEC) O157:H7 strain alone. Identified recently as part of the non-LEE-encoded (Nle) effector set, this family remained uncharacterised and shared no sequence homology to other proteins including those of known function. The C-terminal domain of NleG2-3 (residues 90 to 191) is the most conserved region in NleG proteins and was solved by NMR. Structural analysis of this structure revealed the presence of a RING finger/U-box motif. Functional assays demonstrated that NleG2-3 as well as NleG5-1, NleG6-2 and NleG9' family members exhibited a strong autoubiquitination activity in vitro; a characteristic usually expressed by eukaryotic ubiquitin E3 ligases. When screened for activity against a panel of 30 human E2 enzymes, the NleG2-3 and NleG5-1 homologues showed an identical profile with only UBE2E2, UBE2E3 and UBE2D2 enzymes supporting NleG activity. Fluorescence polarization analysis yielded a binding affinity constant of 56+/-2 microM for the UBE2D2/NleG5-1 interaction, a value comparable with previous studies on E2/E3 affinities. The UBE2D2 interaction interface on NleG2-3 defined by NMR chemical shift perturbation and mutagenesis was shown to be generally similar to that characterised for human RING finger ubiquitin ligases. The alanine substitutions of UBE2D2 residues Arg5 and Lys63, critical for activation of eukaryotic E3 ligases, also significantly decreased both NleG binding and autoubiquitination activity. These results demonstrate that bacteria-encoded NleG effectors are E3 ubiquitin ligases analogous to RING finger and U-box enzymes in eukaryotes.
Collapse
Affiliation(s)
- Bin Wu
- Division of Cancer Genomics and Proteomics, Ontario Cancer Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Tatiana Skarina
- Banting and Best Department for Medical Research, University of Toronto, C.H. Best Institute, Toronto, Ontario, Canada
| | - Adelinda Yee
- Division of Cancer Genomics and Proteomics, Ontario Cancer Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Marie-Claude Jobin
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Department for Medical Research, University of Toronto, C.H. Best Institute, Toronto, Ontario, Canada
| | - Rosa DiLeo
- Banting and Best Department for Medical Research, University of Toronto, C.H. Best Institute, Toronto, Ontario, Canada
| | - Anthony Semesi
- Division of Cancer Genomics and Proteomics, Ontario Cancer Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Christophe Fares
- Division of Cancer Genomics and Proteomics, Ontario Cancer Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Alexander Lemak
- Division of Cancer Genomics and Proteomics, Ontario Cancer Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Brian K. Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Cheryl H. Arrowsmith
- Division of Cancer Genomics and Proteomics, Ontario Cancer Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Department for Medical Research, University of Toronto, C.H. Best Institute, Toronto, Ontario, Canada
| | - Alexander U. Singer
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Department for Medical Research, University of Toronto, C.H. Best Institute, Toronto, Ontario, Canada
| | - Alexei Savchenko
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Department for Medical Research, University of Toronto, C.H. Best Institute, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
40
|
Stanek J, Koźmiński W. Iterative algorithm of discrete Fourier transform for processing randomly sampled NMR data sets. JOURNAL OF BIOMOLECULAR NMR 2010; 47:65-77. [PMID: 20372976 DOI: 10.1007/s10858-010-9411-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 03/24/2010] [Indexed: 05/04/2023]
Abstract
Spectra obtained by application of multidimensional Fourier Transformation (MFT) to sparsely sampled nD NMR signals are usually corrupted due to missing data. In the present paper this phenomenon is investigated on simulations and experiments. An effective iterative algorithm for artifact suppression for sparse on-grid NMR data sets is discussed in detail. It includes automated peak recognition based on statistical methods. The results enable one to study NMR spectra of high dynamic range of peak intensities preserving benefits of random sampling, namely the superior resolution in indirectly measured dimensions. Experimental examples include 3D (15)N- and (13)C-edited NOESY-HSQC spectra of human ubiquitin.
Collapse
Affiliation(s)
- Jan Stanek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | | |
Collapse
|
41
|
Bermel W, Bertini I, Felli IC, Pierattelli R. Speeding up (13)C direct detection biomolecular NMR spectroscopy. J Am Chem Soc 2010; 131:15339-45. [PMID: 19795864 DOI: 10.1021/ja9058525] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
After the exploitation of (1)H polarization as a starting source for (13)C direct detection experiments, pulse sequences are designed which exploit the accelerated (1)H longitudinal relaxation to expedite (13)C direct detection experiments. We show here that 2D experiments based on (13)C direct detection on a 0.5 mM water sample of ubiquitin can be recorded in a few minutes and 3D experiments in a few hours. We also show that fast methods like nonuniform sampling can be easily implemented. As overall experimental time has always been a counter indication for the use of (13)C direct detection experiments, this research opens new avenues for the application of (13)C NMR to biological molecules.
Collapse
Affiliation(s)
- Wolfgang Bermel
- Bruker BioSpin GmbH, Silberstreifen, 76287 Rheinstetten, Germany
| | | | | | | |
Collapse
|
42
|
Hiller S, Ibraghimov I, Wagner G, Orekhov VY. Coupled decomposition of four-dimensional NOESY spectra. J Am Chem Soc 2010; 131:12970-8. [PMID: 19737017 DOI: 10.1021/ja902012x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four-dimensional (4D) NOESY spectra provide unambiguous distance information at a resolution that cannot be achieved in fewer dimensions and thus increase the quality of biomolecular structure determination substantially. Since the degree of chemical shift degeneracy increases with protein size, the use of 4D NOESY spectra is particularly important for large proteins. The potential high resolution in 4D spectra cannot be achieved in a reasonable time with conventional acquisition routines that sample the Nyquist grid uniformly. It can, however, be obtained with nonuniform sampling of the data grid, but optimal processing of such data has not yet been established. Here we describe a processing method for a pair of sparsely sampled 4D NOESY spectra, a methyl-methyl and an amide-methyl NOESY, recorded on a perdeuterated protein with protonated isoleucine, leucine, and valine methyl groups. The coupled multidimensional decomposition (Co-MDD) of these two spectra together with a 2D template spectrum results in a substantial increase in sensitivity, evidenced by 50-100% additional cross peaks, when compared to alternative processing schemes. At the same time, Co-MDD allows the use of low sparse levels of 10-15% of the full data grid for NOESY spectra. For the 283-residue integral human membrane protein VDAC-1, which has a rotational correlation time of about 70 ns in detergent micelles, the two 4D Co-MDD NOESYs yielded a total of 366 NOEs, resulting in 139 unambiguous upper limit distance constraints for the structure calculation.
Collapse
Affiliation(s)
- Sebastian Hiller
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston Massachusetts 02115, USA
| | | | | | | |
Collapse
|
43
|
Ikeya T, Takeda M, Yoshida H, Terauchi T, Jee JG, Kainosho M, Güntert P. Automated NMR structure determination of stereo-array isotope labeled ubiquitin from minimal sets of spectra using the SAIL-FLYA system. JOURNAL OF BIOMOLECULAR NMR 2009; 44:261-72. [PMID: 19597942 DOI: 10.1007/s10858-009-9339-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 06/24/2009] [Indexed: 05/05/2023]
Abstract
Stereo-array isotope labeling (SAIL) has been combined with the fully automated NMR structure determination algorithm FLYA to determine the three-dimensional structure of the protein ubiquitin from different sets of input NMR spectra. SAIL provides a complete stereo- and regio-specific pattern of stable isotopes that results in sharper resonance lines and reduced signal overlap, without information loss. Here we show that as a result of the superior quality of the SAIL NMR spectra, reliable, fully automated analyses of the NMR spectra and structure calculations are possible using fewer input spectra than with conventional uniformly 13C/15N-labeled proteins. FLYA calculations with SAIL ubiquitin, using a single three-dimensional "through-bond" spectrum (and 2D HSQC spectra) in addition to the 13C-edited and 15N-edited NOESY spectra for conformational restraints, yielded structures with an accuracy of 0.83-1.15 A for the backbone RMSD to the conventionally determined solution structure of SAIL ubiquitin. NMR structures can thus be determined almost exclusively from the NOESY spectra that yield the conformational restraints, without the need to record many spectra only for determining intermediate, auxiliary data of the chemical shift assignments. The FLYA calculations for this report resulted in 252 ubiquitin structure bundles, obtained with different input data but identical structure calculation and refinement methods. These structures cover the entire range from highly accurate structures to seriously, but not trivially, wrong structures, and thus constitute a valuable database for the substantiation of structure validation methods.
Collapse
Affiliation(s)
- Teppei Ikeya
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Felli IC, Brutscher B. Recent Advances in Solution NMR: Fast Methods and Heteronuclear Direct Detection. Chemphyschem 2009; 10:1356-68. [DOI: 10.1002/cphc.200900133] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
45
|
Matsuki Y, Eddy MT, Herzfeld J. Spectroscopy by integration of frequency and time domain information for fast acquisition of high-resolution dark spectra. J Am Chem Soc 2009; 131:4648-56. [PMID: 19284727 PMCID: PMC2711035 DOI: 10.1021/ja807893k] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A simple and effective method, SIFT (spectroscopy by integration of frequency and time domain information), is introduced for processing nonuniformly sampled multidimensional NMR data. Applying the computationally efficient Gerchberg-Papoulis (G-P) algorithm, used previously in picture processing and medical imaging, SIFT supplements data at nonuniform points in the time domain with the information carried by known "dark" points (i.e., empty regions) in the frequency domain. We demonstrate that this rapid integration not only removes the severe pseudonoise characteristic of the Fourier transforms of nonuniformly sampled data, but also provides a robust procedure for using frequency information to replace time measurements. The latter can be used to avoid unnecessary sampling in sampling-limited experiments, and the former can be used to take advantage of the ability of nonuniformly sampled data to minimize trade-offs between the signal-to-noise ratio and the resolution in sensitivity-limited experiments. Processing 2D and 3D data sets takes about 0.1 and 2 min, respectively, on a personal computer. With these several attractive features, SIFT offers a novel, model-independent, flexible, and user-friendly tool for efficient and accurate processing of multidimensional NMR data.
Collapse
Affiliation(s)
- Yoh Matsuki
- Department of Chemistry, Brandeis University, Waltham, MA 02454, USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthew T. Eddy
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Judith Herzfeld
- Department of Chemistry, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
46
|
Hiller S, Wider G, Wüthrich K. APSY-NMR with proteins: practical aspects and backbone assignment. JOURNAL OF BIOMOLECULAR NMR 2008; 42:179-195. [PMID: 18841481 DOI: 10.1007/s10858-008-9266-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 08/11/2008] [Indexed: 05/26/2023]
Abstract
Automated projection spectroscopy (APSY) is an NMR technique for the recording of discrete sets of projection spectra from higher-dimensional NMR experiments, with automatic identification of the multidimensional chemical shift correlations by the dedicated algorithm GAPRO. This paper presents technical details for optimizing the set-up and the analysis of APSY-NMR experiments with proteins. Since experience so far indicates that the sensitivity for signal detection may become the principal limiting factor for applications with larger proteins or more dilute samples, we performed an APSY-NMR experiment at the limit of sensitivity, and then investigated the effects of varying selected experimental parameters. To obtain the desired reference data, a 4D APSY-HNCOCA experiment with a 12-kDa protein was recorded in 13 min. Based on the analysis of this data set and on general considerations, expressions for the sensitivity of APSY-NMR experiments have been generated to guide the selection of the projection angles, the calculation of the sweep widths, and the choice of other acquisition and processing parameters. In addition, a new peak picking routine and a new validation tool for the final result of the GAPRO spectral analysis are introduced. In continuation of previous reports on the use of APSY-NMR for sequence-specific resonance assignment of proteins, we present the results of a systematic search for suitable combinations of a minimal number of four- and five-dimensional APSY-NMR experiments that can provide the input for algorithms that generate automated protein backbone assignments.
Collapse
Affiliation(s)
- Sebastian Hiller
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093, Zürich, Switzerland.
| | | | | |
Collapse
|
47
|
Mobli M, Hoch JC. Maximum Entropy Spectral Reconstruction of Non-Uniformly Sampled Data. CONCEPTS IN MAGNETIC RESONANCE. PART A, BRIDGING EDUCATION AND RESEARCH 2008; 32A:436-448. [PMID: 21562616 PMCID: PMC3090151 DOI: 10.1002/cmr.a.20126] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The time required to complete a multidimensional NMR experiment is directly proportional to the number of evolution times sampled in the indirect dimensions. A consequence when utilizing conventional methods of data acquisition and spectrum analysis is that resolution in the indirect dimensions is frequently sample-limited. The problem becomes more acute at very high magnetic fields, where increased chemical shift dispersion requires shorter time increments to avoid aliasing. It has long been recognized that a way to avoid this limitation is to utilize methods of spectrum analysis that do not require data to be sampled at uniform intervals, permitting the collection of data at long evolution times requisite for high resolution without requiring collection of data at all intervening multiples of the sampling interval. Several promising methods have evolved that are seemingly quite different, yet can be shown to yield similar results when applied to similar sampling strategies, emphasizing the importance of the choice of samples, regardless of the technique used to compute the spectrum. Maximum entropy (MaxEnt) reconstruction is a very general method for spectrum analysis of non-uniformly sampled data (NUS), and because it can be used with essentially arbitrary sampling strategies and makes no assumptions about the nature of the signal, it provides a convenient basis for exploring the influence of the choice of samples on spectral quality. In this article we use this versatility of MaxEnt reconstruction to compare different approaches to NUS in multidimensional NMR and suggest strategies for improving spectral quality by careful choice of sample times.
Collapse
Affiliation(s)
- Mehdi Mobli
- University of Connecticut Health Center, Department of Molecular, Microbial, and Structural Biology, 263 Farmington Ave., Farmington, CT 06030-3305 USA
| | | |
Collapse
|
48
|
Wong LE, Masse JE, Jaravine V, Orekhov V, Pervushin K. Automatic assignment of protein backbone resonances by direct spectrum inspection in targeted acquisition of NMR data. JOURNAL OF BIOMOLECULAR NMR 2008; 42:77-86. [PMID: 18784977 DOI: 10.1007/s10858-008-9269-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 08/07/2008] [Indexed: 05/26/2023]
Abstract
The necessity to acquire large multidimensional datasets, a basis for assignment of NMR resonances, results in long data acquisition times during which substantial degradation of a protein sample might occur. Here we propose a method applicable for such a protein for automatic assignment of backbone resonances by direct inspection of multidimensional NMR spectra. In order to establish an optimal balance between completeness of resonance assignment and losses of cross-peaks due to dynamic processes/degradation of protein, assignment of backbone resonances is set as a stirring criterion for dynamically controlled targeted nonlinear NMR data acquisition. The result is demonstrated with the 12 kDa (13)C,(15) N-labeled apo-form of heme chaperone protein CcmE, where hydrolytic cleavage of 29 C-terminal amino acids is detected. For this protein, 90 and 98% of manually assignable resonances are automatically assigned within 10 and 40 h of nonlinear sampling of five 3D NMR spectra, respectively, instead of 600 h needed to complete the full time domain grid. In addition, resonances stemming from degradation products are identified. This study indicates that automatic resonance assignment might serve as a guiding criterion for optimal run-time allocation of NMR resources in applications to proteins prone to degradation.
Collapse
Affiliation(s)
- Leo E Wong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | | | | | | | | |
Collapse
|
49
|
Jaravine VA, Zhuravleva AV, Permi P, Ibraghimov I, Orekhov VY. Hyperdimensional NMR spectroscopy with nonlinear sampling. J Am Chem Soc 2008; 130:3927-36. [PMID: 18311971 DOI: 10.1021/ja077282o] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An approach is described for joint interleaved recording, real-time processing, and analysis of NMR data sets. The method employs multidimensional decomposition to find common information in a set of conventional triple-resonance spectra recorded in the nonlinear sampling mode, and builds a model of hyperdimensional (HD) spectrum. While preserving sensitivity per unit of measurement time and allowing for maximal spectral resolution, the approach reduces data collection time on average by 2 orders of magnitude compared to the conventional method. The 7-10 dimensional HD spectrum, which is represented as a set of deconvoluted 1D vectors, is easy to handle and amenable for automated analysis. The method is exemplified by automated assignment for two protein systems of low and high spectral complexity: ubiquitin (globular, 8 kDa) and zetacyt (naturally disordered, 13 kDa). The collection and backbone assignment of the data sets are achieved in real time after approximately 1 and 10 h, respectively. The approach removes the most critical time bottlenecks in data acquisition and analysis. Thus, it can significantly increase the value of NMR spectroscopy in structural biology, for example, in high-throughput structural genomics applications.
Collapse
Affiliation(s)
- Victor A Jaravine
- Swedish NMR Centre, Göteborg University, Box 465, 40530 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
50
|
Kazimierczuk K, Zawadzka A, Koźmiński W, Zhukov I. Lineshapes and artifacts in Multidimensional Fourier Transform of arbitrary sampled NMR data sets. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 188:344-56. [PMID: 17822933 DOI: 10.1016/j.jmr.2007.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 08/07/2007] [Accepted: 08/10/2007] [Indexed: 05/11/2023]
Abstract
The comprehensive description of Multidimensional Fourier Transform applied to arbitrary sampled NMR data is presented. Lineshapes and signal-to-artifact ratio are discussed in detail with regard to time domain sampling scheme and applied data weighting. It is demonstrated that transformation method with simple summation instead of numerical integration is most useful for significantly undersampled experiments. Additionally, the optimized random sampling schedule which enables significant improvement of obtained spectra is proposed. The new procedure of cleaning spectra is presented, it is based on predictability of artifacts pattern when sampling scheme and amplitude of intense signals are known. The results enable observation of high dynamic range spectra as for example heteronuclear edited NOESY. We show the application of new approach to the 3D (15)N-edited NOESY-HSQC spectrum acquired for (13)C, (15)N labeled ubiquitin sample with random time domain sampling.
Collapse
|