1
|
Al-Hilaly YK, Hurt C, Rickard JE, Harrington CR, Storey JMD, Wischik CM, Serpell LC, Siemer AB. Solid-state NMR of paired helical filaments formed by the core tau fragment tau(297-391). Front Neurosci 2022; 16:988074. [PMID: 36570831 PMCID: PMC9774000 DOI: 10.3389/fnins.2022.988074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Aggregation of the tau protein into fibrillar cross-β aggregates is a hallmark of Alzheimer's diseases (AD) and many other neurodegenerative tauopathies. Recently, several core structures of patient-derived tau paired helical filaments (PHFs) have been solved revealing a structural variability that often correlates with a specific tauopathy. To further characterize the dynamics of these fibril cores, to screen for strain-specific small molecules as potential biomarkers and therapeutics, and to develop strain-specific antibodies, recombinant in-vitro models of tau filaments are needed. We recently showed that a 95-residue fragment of tau (from residue 297 to 391), termed dGAE, forms filaments in vitro in the absence of polyanionic co-factors often used for in vitro aggregation of full-length tau. Tau(297-391) was identified as the proteolytic resistant core of tau PHFs and overlaps with the structures characterized by cryo-electron microscopy in ex vivo PHFs, making it a promising model for the study of AD tau filaments in vitro. In the present study, we used solid-state NMR to characterize tau(297-391) filaments and show that such filaments assembled under non-reducing conditions are more dynamic and less ordered than those made in the presence of the reducing agent DTT. We further report the resonance assignment of tau(297-391)+DTT filaments and compare it to existing core structures of tau.
Collapse
Affiliation(s)
- Youssra K. Al-Hilaly
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, United Kingdom
- Chemistry Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Connor Hurt
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Janet E. Rickard
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Charles R. Harrington
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- TauRx Therapeutics Ltd., Aberdeen, United Kingdom
| | - John M. D. Storey
- TauRx Therapeutics Ltd., Aberdeen, United Kingdom
- Department of Chemistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Claude M. Wischik
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- TauRx Therapeutics Ltd., Aberdeen, United Kingdom
| | - Louise C. Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, United Kingdom
| | - Ansgar B. Siemer
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
2
|
Liang L, Ji Y, Chen K, Gao P, Zhao Z, Hou G. Solid-State NMR Dipolar and Chemical Shift Anisotropy Recoupling Techniques for Structural and Dynamical Studies in Biological Systems. Chem Rev 2022; 122:9880-9942. [PMID: 35006680 DOI: 10.1021/acs.chemrev.1c00779] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With the development of NMR methodology and technology during the past decades, solid-state NMR (ssNMR) has become a particularly important tool for investigating structure and dynamics at atomic scale in biological systems, where the recoupling techniques play pivotal roles in modern high-resolution MAS NMR. In this review, following a brief introduction on the basic theory of recoupling in ssNMR, we highlight the recent advances in dipolar and chemical shift anisotropy recoupling methods, as well as their applications in structural determination and dynamical characterization at multiple time scales (i.e., fast-, intermediate-, and slow-motion). The performances of these prevalent recoupling techniques are compared and discussed in multiple aspects, together with the representative applications in biomolecules. Given the recent emerging advances in NMR technology, new challenges for recoupling methodology development and potential opportunities for biological systems are also discussed.
Collapse
Affiliation(s)
- Lixin Liang
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Ji
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuizhi Chen
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Pan Gao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Zhenchao Zhao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
3
|
Lends A, Berbon M, Habenstein B, Nishiyama Y, Loquet A. Protein resonance assignment by solid-state NMR based on 1H-detected 13C double-quantum spectroscopy at fast MAS. JOURNAL OF BIOMOLECULAR NMR 2021; 75:417-427. [PMID: 34813018 DOI: 10.1007/s10858-021-00386-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Solid-state NMR spectroscopy is a powerful technique to study insoluble and non-crystalline proteins and protein complexes at atomic resolution. The development of proton (1H) detection at fast magic-angle spinning (MAS) has considerably increased the analytical capabilities of the technique, enabling the acquisition of 1H-detected fingerprint experiments in few hours. Here an approach based on double-quantum (DQ) 13C spectroscopy, detected on 1H, is proposed for fast MAS regime (> 60 kHz) to perform the sequential assignment of insoluble proteins of small size, without any specific deuteration requirement. By combining two three-dimensional 1H detected experiments correlating a 13C DQ dimension respectively to its intra-residue and sequential 15 N-1H pairs, a sequential walk through DQ (Ca + CO) resonance is obtained. The approach takes advantage of fast MAS to achieve an efficient sensitivity and the addition of a DQ dimension provides spectral features useful for the resonance assignment process.
Collapse
Affiliation(s)
- Alons Lends
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France.
| | - Mélanie Berbon
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France
| | - Birgit Habenstein
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France
| | - Yusuke Nishiyama
- RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa, 230-0045, Japan.
- JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo, 196-8558, Japan.
| | - Antoine Loquet
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France.
| |
Collapse
|
4
|
Siemer AB. Advances in studying protein disorder with solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 106:101643. [PMID: 31972419 PMCID: PMC7202078 DOI: 10.1016/j.ssnmr.2020.101643] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 05/26/2023]
Abstract
Solution NMR is a key tool to study intrinsically disordered proteins (IDPs), whose importance for biological function is widely accepted. However, disordered proteins are not limited to solution and are also found in non-soluble systems such as fibrils and membrane proteins. In this Trends article, I will discuss how solid-state NMR can be used to study disorder in non-soluble proteins. Techniques based on dipolar couplings can study static protein disorder which either occurs naturally as e.g. in spider silk or can be induced by freeze trapping IDPs or unfolded proteins. In this case, structural ensembles are directly reflected by a static distribution of dihedral angels that can be determined by the distribution of chemical shifts or other methods. Techniques based on J-couplings can detect dynamic protein disorder under MAS. In this case, only average chemical shifts are measured but disorder can be characterized with a variety of data including secondary chemical shifts, relaxation rates, paramagnetic relaxation enhancements, or residual dipolar couplings. I describe both technical aspects and examples of solid-state NMR on protein disorder and end the article with a discussion of challenges and opportunities of this emerging field.
Collapse
Affiliation(s)
- Ansgar B Siemer
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Univeristy of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90033, USA.
| |
Collapse
|
5
|
Manjrekar J, Shah H. Protein-based inheritance. Semin Cell Dev Biol 2019; 97:138-155. [PMID: 31344459 DOI: 10.1016/j.semcdb.2019.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/08/2019] [Indexed: 01/17/2023]
Abstract
Epigenetic mechanisms of inheritance have come to occupy a prominent place in our understanding of living systems, primarily eukaryotes. There has been considerable and lively discussion of the possible evolutionary significance of transgenerational epigenetic inheritance. One particular type of epigenetic inheritance that has not figured much in general discussions is that based on conformational changes in proteins, where proteins with altered conformations can act as templates to propagate their own structure. An increasing number of such proteins - prions and prion-like - are being discovered. Phenotypes due to the structurally altered proteins are transmitted along with their structures. This review discusses the properties and implications of "classical" amyloid-forming prions, as well as the broader class of proteins with intrinsically disordered domains, which are proving to have fascinating properties that appear to play important roles in cell organisation and function, especially during stress responses.
Collapse
Affiliation(s)
- Johannes Manjrekar
- Microbiology Department and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India.
| | - Hiral Shah
- Microbiology Department and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| |
Collapse
|
6
|
Roberts EK, Wong KM, Lee EJ, Le MM, Patel DM, Paravastu AK. Post-assembly α-helix to β-sheet structural transformation within SAF-p1/p2a peptide nanofibers. SOFT MATTER 2018; 14:8986-8996. [PMID: 30375627 DOI: 10.1039/c8sm01754a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report an unanticipated helix-to-sheet structural transformation within an assembly of SAF-p1 and SAF-p2a designer peptides. Solid-state NMR spectroscopic data support the assembled structure that was targeted by rational peptide design: an α-helical coiled-coil co-assembly of both peptides. Subsequent to assembly, however, the system converts to a β-sheet structure that continues to exhibit nearest-neighbor interactions between the two peptide components. The structural transition occurs at pH 7.4 and exhibits strongly temperature-dependent kinetics between room temperature (weeks) and 40 °C (minutes). We further observed evidence of reversibility on the timescale of months at 4 °C. The structural conversion from the anticipated structure to an unexpected structure highlights an important aspect to the challenge of designing peptide assemblies. Furthermore, the conformational switching mechanism mediated by a prerequisite α-helical nanostructure represents a previously unknown route for β-sheet designer peptide assembly.
Collapse
Affiliation(s)
- Evan K Roberts
- Department of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Matlahov I, van der Wel PCA. Hidden motions and motion-induced invisibility: Dynamics-based spectral editing in solid-state NMR. Methods 2018; 148:123-135. [PMID: 29702226 DOI: 10.1016/j.ymeth.2018.04.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/05/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022] Open
Abstract
Solid-state nuclear magnetic resonance (ssNMR) spectroscopy enables the structural characterization of a diverse array of biological assemblies that include amyloid fibrils, non-amyloid aggregates, membrane-associated proteins and viral capsids. Such biological samples feature functionally relevant molecular dynamics, which often affect different parts of the sample in different ways. Solid-state NMR experiments' sensitivity to dynamics represents a double-edged sword. On the one hand, it offers a chance to measure dynamics in great detail. On the other hand, certain types of motion lead to signal loss and experimental inefficiencies that at first glance interfere with the application of ssNMR to overly dynamic proteins. Dynamics-based spectral editing (DYSE) ssNMR methods leverage motion-dependent signal losses to simplify spectra and enable the study of sub-structures with particular motional properties.
Collapse
Affiliation(s)
- Irina Matlahov
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15213, USA
| | - Patrick C A van der Wel
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15213, USA; Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
8
|
Tolchard J, Pandey MK, Berbon M, Noubhani A, Saupe SJ, Nishiyama Y, Habenstein B, Loquet A. Detection of side-chain proton resonances of fully protonated biosolids in nano-litre volumes by magic angle spinning solid-state NMR. JOURNAL OF BIOMOLECULAR NMR 2018; 70:177-185. [PMID: 29502224 DOI: 10.1007/s10858-018-0168-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
We present a new solid-state NMR proton-detected three-dimensional experiment dedicated to the observation of protein proton side chain resonances in nano-liter volumes. The experiment takes advantage of very fast magic angle spinning and double quantum 13C-13C transfer to establish efficient (H)CCH correlations detected on side chain protons. Our approach is demonstrated on the HET-s prion domain in its functional amyloid fibrillar form, fully protonated, with a sample amount of less than 500 µg using a MAS frequency of 70 kHz. The majority of aliphatic and aromatic side chain protons (70%) are observable, in addition to Hα resonances, in a single experiment providing a complementary approach to the established proton-detected amide-based multidimensional solid-state NMR experiments for the study and resonance assignment of biosolid samples, in particular for aromatic side chain resonances.
Collapse
Affiliation(s)
- James Tolchard
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600, Pessac, France
| | - Manoj Kumar Pandey
- JEOL RESONANCE Inc., Musashino, Akishima, Tokyo, 196-8558, Japan
- RIKEN CLST-JEOL Collaboration Center, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, India
| | - Mélanie Berbon
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600, Pessac, France
| | - Abdelmajid Noubhani
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600, Pessac, France
| | - Sven J Saupe
- Institut de Biochimie et de Génétique Cellulaire, (UMR 5095 IBGC), CNRS, Université Bordeaux, 33077, Bordeaux, France
| | - Yusuke Nishiyama
- JEOL RESONANCE Inc., Musashino, Akishima, Tokyo, 196-8558, Japan.
- RIKEN CLST-JEOL Collaboration Center, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600, Pessac, France.
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600, Pessac, France.
| |
Collapse
|
9
|
Abstract
Biomolecular solid-state NMR experiments have traditionally been collected through detection of 13C or 15N nuclei. Since these nuclei have relatively low sensitivity stemming from their smaller gyromagnetic ratios relative to 1H, the time required to collect multi-dimensional datasets serves as a limitation to resonance assignment and structure determination. One improvement in the field has been to employ simultaneous or parallel acquisition techniques with the goal of acquiring more than one dataset at a time and therefore speeding up the overall data collection process. Central to these experiments is the cross-polarization (CP) element, which serves as a way to transfer magnetization between nuclei via magnetic dipolar couplings. In this chapter, we show how residual signal remaining after CP is a polarization source that can be used to acquire additional datasets. The setup of this class of experiments, referred to as Afterglow spectroscopy, is described and demonstrated using a membrane protein transporter involved in multidrug resistance.
Collapse
Affiliation(s)
- Gili Abramov
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Nathaniel J Traaseth
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA.
| |
Collapse
|
10
|
Wickner RB, Kryndushkin D, Shewmaker F, McGlinchey R, Edskes HK. Study of Amyloids Using Yeast. Methods Mol Biol 2018; 1779:313-339. [PMID: 29886541 PMCID: PMC7337124 DOI: 10.1007/978-1-4939-7816-8_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We detail some of the genetic, biochemical, and physical methods useful in studying amyloids in yeast, particularly the yeast prions. These methods include cytoduction (cytoplasmic mixing), infection of cells with prion amyloids, use of green fluorescent protein fusions with amyloid-forming proteins for cytology, protein purification and amyloid formation, and electron microscopy of filaments.
Collapse
Affiliation(s)
- Reed B. Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes Digestive and Kidney Diseases, National Insititutes of Health, Bethesda, MD 20892-0830
| | - Dmitry Kryndushkin
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes Digestive and Kidney Diseases, National Insititutes of Health, Bethesda, MD 20892-0830,Dept. of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Frank Shewmaker
- Dept. of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Ryan McGlinchey
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes Digestive and Kidney Diseases, National Insititutes of Health, Bethesda, MD 20892-0830
| | - Herman K. Edskes
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes Digestive and Kidney Diseases, National Insititutes of Health, Bethesda, MD 20892-0830
| |
Collapse
|
11
|
Smith AA, Ravotti F, Testori E, Cadalbert R, Ernst M, Böckmann A, Meier BH. Partially-deuterated samples of HET-s(218-289) fibrils: assignment and deuterium isotope effect. JOURNAL OF BIOMOLECULAR NMR 2017; 67:109-119. [PMID: 28074361 DOI: 10.1007/s10858-016-0087-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/25/2016] [Indexed: 05/26/2023]
Abstract
Fast magic-angle spinning and partial sample deuteration allows direct detection of 1H in solid-state NMR, yielding significant gains in mass sensitivity. In order to further analyze the spectra, 1H detection requires assignment of the 1H resonances. In this work, resonance assignments of backbone HN and Hα are presented for HET-s(218-289) fibrils, based on the existing assignment of Cα, Cβ, C', and N resonances. The samples used are partially deuterated for higher spectral resolution, and the shifts in resonance frequencies of Cα and Cβ due to the deuterium isotope effect are investigated. It is shown that the deuterium isotope effect can be estimated and used for assigning resonances of deuterated samples in solid-state NMR, based on known resonances of the protonated protein.
Collapse
Affiliation(s)
- Albert A Smith
- ETH Zürich, Physical Chemistry, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Francesco Ravotti
- ETH Zürich, Physical Chemistry, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Emilie Testori
- ETH Zürich, Physical Chemistry, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Riccardo Cadalbert
- ETH Zürich, Physical Chemistry, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Matthias Ernst
- ETH Zürich, Physical Chemistry, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland.
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367, Lyon, France.
| | - Beat H Meier
- ETH Zürich, Physical Chemistry, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland.
| |
Collapse
|
12
|
Smith AA. INFOS: spectrum fitting software for NMR analysis. JOURNAL OF BIOMOLECULAR NMR 2017; 67:77-94. [PMID: 28160196 DOI: 10.1007/s10858-016-0085-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
Abstract
Software for fitting of NMR spectra in MATLAB is presented. Spectra are fitted in the frequency domain, using Fourier transformed lineshapes, which are derived using the experimental acquisition and processing parameters. This yields more accurate fits compared to common fitting methods that use Lorentzian or Gaussian functions. Furthermore, a very time-efficient algorithm for calculating and fitting spectra has been developed. The software also performs initial peak picking, followed by subsequent fitting and refinement of the peak list, by iteratively adding and removing peaks to improve the overall fit. Estimation of error on fitting parameters is performed using a Monte-Carlo approach. Many fitting options allow the software to be flexible enough for a wide array of applications, while still being straightforward to set up with minimal user input.
Collapse
Affiliation(s)
- Albert A Smith
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| |
Collapse
|
13
|
Zhang Z, Chen Y, Yang J. Band-selective heteronuclear dipolar recoupling with dual back-to-back pulses in rotating solids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 272:46-52. [PMID: 27623242 DOI: 10.1016/j.jmr.2016.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 06/06/2023]
Abstract
We propose a robust band-selective heteronuclear 15N-13C recoupling method using dual back-to-back (BABA) pulses (DBP). It contains four 90° pulses in each rotor period and corresponding phase cycling on each channel (13C and 15N). DBP aims at rapid band-selective heteronuclear magnetization transfer between 15N and 13Cα/13C', whose efficiency is close to that of the well-known SPECIFIC CP in membrane proteins with relatively short relaxation time in rotating frame (T1ρ). Compared to SPECIFIC CP, DBP is very simple to set up and highly robust to RF variations. Thus, it can reduce the efforts in experimental optimization, especially for low-sensitive samples, and is very suitable for long-time or quantitative experiments. The efficacy of DBP is demonstrated by the E. coli diacylglycerol kinase (DAGK) proteoliposome. We anticipate that DBP would be useful for (segments of) membrane proteins that undergo the μs-ms timescale motions in magic-angle spinning (MAS) solid-state NMR.
Collapse
Affiliation(s)
- Zhengfeng Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Yanke Chen
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China.
| |
Collapse
|
14
|
A synthetic redox biofilm made from metalloprotein–prion domain chimera nanowires. Nat Chem 2016; 9:157-163. [DOI: 10.1038/nchem.2616] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/16/2016] [Indexed: 11/08/2022]
|
15
|
Smith AA, Testori E, Cadalbert R, Meier BH, Ernst M. Characterization of fibril dynamics on three timescales by solid-state NMR. JOURNAL OF BIOMOLECULAR NMR 2016; 65:171-191. [PMID: 27423891 DOI: 10.1007/s10858-016-0047-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/08/2016] [Indexed: 05/26/2023]
Abstract
A multi-timescale analysis of the backbone dynamics of HET-s (218-289) fibrils is described based on multiple site-specific R 1 and R 1ρ data sets and S (2) measurements via REDOR for most backbone (15)N and (13)Cα nuclei. (15)N and (13)Cα data are fitted with motions at three timescales. Slow motion is found, indicating a global fibril motion. We further investigate the effect of (13)C-(13)C transfer in measurement of (13)Cα R 1. Finally, we show that it is necessary to go beyond the Redfield approximation for slow motions in order to obtain accurate numerical values for R 1ρ.
Collapse
Affiliation(s)
- Albert A Smith
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Emilie Testori
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Riccardo Cadalbert
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Beat H Meier
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| | - Matthias Ernst
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| |
Collapse
|
16
|
Habenstein B, Loquet A. Solid-state NMR: An emerging technique in structural biology of self-assemblies. Biophys Chem 2016; 210:14-26. [DOI: 10.1016/j.bpc.2015.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022]
|
17
|
Wickner RB, Kelly AC. Prions are affected by evolution at two levels. Cell Mol Life Sci 2016; 73:1131-44. [PMID: 26713322 PMCID: PMC4762734 DOI: 10.1007/s00018-015-2109-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 12/30/2022]
Abstract
Prions, infectious proteins, can transmit diseases or be the basis of heritable traits (or both), mostly based on amyloid forms of the prion protein. A single protein sequence can be the basis for many prion strains/variants, with different biological properties based on different amyloid conformations, each rather stably propagating. Prions are unique in that evolution and selection work at both the level of the chromosomal gene encoding the protein, and on the prion itself selecting prion variants. Here, we summarize what is known about the evolution of prion proteins, both the genes and the prions themselves. We contrast the one known functional prion, [Het-s] of Podospora anserina, with the known disease prions, the yeast prions [PSI+] and [URE3] and the transmissible spongiform encephalopathies of mammals.
Collapse
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8, Room 225, 8 Center Drive MSC 0830, Bethesda, MD, 20892-0830, USA.
| | - Amy C Kelly
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8, Room 225, 8 Center Drive MSC 0830, Bethesda, MD, 20892-0830, USA.
- NCAUR, Agricultural Research Service, U.S. Department of Agriculture, 1815 N. University St., Peoria, IL, 61604, USA.
| |
Collapse
|
18
|
Espargaró A, Busquets MA, Estelrich J, Sabate R. Amyloids in solid-state nuclear magnetic resonance: potential causes of the usually low resolution. Int J Nanomedicine 2015; 10:6975-83. [PMID: 26635473 PMCID: PMC4646584 DOI: 10.2147/ijn.s89385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Amyloids are non-crystalline and insoluble, which imply that the classical structural biology tools, ie, X-ray crystallography and solution nuclear magnetic resonance (NMR), are not suitable for their analysis. In the last years, solid-state NMR (ssNMR) has emerged as an alternative tool to decrypt the structural signatures of amyloid fibrils, providing major contributions to our understanding of molecular structures of amyloids such as β-amyloid peptide associated with Alzheimer’s disease or fungal prions, among others. Despite this, the wide majority of amyloid fibrils display low resolution by ssNMR. Usually, this low resolution has been attributed to a high disorder or polymorphism of the fibrils, suggesting the existence of diverse elementary β-sheet structures. Here, we propose that a single β-sheet structure could be responsible for the broadening of the line widths in the ssNMR spectra. Although the fibrils and fibers consist of a single elementary structure, the angle of twist of each individual fibril in the mature fiber depends on the number of individual fibrils as well as the fibril arrangement in the final mature fiber. Thus, a wide range of angles of twist could be observed in the same amyloid sample. These twist variations involve changes in amino acid alignments that could be enough to limit the ssNMR resolution.
Collapse
Affiliation(s)
- Alba Espargaró
- Department of Physical Chemistry, School of Pharmacy, Institute of Nanoscience and Nanotechnology (IN UB), University of Barcelona, Barcelona, Spain
| | - Maria Antònia Busquets
- Department of Physical Chemistry, School of Pharmacy, Institute of Nanoscience and Nanotechnology (IN UB), University of Barcelona, Barcelona, Spain
| | - Joan Estelrich
- Department of Physical Chemistry, School of Pharmacy, Institute of Nanoscience and Nanotechnology (IN UB), University of Barcelona, Barcelona, Spain
| | - Raimon Sabate
- Department of Physical Chemistry, School of Pharmacy, Institute of Nanoscience and Nanotechnology (IN UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Abstract
A prion is an infectious protein horizontally transmitting a disease or trait without a required nucleic acid. Yeast and fungal prions are nonchromosomal genes composed of protein, generally an altered form of a protein that catalyzes the same alteration of the protein. Yeast prions are thus transmitted both vertically (as genes composed of protein) and horizontally (as infectious proteins, or prions). Formation of amyloids (linear ordered β-sheet-rich protein aggregates with β-strands perpendicular to the long axis of the filament) underlies most yeast and fungal prions, and a single prion protein can have any of several distinct self-propagating amyloid forms with different biological properties (prion variants). Here we review the mechanism of faithful templating of protein conformation, the biological roles of these prions, and their interactions with cellular chaperones, the Btn2 and Cur1 aggregate-handling systems, and other cellular factors governing prion generation and propagation. Human amyloidoses include the PrP-based prion conditions and many other, more common amyloid-based diseases, several of which show prion-like features. Yeast prions increasingly are serving as models for the understanding and treatment of many mammalian amyloidoses. Patients with different clinical pictures of the same amyloidosis may be the equivalent of yeasts with different prion variants.
Collapse
|
20
|
Tycko R. On the problem of resonance assignments in solid state NMR of uniformly ¹⁵N,¹³C-labeled proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:166-172. [PMID: 25797013 PMCID: PMC4371143 DOI: 10.1016/j.jmr.2015.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/05/2015] [Accepted: 02/08/2015] [Indexed: 05/31/2023]
Abstract
Determination of accurate resonance assignments from multidimensional chemical shift correlation spectra is one of the major problems in biomolecular solid state NMR, particularly for relative large proteins with less-than-ideal NMR linewidths. This article investigates the difficulty of resonance assignment, using a computational Monte Carlo/simulated annealing (MCSA) algorithm to search for assignments from artificial three-dimensional spectra that are constructed from the reported isotropic (15)N and (13)C chemical shifts of two proteins whose structures have been determined by solution NMR methods. The results demonstrate how assignment simulations can provide new insights into factors that affect the assignment process, which can then help guide the design of experimental strategies. Specifically, simulations are performed for the catalytic domain of SrtC (147 residues, primarily β-sheet secondary structure) and the N-terminal domain of MLKL (166 residues, primarily α-helical secondary structure). Assuming unambiguous residue-type assignments and four ideal three-dimensional data sets (NCACX, NCOCX, CONCA, and CANCA), uncertainties in chemical shifts must be less than 0.4 ppm for assignments for SrtC to be unique, and less than 0.2 ppm for MLKL. Eliminating CANCA data has no significant effect, but additionally eliminating CONCA data leads to more stringent requirements for chemical shift precision. Introducing moderate ambiguities in residue-type assignments does not have a significant effect.
Collapse
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| |
Collapse
|
21
|
Abstract
A prion is an infectious protein horizontally transmitting a disease or trait without a required nucleic acid. Yeast and fungal prions are nonchromosomal genes composed of protein, generally an altered form of a protein that catalyzes the same alteration of the protein. Yeast prions are thus transmitted both vertically (as genes composed of protein) and horizontally (as infectious proteins, or prions). Formation of amyloids (linear ordered β-sheet-rich protein aggregates with β-strands perpendicular to the long axis of the filament) underlies most yeast and fungal prions, and a single prion protein can have any of several distinct self-propagating amyloid forms with different biological properties (prion variants). Here we review the mechanism of faithful templating of protein conformation, the biological roles of these prions, and their interactions with cellular chaperones, the Btn2 and Cur1 aggregate-handling systems, and other cellular factors governing prion generation and propagation. Human amyloidoses include the PrP-based prion conditions and many other, more common amyloid-based diseases, several of which show prion-like features. Yeast prions increasingly are serving as models for the understanding and treatment of many mammalian amyloidoses. Patients with different clinical pictures of the same amyloidosis may be the equivalent of yeasts with different prion variants.
Collapse
|
22
|
Wan W, Bian W, McDonald M, Kijac A, Wemmer DE, Stubbs G. Heterogeneous seeding of a prion structure by a generic amyloid form of the fungal prion-forming domain HET-s(218-289). J Biol Chem 2013; 288:29604-12. [PMID: 23986444 DOI: 10.1074/jbc.m113.505511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fungal prion-forming domain HET-s(218-289) forms infectious amyloid fibrils at physiological pH that were shown by solid-state NMR to be assemblies of a two-rung β-solenoid structure. Under acidic conditions, HET-s(218-289) has been shown to form amyloid fibrils that have very low infectivity in vivo, but structural information about these fibrils has been very limited. We show by x-ray fiber diffraction that the HET-s(218-289) fibrils formed under acidic conditions have a stacked β-sheet architecture commonly found in short amyloidogenic peptides and denatured protein aggregates. At physiological pH, stacked β-sheet fibrils nucleate the formation of the infectious β-solenoid prions in a process of heterogeneous seeding, but do so with kinetic profiles distinct from those of spontaneous or homogeneous (seeded with infectious β-solenoid fibrils) fibrillization. Several serial passages of stacked β-sheet-seeded solutions lead to fibrillization kinetics similar to homogeneously seeded solutions. Our results directly show that structural mutation can occur between substantially different amyloid architectures, lending credence to the suggestion that the processes of strain adaptation and crossing species barriers are facilitated by structural mutation.
Collapse
Affiliation(s)
- William Wan
- From the Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235-1634
| | | | | | | | | | | |
Collapse
|
23
|
Chevelkov V, Shi C, Fasshuber HK, Becker S, Lange A. Efficient band-selective homonuclear CO-CA cross-polarization in protonated proteins. JOURNAL OF BIOMOLECULAR NMR 2013; 56:303-11. [PMID: 23925478 DOI: 10.1007/s10858-013-9767-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/30/2013] [Indexed: 05/10/2023]
Abstract
Previously introduced for highly deuterated proteins, band-selective magnetization transfer between CO and CA spins by dipolar-based homonuclear cross polarization is applied here to a protonated protein. Robust and efficient recoupling is achieved when the sum of effective radio-frequency fields on CO and CA resonances equals two times the spinning rate, yielding up to 33% of magnetization transfer efficiency in protonated ubiquitin. The approach is designed for moderate magic-angle spinning rates and high external magnetic fields when the isotropic chemical shift difference of CO and CA considerably exceeds the spinning rate. This method has been implemented in NiCOi-1CAi-1 and CAi(Ni)COi-1CAi-1 two-dimensional interresidual correlation experiments for fast and efficient resonance assignment of ubiquitin by solid-state NMR spectroscopy.
Collapse
|
24
|
Schmidt E, Gath J, Habenstein B, Ravotti F, Székely K, Huber M, Buchner L, Böckmann A, Meier BH, Güntert P. Automated solid-state NMR resonance assignment of protein microcrystals and amyloids. JOURNAL OF BIOMOLECULAR NMR 2013; 56:243-54. [PMID: 23689812 DOI: 10.1007/s10858-013-9742-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/06/2013] [Indexed: 05/26/2023]
Abstract
Solid-state NMR is an emerging structure determination technique for crystalline and non-crystalline protein assemblies, e.g., amyloids. Resonance assignment constitutes the first and often very time-consuming step to a structure. We present ssFLYA, a generally applicable algorithm for automatic assignment of protein solid-state NMR spectra. Application to microcrystals of ubiquitin and the Ure2 prion C-terminal domain, as well as amyloids of HET-s(218-289) and α-synuclein yielded 88-97 % correctness for the backbone and side-chain assignments that are classified as self-consistent by the algorithm, and 77-90 % correctness if also assignments classified as tentative by the algorithm are included.
Collapse
Affiliation(s)
- Elena Schmidt
- Center for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Emwas AHM, Al-Talla ZA, Guo X, Al-Ghamdi S, Al-Masri HT. Utilizing NMR and EPR spectroscopy to probe the role of copper in prion diseases. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2013; 51:255-268. [PMID: 23436479 DOI: 10.1002/mrc.3936] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 12/19/2012] [Accepted: 01/11/2013] [Indexed: 06/01/2023]
Abstract
Copper is an essential nutrient for the normal development of the brain and nervous system, although the hallmark of several neurological diseases is a change in copper concentrations in the brain and central nervous system. Prion protein (PrP) is a copper-binding, cell-surface glycoprotein that exists in two alternatively folded conformations: a normal isoform (PrP(C)) and a disease-associated isoform (PrP(Sc)). Prion diseases are a group of lethal neurodegenerative disorders that develop as a result of conformational conversion of PrP(C) into PrP(Sc). The pathogenic mechanism that triggers this conformational transformation with the subsequent development of prion diseases remains unclear. It has, however, been shown repeatedly that copper plays a significant functional role in the conformational conversion of prion proteins. In this review, we focus on current research that seeks to clarify the conformational changes associated with prion diseases and the role of copper in this mechanism, with emphasis on the latest applications of NMR and EPR spectroscopy to probe the interactions of copper with prion proteins.
Collapse
Affiliation(s)
- Abdul-Hamid M Emwas
- NMR Core Lab, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | | | | | | | | |
Collapse
|
26
|
Seuring C, Greenwald J, Wasmer C, Wepf R, Saupe SJ, Meier BH, Riek R. The mechanism of toxicity in HET-S/HET-s prion incompatibility. PLoS Biol 2012; 10:e1001451. [PMID: 23300377 PMCID: PMC3531502 DOI: 10.1371/journal.pbio.1001451] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 11/05/2012] [Indexed: 12/20/2022] Open
Abstract
The HET-s protein from the filamentous fungus Podospora anserina is a prion involved in a cell death reaction termed heterokaryon incompatibility. This reaction is observed at the point of contact between two genetically distinct strains when one harbors a HET-s prion (in the form of amyloid aggregates) and the other expresses a soluble HET-S protein (96% identical to HET-s). How the HET-s prion interaction with HET-S brings about cell death remains unknown; however, it was recently shown that this interaction leads to a relocalization of HET-S from the cytoplasm to the cell periphery and that this change is associated with cell death. Here, we present detailed insights into this mechanism in which a non-toxic HET-s prion converts a soluble HET-S protein into an integral membrane protein that destabilizes membranes. We observed liposomal membrane defects of approximately 10 up to 60 nm in size in transmission electron microscopy images of freeze-fractured proteoliposomes that were formed in mixtures of HET-S and HET-s amyloids. In liposome leakage assays, HET-S has an innate ability to associate with and disrupt lipid membranes and that this activity is greatly enhanced when HET-S is exposed to HET-s amyloids. Solid-state nuclear magnetic resonance (NMR) analyses revealed that HET-s induces the prion-forming domain of HET-S to adopt the β-solenoid fold (previously observed in HET-s) and this change disrupts the globular HeLo domain. These data indicate that upon interaction with a HET-s prion, the HET-S HeLo domain partially unfolds, thereby exposing a previously buried ∼34-residue N-terminal transmembrane segment. The liberation of this segment targets HET-S to the membrane where it further oligomerizes, leading to a loss of membrane integrity. HET-S thus appears to display features that are reminiscent of pore-forming toxins.
Collapse
Affiliation(s)
- Carolin Seuring
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Jason Greenwald
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Christian Wasmer
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Roger Wepf
- Electron Microscopy ETH Zurich (EMEZ), Zürich, Switzerland
| | - Sven J. Saupe
- Laboratoire de Génétique Moléculaire des Champignons, Institut de Biochimie et Génétique Cellulaires, UMR-5095 CNRS/Université de Bordeaux 2, Bordeaux, France
| | - Beat H. Meier
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
27
|
Gardiennet C, Schütz AK, Hunkeler A, Kunert B, Terradot L, Böckmann A, Meier BH. Hochaufgelöste Festkörper-NMR-Spektren einer sedimentierten, nichtkristallinen dodekameren Helicase (59 kDa). Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200779] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Gardiennet C, Schütz AK, Hunkeler A, Kunert B, Terradot L, Böckmann A, Meier BH. A Sedimented Sample of a 59 kDa Dodecameric Helicase Yields High-Resolution Solid-State NMR Spectra. Angew Chem Int Ed Engl 2012; 51:7855-8. [DOI: 10.1002/anie.201200779] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 04/10/2012] [Indexed: 11/10/2022]
|
29
|
Abstract
We detail some of the genetic, biochemical, and physical methods useful in studying amyloids in yeast, particularly the yeast prions. These methods include cytoduction (cytoplasmic mixing), infection of cells with prion amyloids, use of green fluorescent protein fusions with amyloid-forming proteins for cytology, protein purification and amyloid formation, and electron microscopy of filaments.
Collapse
|
30
|
Morag O, Abramov G, Goldbourt A. Similarities and Differences within Members of the Ff Family of Filamentous Bacteriophage Viruses. J Phys Chem B 2011; 115:15370-9. [DOI: 10.1021/jp2079742] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Omry Morag
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | - Gili Abramov
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | - Amir Goldbourt
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| |
Collapse
|
31
|
Sergeyev IV, Day LA, Goldbourt A, McDermott AE. Chemical shifts for the unusual DNA structure in Pf1 bacteriophage from dynamic-nuclear-polarization-enhanced solid-state NMR spectroscopy. J Am Chem Soc 2011; 133:20208-17. [PMID: 21854063 DOI: 10.1021/ja2043062] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Solid-state NMR spectra, including dynamic nuclear polarization enhanced 400 MHz spectra acquired at 100 K, as well as non-DNP spectra at a variety of field strengths and at temperatures in the range 213-243 K, have allowed the assignment of the (13)C and (15)N resonances of the unusual DNA structure in the Pf1 virion. The (13)C chemical shifts of C3' and C5', considered to be key reporters of deoxyribose conformation, fall near or beyond the edges of their respective ranges in available databases. The (13)C and (15)N chemical shifts of the DNA bases have above-average values for AC4, AC5, CC5, TC2, and TC5, and below average values for AC8, GC8, and GN2, pointing to an absence of Watson-Crick hydrogen bonding, yet the presence of some type of aromatic ring interaction. Crosspeaks between Tyr40 of the coat protein and several DNA atoms suggest that Tyr40 is involved in this ring interaction. In addition, these crosspeak resonances and several deoxyribose resonances are multiply split, presumably through the effects of ordered but differing interactions between capsid protein subunits and each type of nucleotide in each of the two DNA strands. Overall, these observations characterize and support the DNA model proposed by Liu and Day and refined by Tsuboi et al., which calls for the most highly stretched and twisted naturally occurring DNA yet encountered.
Collapse
Affiliation(s)
- Ivan V Sergeyev
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | | | | | | |
Collapse
|
32
|
Habenstein B, Wasmer C, Bousset L, Sourigues Y, Schütz A, Loquet A, Meier BH, Melki R, Böckmann A. Extensive de novo solid-state NMR assignments of the 33 kDa C-terminal domain of the Ure2 prion. JOURNAL OF BIOMOLECULAR NMR 2011; 51:235-243. [PMID: 21805376 DOI: 10.1007/s10858-011-9530-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 07/11/2011] [Indexed: 05/31/2023]
Abstract
We present the de novo resonance assignments for the crystalline 33 kDa C-terminal domain of the Ure2 prion using an optimized set of five 3D solid-state NMR spectra. We obtained, using a single uniformly (13)C, (15)N labeled protein sample, sequential chemical-shift information for 74% of the N, Cα, Cβ triples, and for 80% of further side-chain resonances for these spin systems. We describe the procedures and protocols devised, and discuss possibilities and limitations of the assignment of this largest protein assigned today by solid-state NMR, and for which no solution-state NMR shifts were available. A comparison of the NMR chemical shifts with crystallographic data reveals that regions with high crystallographic B-factors are particularly difficult to assign. While the secondary structure elements derived from the chemical shift data correspond mainly to those present in the X-ray crystal structure, we detect an additional helical element and structural variability in the protein crystal, most probably originating from the different molecules in the asymmetric unit, with the observation of doubled resonances in several parts, including entire stretches, of the protein. Our results provide the point of departure towards an atomic-resolution structural analysis of the C-terminal Ure2p domain in the context of the full-length prion fibrils.
Collapse
Affiliation(s)
- Birgit Habenstein
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS/Université de Lyon 1, 7 passage du Vercors, 69367 Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hu KN, Qiang W, Tycko R. A general Monte Carlo/simulated annealing algorithm for resonance assignment in NMR of uniformly labeled biopolymers. JOURNAL OF BIOMOLECULAR NMR 2011; 50:267-76. [PMID: 21710190 PMCID: PMC3199575 DOI: 10.1007/s10858-011-9517-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/09/2011] [Indexed: 05/05/2023]
Abstract
We describe a general computational approach to site-specific resonance assignments in multidimensional NMR studies of uniformly (15)N,(13)C-labeled biopolymers, based on a simple Monte Carlo/simulated annealing (MCSA) algorithm contained in the program MCASSIGN2. Input to MCASSIGN2 includes lists of multidimensional signals in the NMR spectra with their possible residue-type assignments (which need not be unique), the biopolymer sequence, and a table that describes the connections that relate one signal list to another. As output, MCASSIGN2 produces a high-scoring sequential assignment of the multidimensional signals, using a score function that rewards good connections (i.e., agreement between relevant sets of chemical shifts in different signal lists) and penalizes bad connections, unassigned signals, and assignment gaps. Examination of a set of high-scoring assignments from a large number of independent runs allows one to determine whether a unique assignment exists for the entire sequence or parts thereof. We demonstrate the MCSA algorithm using two-dimensional (2D) and three-dimensional (3D) solid state NMR spectra of several model protein samples (α-spectrin SH3 domain and protein G/B1 microcrystals, HET-s(218-289) fibrils), obtained with magic-angle spinning and standard polarization transfer techniques. The MCSA algorithm and MCASSIGN2 program can accommodate arbitrary combinations of NMR spectra with arbitrary dimensionality, and can therefore be applied in many areas of solid state and solution NMR.
Collapse
Affiliation(s)
- Kan-Nian Hu
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | | | | |
Collapse
|
34
|
Herbst C, Herbst J, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R. Chemical shift correlation at high MAS frequencies employing low-power symmetry-based mixing schemes. JOURNAL OF BIOMOLECULAR NMR 2011; 50:277-284. [PMID: 21674236 DOI: 10.1007/s10858-011-9516-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/11/2011] [Indexed: 05/30/2023]
Abstract
An approach for conveniently implementing low-power CN ( n ) (ν) and RN ( n ) (ν) symmetry-based band-selective mixing sequences for generating homo- and heteronuclear chemical shift correlation NMR spectra of low γ nuclei in biological solids is demonstrated. Efficient magnetisation transfer characteristics are achieved by selecting appropriate symmetries requiring the application of basic RF elements of relatively long duration and numerically tailoring the RF field modulation profile of the basic element. The efficacy of the approach is experimentally shown by the acquisition of (15)N-(13)C dipolar and (13)C-(13)C scalar and dipolar coupling mediated chemical shift correlation spectra at representative MAS frequencies.
Collapse
|
35
|
Shewmaker F, McGlinchey RP, Wickner RB. Structural insights into functional and pathological amyloid. J Biol Chem 2011; 286:16533-40. [PMID: 21454545 PMCID: PMC3089495 DOI: 10.1074/jbc.r111.227108] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloid is traditionally viewed as a consequence of protein misfolding and aggregation and is most notorious for its association with debilitating and chronic human diseases. However, a growing list of examples of "functional amyloid" challenges this bad reputation and indicates that many organisms can employ the biophysical properties of amyloid for their benefit. Because of developments in the structural studies of amyloid, a clearer picture is emerging about what defines amyloid structure and the properties that unite functional and pathological amyloids. Here, we review various amyloids and place them within the framework of the latest structural models.
Collapse
Affiliation(s)
- Frank Shewmaker
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA.
| | | | | |
Collapse
|
36
|
Wickner RB, Edskes HK, Kryndushkin D, McGlinchey R, Bateman D, Kelly A. Prion diseases of yeast: amyloid structure and biology. Semin Cell Dev Biol 2011; 22:469-75. [PMID: 21345375 DOI: 10.1016/j.semcdb.2011.02.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 02/11/2011] [Accepted: 02/14/2011] [Indexed: 12/11/2022]
Abstract
Prion "variants" or "strains" are prions with the identical protein sequence, but different characteristics of the prion infection: e.g. different incubation periods for scrapie strains or different phenotype intensities for yeast prion variants. We have shown that infectious amyloids of the yeast prions [PSI+], [URE3] and [PIN+] each have an in-register parallel β-sheet architecture. Moreover, we have pointed out that this amyloid architecture can explain how one protein can faithfully transmit any of several conformations to new protein monomers. This explains how proteins can be genes.
Collapse
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, United States.
| | | | | | | | | | | |
Collapse
|
37
|
Saupe SJ. The [Het-s] prion of Podospora anserina and its role in heterokaryon incompatibility. Semin Cell Dev Biol 2011; 22:460-8. [PMID: 21334447 DOI: 10.1016/j.semcdb.2011.02.019] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 02/10/2011] [Indexed: 11/29/2022]
Abstract
[Het-s] is a prion from the filamentous fungus Podospora anserina and corresponds to a self-perpetuating amyloid aggregate of the HET-s protein. This prion protein is involved in a fungal self/non-self discrimination process termed heterokaryon incompatibility corresponding to a cell death reaction occurring upon fusion of genetically unlike strains. Two antagonistic allelic variants of this protein exist: HET-s, the prion form of which corresponds to [Het-s] and HET-S, incapable of prion formation. Fusion of a [Het-s] and HET-S strain triggers the incompatibility reaction, so that interaction of HET-S with the [Het-s] prion leads to cell death. HET-s and HET-S are highly homologous two domain proteins with a N-terminal globular domain termed HeLo and a C-terminal unstructured prion forming domain (PFD). The structure of the prion form of the HET-s PFD has been solved by solid state NMR and corresponds to a very well ordered β-solenoid fold with a triangular hydrophobic core. The ability to form this β-solenoid fold is retained in a distant homolog of HET-s from another fungal species. A model for the mechanism of [Het-s]/HET-S incompatibility has been proposed. It is believe that when interacting with the [Het-s] prion seed, the HET-S C-terminal region adopts the β-solenoid fold. This would act as a conformational switch to induce refolding and activation of the HeLo domain which then would exert its toxicity by a yet unknown mechanism.
Collapse
Affiliation(s)
- Sven J Saupe
- Non-self recognition in fungi, Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS-Université de Bordeaux 2, 1 rue Camille St Saens, Bordeaux cedex, France.
| |
Collapse
|
38
|
Van Melckebeke H, Wasmer C, Lange A, Ab E, Loquet A, Böckmann A, Meier BH. Atomic-resolution three-dimensional structure of HET-s(218-289) amyloid fibrils by solid-state NMR spectroscopy. J Am Chem Soc 2011; 132:13765-75. [PMID: 20828131 DOI: 10.1021/ja104213j] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We present a strategy to solve the high-resolution structure of amyloid fibrils by solid-state NMR and use it to determine the atomic-resolution structure of the prion domain of the fungal prion HET-s in its amyloid form. On the basis of 134 unambiguous distance restraints, we recently showed that HET-s(218-289) in its fibrillar state forms a left-handed β-solenoid, and an atomic-resolution NMR structure of the triangular core was determined from unambiguous restraints only. In this paper, we go considerably further and present a comprehensive protocol using six differently labeled samples, a collection of optimized solid-state NMR experiments, and adapted structure calculation protocols. The high-resolution structure obtained includes the less ordered but biologically important C-terminal part and improves the overall accuracy by including a large number of ambiguous distance restraints.
Collapse
Affiliation(s)
- Hélène Van Melckebeke
- Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
39
|
Van Melckebeke H, Schanda P, Gath J, Wasmer C, Verel R, Lange A, Meier BH, Böckmann A. Probing Water Accessibility in HET-s(218–289) Amyloid Fibrils by Solid-State NMR. J Mol Biol 2011; 405:765-72. [DOI: 10.1016/j.jmb.2010.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/28/2010] [Accepted: 11/01/2010] [Indexed: 11/29/2022]
|
40
|
Abstract
Current interest in amyloid fibrils stems from their involvement in neurodegenerative and other diseases and from their role as an alternative structural state for many peptides and proteins. Solid-state nuclear magnetic resonance (NMR) methods have the unique capability of providing detailed structural constraints for amyloid fibrils, sufficient for the development of full molecular models. In this article, recent progress in the application of solid-state NMR to fibrils associated with Alzheimer's disease, prion fibrils, and related systems is reviewed, along with relevant developments in solid-state NMR techniques and technology.
Collapse
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA.
| |
Collapse
|
41
|
Huang KY, Siemer AB, McDermott AE. Homonuclear mixing sequences for perdeuterated proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 208:122-7. [PMID: 21094063 PMCID: PMC3021637 DOI: 10.1016/j.jmr.2010.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/18/2010] [Accepted: 10/21/2010] [Indexed: 05/08/2023]
Abstract
We tested the performance of several (13)C homonuclear mixing sequences on perdeuterated microcrystalline ubiquitin. All sequences were applied without (1)H decoupling and at relatively low MAS frequencies. We found that RFDR gave the highest overall transfer efficiency and that DREAM performs surprisingly well under these conditions being twice as efficient in the aliphatic region of the spectrum than the other mixing sequences tested.
Collapse
Affiliation(s)
- Kuo-Ying Huang
- Department of Chemistry MC3113, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Ansgar B. Siemer
- Department of Chemistry MC3113, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Ann E. McDermott
- Department of Chemistry MC3113, Columbia University, 3000 Broadway, New York, NY 10027, USA
| |
Collapse
|
42
|
Chan JCC. Solid-state NMR techniques for the structural determination of amyloid fibrils. Top Curr Chem (Cham) 2011; 306:47-88. [PMID: 21630137 DOI: 10.1007/128_2011_154] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This review discusses the solid-state NMR techniques developed for the study of amyloid fibrils. Literature up to the end of 2010 has been surveyed and the materials are organized according to five categories, viz. homonuclear dipolar recoupling and polarization transfer via J-coupling, heteronuclear dipolar recoupling, correlation spectroscopy, recoupling of chemical shift anisotropy, and tensor correlation. Our emphasis is on the NMR techniques and their practical aspects. The biological implications of the results obtained for amyloid fibrils are only briefly discussed. Our main objective is to showcase the power of NMR in the study of biological unoriented solids.
Collapse
Affiliation(s)
- Jerry C C Chan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
43
|
Bayro MJ, Maly T, Birkett NR, MacPhee CE, Dobson CM, Griffin RG. High-resolution MAS NMR analysis of PI3-SH3 amyloid fibrils: backbone conformation and implications for protofilament assembly and structure . Biochemistry 2010; 49:7474-84. [PMID: 20707313 PMCID: PMC2932965 DOI: 10.1021/bi100864t] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The SH3 domain of the PI3 kinase (PI3-SH3 or PI3K-SH3) readily aggregates into fibrils in vitro and has served as an important model system in the investigation of the molecular properties and mechanism of formation of amyloid fibrils. We describe the molecular conformation of PI3-SH3 in amyloid fibril form as revealed by magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy. The MAS NMR spectra of these fibrils display excellent resolution, with narrow (13)C and (15)N line widths, representing a high degree of structural order and the absence of extensive molecular motion for the majority of the polypeptide chain. We have identified the spin systems of 82 of the 86 residues in the protein and obtained sequential resonance assignments for 75 of them. Chemical shift analysis indicates that the protein subunits making up the fibril adopt a compact conformation consisting of four well-defined beta-sheet regions and four random-coil elements with varying degrees of local dynamics or disorder. The backbone conformation of PI3-SH3 in fibril form differs significantly from that of the native state of the protein, both in secondary structure and in the location of dynamic or disordered segments. The site-specific MAS NMR analysis of PI3-SH3 fibrils we report here is compared with previously published mechanistic and structural data, resulting in a detailed interpretation of the factors that mediate fibril formation by PI3-SH3 and allowing us to propose a possible model of the core structure of the fibrils. Our results confirm the structural similarities between PI3-SH3 fibrils and amyloid assemblies directly related to degenerative and infectious diseases.
Collapse
Affiliation(s)
- Marvin J. Bayro
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Thorsten Maly
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Neil R. Birkett
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Cait E. MacPhee
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ, UK
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Robert G. Griffin
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
44
|
Chen B, Tycko R. Structural and dynamical characterization of tubular HIV-1 capsid protein assemblies by solid state nuclear magnetic resonance and electron microscopy. Protein Sci 2010; 19:716-30. [PMID: 20095046 DOI: 10.1002/pro.348] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The wild-type HIV-1 capsid protein (CA) self-assembles in vitro into tubular structures at high ionic strength. We report solid state nuclear magnetic resonance (NMR) and electron microscopy measurements on these tubular CA assemblies, which are believed to contain a triangular lattice of hexameric CA proteins that is similar or identical to the lattice of capsids in intact HIV-1. Mass-per-length values of CA assemblies determined by dark-field transmission electron microscopy indicate a variety of structures, ranging from single-wall tubes to multiwall tubes that approximate solid rods. Two-dimensional (2D) solid state (13)C--(13)C and (15)N--(13)C NMR spectra of uniformly (15)N,(13)C-labeled CA assemblies are highly congested, as expected for a 25.6 kDa protein in which nearly the entire amino acid sequence is immobilized. Solid state NMR spectra of partially labeled CA assemblies, expressed in 1,3-(13)C(2)-glycerol medium, are better resolved, allowing the identification of individual signals with line widths below 1 ppm. Comparison of crosspeak patterns in the experimental 2D spectra with simulated patterns based on solution NMR chemical shifts of the individual N-terminal (NTD) and C-terminal (CTD) domains indicates that NTD and CTD retain their individual structures upon self-assembly of full-length CA into tubes. 2D (1)H-(13)C NMR spectra of CA assemblies recorded under solution NMR conditions show relatively few signals, primarily from segments that link the alpha-helices of NTD and CTD and from the N- and C-terminal ends. Taken together, the data support the idea that CA assemblies contain a highly ordered 2D protein lattice in which the NTD and CTD structures are retained and largely immobilized.
Collapse
Affiliation(s)
- Bo Chen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | | |
Collapse
|
45
|
Structural Similarity between the Prion Domain of HET-s and a Homologue Can Explain Amyloid Cross-Seeding in Spite of Limited Sequence Identity. J Mol Biol 2010; 402:311-25. [DOI: 10.1016/j.jmb.2010.06.053] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/22/2010] [Accepted: 06/26/2010] [Indexed: 11/19/2022]
|
46
|
Miller Y, Ma B, Nussinov R. Polymorphism in Alzheimer Abeta amyloid organization reflects conformational selection in a rugged energy landscape. Chem Rev 2010; 110:4820-38. [PMID: 20402519 PMCID: PMC2920034 DOI: 10.1021/cr900377t] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Indexed: 01/13/2023]
Affiliation(s)
| | | | - Ruth Nussinov
- To whom correspondence should be addressed. Tel.: (301) 846-5579. Fax: (301) 846-5598. E-mail:
| |
Collapse
|
47
|
Tycko R, Hu KN. A Monte Carlo/simulated annealing algorithm for sequential resonance assignment in solid state NMR of uniformly labeled proteins with magic-angle spinning. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 205:304-14. [PMID: 20547467 PMCID: PMC2902575 DOI: 10.1016/j.jmr.2010.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/19/2010] [Accepted: 05/21/2010] [Indexed: 05/05/2023]
Abstract
We describe a computational approach to sequential resonance assignment in solid state NMR studies of uniformly (15)N,(13)C-labeled proteins with magic-angle spinning. As input, the algorithm uses only the protein sequence and lists of (15)N/(13)C(alpha) crosspeaks from 2D NCACX and NCOCX spectra that include possible residue-type assignments of each crosspeak. Assignment of crosspeaks to specific residues is carried out by a Monte Carlo/simulated annealing algorithm, implemented in the program MC_ASSIGN1. The algorithm tolerates substantial ambiguity in residue-type assignments and coexistence of visible and invisible segments in the protein sequence. We use MC_ASSIGN1 and our own 2D spectra to replicate and extend the sequential assignments for uniformly-labeled HET-s(218-289) fibrils previously determined manually by Siemer et al. (J. Biomol. NMR, 34 (2006) 75-87) from a more extensive set of 2D and 3D spectra. Accurate assignments by MC_ASSIGN1 do not require data that are of exceptionally high quality. Use of MC_ASSIGN1 (and its extensions to other types of 2D and 3D data) is likely to alleviate many of the difficulties and uncertainties associated with manual resonance assignments in solid state NMR studies of uniformly labeled proteins, where spectral resolution and signal-to-noise are often sub-optimal.
Collapse
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| | | |
Collapse
|
48
|
Schuetz A, Wasmer C, Habenstein B, Verel R, Greenwald J, Riek R, Böckmann A, Meier BH. Protocols for the Sequential Solid-State NMR Spectroscopic Assignment of a Uniformly Labeled 25 kDa Protein: HET-s(1-227). Chembiochem 2010; 11:1543-51. [DOI: 10.1002/cbic.201000124] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Herbst C, Herbst J, Carella M, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R. Broadband 15N-13C dipolar recoupling via symmetry-based RF pulse schemes at high MAS frequencies. JOURNAL OF BIOMOLECULAR NMR 2010; 47:7-17. [PMID: 20306117 DOI: 10.1007/s10858-010-9406-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 02/23/2010] [Indexed: 05/29/2023]
Abstract
An approach for generating efficient NR(vS, vk)(n) symmetry-based dual channel RF pulse schemes for gamma-encoded broadband (15)N-(13)C dipolar recoupling at high magic angle spinning frequencies is presented. The method involves the numerical optimisation of the RF phase-modulation profile of the basic "R" element so as to obtain heteronuclear double quantum dipolar recoupling sequences with satisfactory magnetisation transfer characteristics. The basic "R" element was implemented as a sandwich of a small number of short pulses of equal duration with each pulse characterised by a RF phase and amplitude values. The performance characteristics of the sequences were evaluated via numerical simulations and (15)N-(13)C chemical shift correlation experiments. Employing such (13)C-(15)N double-quantum recoupling sequences and the multiple receiver capabilities available in the current generation of NMR spectrometers, the possibility to simultaneously acquire 3D NCC and CNH chemical shift correlation spectra is also demonstrated.
Collapse
Affiliation(s)
- Christian Herbst
- Research Group Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research, Fritz Lipmann Institute, 07745, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The prion hypothesis states that the prion and non-prion form of a protein differ only in their 3D conformation and that different strains of a prion differ by their 3D structure. Recent technical developments have enabled solid-state NMR to address the atomic-resolution structures of full-length prions, and a first comparative study of two of them, HET-s and Ure2p, in fibrillar form, has recently appeared as a pair of companion papers. Interestingly, the two structures are rather different: HET-s features an exceedingly well-ordered prion domain and a partially disordered globular domain. Ure2p in contrast features a very well ordered globular domain with a conserved fold, and-most probably-a partially ordered prion domain. For HET-s, the structure of the prion domain is characterized at atomic-resolution. For Ure2p, structure determination is under way, but the highly resolved spectra clearly show that information at atomic resolution should be achievable.
Collapse
Affiliation(s)
- Anja Böckmann
- IBCP UMR 5086 CNRS/Université de Lyon, Lyon, France.
| | | |
Collapse
|