1
|
Giraud A, Imbert L, Favier A, Henot F, Duffieux F, Samson C, Frances O, Crublet E, Boisbouvier J. Enabling site-specific NMR investigations of therapeutic Fab using a cell-free based isotopic labeling approach: application to anti-LAMP1 Fab. JOURNAL OF BIOMOLECULAR NMR 2024; 78:73-86. [PMID: 38546905 DOI: 10.1007/s10858-023-00433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/22/2023] [Indexed: 06/15/2024]
Abstract
Monoclonal antibodies (mAbs) are biotherapeutics that have achieved outstanding success in treating many life-threatening and chronic diseases. The recognition of an antigen is mediated by the fragment antigen binding (Fab) regions composed by four different disulfide bridge-linked immunoglobulin domains. NMR is a powerful method to assess the integrity, the structure and interaction of Fabs, but site specific analysis has been so far hampered by the size of the Fabs and the lack of approaches to produce isotopically labeled samples. We proposed here an efficient in vitro method to produce [15N, 13C, 2H]-labeled Fabs enabling high resolution NMR investigations of these powerful therapeutics. As an open system, the cell-free expression mode enables fine-tuned control of the redox potential in presence of disulfide bond isomerase to enhance the formation of native disulfide bonds. Moreover, inhibition of transaminases in the S30 cell-free extract offers the opportunity to produce perdeuterated Fab samples directly in 1H2O medium, without the need for a time-consuming and inefficient refolding process. This specific protocol was applied to produce an optimally labeled sample of a therapeutic Fab, enabling the sequential assignment of 1HN, 15N, 13C', 13Cα, 13Cβ resonances of a full-length Fab. 90% of the backbone resonances of a Fab domain directed against the human LAMP1 glycoprotein were assigned successfully, opening new opportunities to study, at atomic resolution, Fabs' higher order structures, dynamics and interactions, using solution-state NMR.
Collapse
Affiliation(s)
- Arthur Giraud
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044, Grenoble, France
- Sanofi Research & Development, 94403, Vitry-sur-Seine, France
- NMR-Bio, 5 place Robert Schuman, 38025, Grenoble, France
| | - Lionel Imbert
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044, Grenoble, France
| | - Adrien Favier
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044, Grenoble, France
| | - Faustine Henot
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044, Grenoble, France
- Sanofi Research & Development, 94403, Vitry-sur-Seine, France
| | | | - Camille Samson
- Sanofi Research & Development, 94403, Vitry-sur-Seine, France
| | - Oriane Frances
- Sanofi Research & Development, 94403, Vitry-sur-Seine, France.
| | - Elodie Crublet
- NMR-Bio, 5 place Robert Schuman, 38025, Grenoble, France.
| | - Jérôme Boisbouvier
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044, Grenoble, France.
| |
Collapse
|
2
|
Ben‐Ishay Y, Barak Y, Feintuch A, Ouari O, Pierro A, Mileo E, Su X, Goldfarb D. Exploring the dynamics and structure of PpiB in living Escherichia coli cells using electron paramagnetic resonance spectroscopy. Protein Sci 2024; 33:e4903. [PMID: 38358137 PMCID: PMC10868451 DOI: 10.1002/pro.4903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
The combined effects of the cellular environment on proteins led to the definition of a fifth level of protein structural organization termed quinary structure. To explore the implication of potential quinary structure for globular proteins, we studied the dynamics and conformations of Escherichia coli (E. coli) peptidyl-prolyl cis/trans isomerase B (PpiB) in E. coli cells. PpiB plays a major role in maturation and regulation of folded proteins by catalyzing the cis/trans isomerization of the proline imidic peptide bond. We applied electron paramagnetic resonance (EPR) techniques, utilizing both Gadolinium (Gd(III)) and nitroxide spin labels. In addition to using standard spin labeling approaches with genetically engineered cysteines, we incorporated an unnatural amino acid to achieve Gd(III)-nitroxide orthogonal labeling. We probed PpiB's residue-specific dynamics by X-band continuous wave EPR at ambient temperatures and its structure by double electron-electron resonance (DEER) on frozen samples. PpiB was delivered to E. coli cells by electroporation. We report a significant decrease in the dynamics induced by the cellular environment for two chosen labeling positions. These changes could not be reproduced by adding crowding agents and cell extracts. Concomitantly, we report a broadening of the distance distribution in E. coli, determined by Gd(III)-Gd(III) DEER measurements, as compared with solution and human HeLa cells. This suggests an increase in the number of PpiB conformations present in E. coli cells, possibly due to interactions with other cell components, which also contributes to the reduction in mobility and suggests the presence of a quinary structure.
Collapse
Affiliation(s)
- Yasmin Ben‐Ishay
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
| | - Yoav Barak
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| | - Akiva Feintuch
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
| | - Olivier Ouari
- CNRS, ICR, Institut de Chimie RadicalaireAix‐Marseille UniversitéMarseilleFrance
| | - Annalisa Pierro
- CNRS, BIP, Laboratoire de Bioénergétique et Ingénierie des ProtéinesAix Marseille UniversitéMarseilleFrance
- Present address:
Konstanz Research School Chemical Biology, Department of ChemistryUniversity of KonstanzKonstanzGermany
| | - Elisabetta Mileo
- CNRS, BIP, Laboratoire de Bioénergétique et Ingénierie des ProtéinesAix Marseille UniversitéMarseilleFrance
| | - Xun‐Cheng Su
- State Key Laboratory of Elemento‐organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular RecognitionCollege of Chemistry, Nankai UniversityTianjinChina
| | - Daniella Goldfarb
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
3
|
Levin R, Löhr F, Karakoc B, Lichtenecker R, Dötsch V, Bernhard F. E. coli "Stablelabel" S30 lysate for optimized cell-free NMR sample preparation. JOURNAL OF BIOMOLECULAR NMR 2023; 77:131-147. [PMID: 37311907 PMCID: PMC10406690 DOI: 10.1007/s10858-023-00417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/10/2023] [Indexed: 06/15/2023]
Abstract
Cell-free (CF) synthesis with highly productive E. coli lysates is a convenient method to produce labeled proteins for NMR studies. Despite reduced metabolic activity in CF lysates, a certain scrambling of supplied isotope labels is still notable. Most problematic are conversions of 15N labels of the amino acids L-Asp, L-Asn, L-Gln, L-Glu and L-Ala, resulting in ambiguous NMR signals as well as in label dilution. Specific inhibitor cocktails suppress most undesired conversion reactions, while limited availability and potential side effects on CF system productivity need to be considered. As alternative route to address NMR label conversion in CF systems, we describe the generation of optimized E. coli lysates with reduced amino acid scrambling activity. Our strategy is based on the proteome blueprint of standardized CF S30 lysates of the E. coli strain A19. Identified lysate enzymes with suspected amino acid scrambling activity were eliminated by engineering corresponding single and cumulative chromosomal mutations in A19. CF lysates prepared from the mutants were analyzed for their CF protein synthesis efficiency and for residual scrambling activity. The A19 derivative "Stablelabel" containing the cumulative mutations asnA, ansA/B, glnA, aspC and ilvE yielded the most useful CF S30 lysates. We demonstrate the optimized NMR spectral complexity of selectively labeled proteins CF synthesized in "Stablelabel" lysates. By taking advantage of ilvE deletion in "Stablelabel", we further exemplify a new strategy for methyl group specific labeling of membrane proteins with the proton pump proteorhodopsin.
Collapse
Affiliation(s)
- Roman Levin
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Betül Karakoc
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Roman Lichtenecker
- Institute of Organic Chemistry, University of Vienna, 1090 Vienna, Austria
- MAG-LAB, 1030 Vienna, Austria
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| |
Collapse
|
4
|
Van Raad D, Otting G, Huber T. Cell-free synthesis of proteins with selectively 13C-labelled methyl groups from inexpensive precursors. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:187-197. [PMID: 37904855 PMCID: PMC10583297 DOI: 10.5194/mr-4-187-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/30/2023] [Indexed: 11/01/2023]
Abstract
The novel eCell system maintains the activity of the entire repertoire of metabolic Escherichia coli enzymes in cell-free protein synthesis. We show that this can be harnessed to produce proteins with selectively 13 C-labelled amino acids from inexpensive 13 C-labelled precursors. The system is demonstrated with selective 13 C labelling of methyl groups in the proteins ubiquitin and peptidyl-prolyl cis-trans isomerase B. Starting from 3-13 C-pyruvate, 13 C-HSQC cross-peaks are obtained devoid of one-bond 13 C-13 C scalar couplings. Starting from 2-13 C-methyl-acetolactate, single methyl groups of valine and leucine are labelled. Labelling efficiencies are 70 % or higher, and the method allows us to produce perdeuterated proteins with protonated methyl groups in a residue-selective manner. The system uses the isotope-labelled precursors sparingly and is readily scalable.
Collapse
Affiliation(s)
- Damian Van Raad
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Innovations in Peptide & Protein
Science, Research School of Chemistry, Australian National University,
Canberra, ACT 2601, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
5
|
Imbert L, Lenoir-Capello R, Crublet E, Vallet A, Awad R, Ayala I, Juillan-Binard C, Mayerhofer H, Kerfah R, Gans P, Miclet E, Boisbouvier J. In Vitro Production of Perdeuterated Proteins in H 2O for Biomolecular NMR Studies. Methods Mol Biol 2021; 2199:127-149. [PMID: 33125648 DOI: 10.1007/978-1-0716-0892-0_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The cell-free synthesis is an efficient strategy to produce in large scale protein samples for structural investigations. In vitro synthesis allows for significant reduction of production time, simplification of purification steps and enables production of both soluble and membrane proteins. The cell-free reaction is an open system and can be performed in presence of many additives such as cofactors, inhibitors, redox systems, chaperones, detergents, lipids, nanodisks, and surfactants to allow for the expression of toxic membrane proteins or intrinsically disordered proteins. In this chapter we present protocols to prepare E. coli S30 cellular extracts, T7 RNA polymerase, and their use for in vitro protein expression. Optimizations of the protocol are presented for preparation of protein samples enriched in deuterium, a prerequisite for the study of high-molecular-weight proteins by NMR spectroscopy. An efficient production of perdeuterated proteins is achieved together with a full protonation of all the amide NMR probes, without suffering from residual protonation on aliphatic carbons. Application to the production of the 468 kDa TET2 protein assembly for NMR investigations is presented.
Collapse
Affiliation(s)
- Lionel Imbert
- CNRS, CEA, Institut de Biologie Structurale (IBS), University of Grenoble Alpes, Grenoble, France
- CNRS, CEA, EMBL, Integrated Structural Biology Grenoble (ISBG), University of Grenoble Alpes, Grenoble, France
| | - Rachel Lenoir-Capello
- CNRS, Laboratoire des biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, Paris, France
| | | | - Alicia Vallet
- CNRS, CEA, Institut de Biologie Structurale (IBS), University of Grenoble Alpes, Grenoble, France
| | - Rida Awad
- CNRS, CEA, Institut de Biologie Structurale (IBS), University of Grenoble Alpes, Grenoble, France
| | - Isabel Ayala
- CNRS, CEA, Institut de Biologie Structurale (IBS), University of Grenoble Alpes, Grenoble, France
| | - Celine Juillan-Binard
- CNRS, CEA, Institut de Biologie Structurale (IBS), University of Grenoble Alpes, Grenoble, France
- CNRS, CEA, EMBL, Integrated Structural Biology Grenoble (ISBG), University of Grenoble Alpes, Grenoble, France
| | - Hubert Mayerhofer
- CNRS, CEA, Institut de Biologie Structurale (IBS), University of Grenoble Alpes, Grenoble, France
| | | | - Pierre Gans
- CNRS, CEA, Institut de Biologie Structurale (IBS), University of Grenoble Alpes, Grenoble, France
| | - Emeric Miclet
- CNRS, Laboratoire des biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, Paris, France
| | - Jerome Boisbouvier
- CNRS, CEA, Institut de Biologie Structurale (IBS), University of Grenoble Alpes, Grenoble, France.
| |
Collapse
|
6
|
Kögler LM, Stichel J, Kaiser A, Beck-Sickinger AG. Cell-Free Expression and Photo-Crosslinking of the Human Neuropeptide Y 2 Receptor. Front Pharmacol 2019; 10:176. [PMID: 30881304 PMCID: PMC6405639 DOI: 10.3389/fphar.2019.00176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/11/2019] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent a large family of different proteins, which are involved in physiological processes throughout the entire body. Furthermore, they represent important drug targets. For rational drug design, it is important to get further insights into the binding mode of endogenous ligands as well as of therapeutic agents at the respective target receptors. However, structural investigations usually require homogenous, solubilized and functional receptors, which is still challenging. Cell-free expression methods have emerged in the last years and many different proteins are successfully expressed, including hydrophobic membrane proteins like GPCRs. In this work, an Escherichia coli based cell-free expression system was used to express the neuropeptide Y2 receptor (Y2R) for structural investigations. This GPCR was expressed in two different variants, a C-terminal enhanced green fluorescent fusion protein and a cysteine deficient variant. In order to obtain soluble receptors, the expression was performed in the presence of mild detergents, either Brij-35 or Brij-58, which led to high amounts of soluble receptor. Furthermore, the influence of temperature, pH value and additives on protein expression and solubilization was tested. For functional and structural investigations, the receptors were expressed at 37°C, pH 7.4 in the presence of 1 mM oxidized and 5 mM reduced glutathione. The expressed receptors were purified by ligand affinity chromatography and functionality of Y2R_cysteine_deficient was verified by a homogenous binding assay. Finally, photo-crosslinking studies were performed between cell-free expressed Y2R_cysteine_deficient and a neuropeptide Y (NPY) analog bearing the photoactive, unnatural amino acid p-benzoyl-phenylalanine at position 27 and biotin at position 22 for purification. After enzymatic digestion, fragments of crosslinked receptor were identified by mass spectrometry. Our findings demonstrate that, in contrast to Y1R, NPY position 27 remains flexible when bound to Y2R. These results are in agreement with the suggested binding mode of NPY at Y2R.
Collapse
Affiliation(s)
- Lisa Maria Kögler
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Jan Stichel
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Anette Kaiser
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | | |
Collapse
|
7
|
Sugiki T, Furuita K, Fujiwara T, Kojima C. Amino Acid Selective 13C Labeling and 13C Scrambling Profile Analysis of Protein α and Side-Chain Carbons in Escherichia coli Utilized for Protein Nuclear Magnetic Resonance. Biochemistry 2018; 57:3576-3589. [PMID: 29924600 DOI: 10.1021/acs.biochem.8b00182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amino acid selective isotope labeling is an important nuclear magnetic resonance technique, especially for larger proteins, providing strong bases for the unambiguous resonance assignments and information concerning the structure, dynamics, and intermolecular interactions. Amino acid selective 15N labeling suffers from isotope dilution caused by metabolic interconversion of the amino acids, resulting in isotope scrambling within the target protein. Carbonyl 13C atoms experience less isotope scrambling than the main-chain 15N atoms do. However, little is known about the side-chain 13C atoms. Here, the 13C scrambling profiles of the Cα and side-chain carbons were investigated for 15N scrambling-prone amino acids, such as Leu, Ile, Tyr, Phe, Thr, Val, and Ala. The level of isotope scrambling was substantially lower in 13Cα and 13C side-chain labeling than in 15N labeling. We utilized this reduced scrambling-prone character of 13C as a simple and efficient method for amino acid selective 13C labeling using an Escherichia coli cold-shock expression system and high-cell density fermentation. Using this method, the 13C labeling efficiency was >80% for Leu and Ile, ∼60% for Tyr and Phe, ∼50% for Thr, ∼40% for Val, and 30-40% for Ala. 1H-15N heteronuclear single-quantum coherence signals of the 15N scrambling-prone amino acid were also easily filtered using 15N-{13Cα} spin-echo difference experiments. Our method could be applied to the assignment of the 55 kDa protein.
Collapse
Affiliation(s)
- Toshihiko Sugiki
- Institute for Protein Research , Osaka University , 3-2 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Kyoko Furuita
- Institute for Protein Research , Osaka University , 3-2 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Toshimichi Fujiwara
- Institute for Protein Research , Osaka University , 3-2 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Chojiro Kojima
- Institute for Protein Research , Osaka University , 3-2 Yamadaoka , Suita , Osaka 565-0871 , Japan.,Graduate School of Engineering Science , Yokohama National University , 79-5 Tokiwadai , Hodogaya-ku, Yokohama 240-8501 , Japan
| |
Collapse
|
8
|
Hoffmann B, Löhr F, Laguerre A, Bernhard F, Dötsch V. Protein labeling strategies for liquid-state NMR spectroscopy using cell-free synthesis. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 105:1-22. [PMID: 29548364 DOI: 10.1016/j.pnmrs.2017.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 05/17/2023]
Abstract
Preparation of a protein sample for liquid-state nuclear magnetic resonance (NMR) spectroscopy analysis requires optimization of many parameters. This review describes labeling strategies for obtaining assignments of protein resonances. Particular emphasis is placed on the advantages of cell-free protein production, which enables exclusive labeling of the protein of interest, thereby simplifying downstream processing steps and increasing the availability of different labeling strategies for a target protein. Furthermore, proteins can be synthesized in milligram yields, and the open nature of the cell-free system allows the addition of stabilizers, scrambling inhibitors or hydrophobic solubilization environments directly during the protein synthesis, which is especially beneficial for membrane proteins. Selective amino acid labeling of the protein of interest, the possibility of addressing scrambling issues and avoiding the need for labile amino acid precursors have been key factors in enabling the introduction of new assignment strategies based on different labeling schemes as well as on new pulse sequences. Combinatorial selective labeling methods have been developed to reduce the number of protein samples necessary to achieve a complete backbone assignment. Furthermore, selective labeling helps to decrease spectral overlap and overcome size limitations for solution NMR analysis of larger complexes, oligomers, intrinsically disordered proteins and membrane proteins.
Collapse
Affiliation(s)
- Beate Hoffmann
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Aisha Laguerre
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
9
|
Danmaliki GI, Liu PB, Hwang PM. Stereoselective Deuteration in Aspartate, Asparagine, Lysine, and Methionine Amino Acid Residues Using Fumarate as a Carbon Source for Escherichia coli in D2O. Biochemistry 2017; 56:6015-6029. [DOI: 10.1021/acs.biochem.7b00991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gaddafi I. Danmaliki
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta Canada T6G 2H7
| | - Philip B. Liu
- Department
of Medicine, University of Alberta, Edmonton, Alberta Canada T6G 2R3
| | - Peter M. Hwang
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta Canada T6G 2H7
- Department
of Medicine, University of Alberta, Edmonton, Alberta Canada T6G 2R3
| |
Collapse
|
10
|
Foshag D, Henrich E, Hiller E, Schäfer M, Kerger C, Burger-Kentischer A, Diaz-Moreno I, García-Mauriño SM, Dötsch V, Rupp S, Bernhard F. The E. coli S30 lysate proteome: A prototype for cell-free protein production. N Biotechnol 2017; 40:245-260. [PMID: 28943390 DOI: 10.1016/j.nbt.2017.09.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/28/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
Protein production using processed cell lysates is a core technology in synthetic biology and these systems are excellent to produce difficult toxins or membrane proteins. However, the composition of the central lysate of cell-free systems is still a "black box". Escherichia coli lysates are most productive for cell-free expression, yielding several mgs of protein per ml of reaction. Their preparation implies proteome fractionation, resulting in strongly biased and yet unknown lysate compositions. Many metabolic pathways are expected to be truncated or completely removed. The lack of knowledge of basic cell-free lysate proteomes is a major bottleneck for directed lysate engineering approaches as well as for assay design using non-purified reaction mixtures. This study is starting to close this gap by providing a blueprint of the S30 lysate proteome derived from the commonly used E. coli strain A19. S30 lysates are frequently used for cell-free protein production and represent the basis of most commercial E. coli cell-free expression systems. A fraction of 821 proteins was identified as the core proteome in S30 lysates, representing approximately a quarter of the known E. coli proteome. Its classification into functional groups relevant for transcription/translation, folding, stability and metabolic processes will build the framework for tailored cell-free reactions. As an example, we show that SOS response induction during cultivation results in tuned S30 lysate with better folding capacity, and improved solubility and activity of synthesized proteins. The presented data and protocols can serve as a platform for the generation of customized cell-free systems and product analysis.
Collapse
Affiliation(s)
- Daniel Foshag
- Institute for Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Stuttgart, Germany
| | - Erik Henrich
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Ekkehard Hiller
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Miriam Schäfer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Christian Kerger
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | | | - Irene Diaz-Moreno
- Instituto de Investigaciones Químicas (IIQ) - Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Sofía M García-Mauriño
- Instituto de Investigaciones Químicas (IIQ) - Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Steffen Rupp
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany.
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Hein C, Löhr F, Schwarz D, Dötsch V. Acceleration of protein backbone NMR assignment by combinatorial labeling: Application to a small molecule binding study. Biopolymers 2017; 107. [PMID: 28035667 DOI: 10.1002/bip.23013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 12/21/2022]
Abstract
Selective labeling with stable isotopes has long been recognized as a valuable tool in protein NMR to alleviate signal overlap and sensitivity limitations. In this study, combinatorial 15 N-, 13 Cα -, and 13 C'-selective labeling has been used during the backbone assignment of human cyclophilin D to explore binding of an inhibitor molecule. Using a cell-free expression system, a scheme that involves 15 N, 1-13 C, 2-13 C, fully 15 N/13 C, and unlabeled amino acids was optimized to gain a maximum of assignment information from three samples. This scheme was combined with time-shared triple-resonance NMR experiments, which allows a fast and efficient backbone assignment by giving the unambiguous assignment of unique amino acid pairs in the protein, the identity of ambiguous pairs and information about all 19 non-proline amino acid types. It is therefore well suited for binding studies where de novo assignments of amide 1 H and 15 N resonances need to be obtained, even in cases where sensitivity is the limiting factor.
Collapse
Affiliation(s)
- Christopher Hein
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, 60438, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, 60438, Germany
| | - Daniel Schwarz
- Merck KGaA, Discovery Pharmacology, Global Research and Development, Darmstadt, 64293, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, 60438, Germany
| |
Collapse
|
12
|
Sugiki T, Kobayashi N, Fujiwara T. Modern Technologies of Solution Nuclear Magnetic Resonance Spectroscopy for Three-dimensional Structure Determination of Proteins Open Avenues for Life Scientists. Comput Struct Biotechnol J 2017; 15:328-339. [PMID: 28487762 PMCID: PMC5408130 DOI: 10.1016/j.csbj.2017.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 02/07/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for structural studies of chemical compounds and biomolecules such as DNA and proteins. Since the NMR signal sensitively reflects the chemical environment and the dynamics of a nuclear spin, NMR experiments provide a wealth of structural and dynamic information about the molecule of interest at atomic resolution. In general, structural biology studies using NMR spectroscopy still require a reasonable understanding of the theory behind the technique and experience on how to recorded NMR data. Owing to the remarkable progress in the past decade, we can easily access suitable and popular analytical resources for NMR structure determination of proteins with high accuracy. Here, we describe the practical aspects, workflow and key points of modern NMR techniques used for solution structure determination of proteins. This review should aid NMR specialists aiming to develop new methods that accelerate the structure determination process, and open avenues for non-specialist and life scientists interested in using NMR spectroscopy to solve protein structures.
Collapse
Affiliation(s)
- Toshihiko Sugiki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naohiro Kobayashi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshimichi Fujiwara
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Focke PJ, Hein C, Hoffmann B, Matulef K, Bernhard F, Dötsch V, Valiyaveetil FI. Combining in Vitro Folding with Cell Free Protein Synthesis for Membrane Protein Expression. Biochemistry 2016; 55:4212-9. [PMID: 27384110 DOI: 10.1021/acs.biochem.6b00488] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell free protein synthesis (CFPS) has emerged as a promising methodology for protein expression. While polypeptide production is very reliable and efficient using CFPS, the correct cotranslational folding of membrane proteins during CFPS is still a challenge. In this contribution, we describe a two-step protocol in which the integral membrane protein is initially expressed by CFPS as a precipitate followed by an in vitro folding procedure using lipid vesicles for converting the protein precipitate to the correctly folded protein. We demonstrate the feasibility of using this approach for the K(+) channels KcsA and MVP and the amino acid transporter LeuT. We determine the crystal structure of the KcsA channel obtained by CFPS and in vitro folding to show the structural similarity to the cellular expressed KcsA channel and to establish the feasibility of using this two-step approach for membrane protein production for structural studies. Our studies show that the correct folding of these membrane proteins with complex topologies can take place in vitro without the involvement of the cellular machinery for membrane protein biogenesis. This indicates that the folding instructions for these complex membrane proteins are contained entirely within the protein sequence.
Collapse
Affiliation(s)
- Paul J Focke
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health & Science University , 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Christopher Hein
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University , Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Beate Hoffmann
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University , Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Kimberly Matulef
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health & Science University , 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Frank Bernhard
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University , Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University , Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Francis I Valiyaveetil
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health & Science University , 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239, United States
| |
Collapse
|
14
|
LaGuerre A, Löhr F, Bernhard F, Dötsch V. Labeling of membrane proteins by cell-free expression. Methods Enzymol 2015; 565:367-88. [PMID: 26577739 DOI: 10.1016/bs.mie.2015.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The particular advantage of the cell-free reaction is that it allows a plethora of supplementation during protein expression and offers complete control over the available amino acid pool in view of concentration and composition. In combination with the fast and reliable production efficiencies of cell-free systems, the labeling and subsequent structural evaluation of very challenging targets, such as membrane proteins, comes into focus. We describe current methods for the isotopic labeling of cell-free synthesized membrane proteins and we review techniques available to the practitioner pursuing structural studies by nuclear magnetic resonance spectroscopy. Though isotopic labeling of individual amino acid types appears to be relatively straightforward, an ongoing critical issue in most labeling schemes for structural approaches is the selective substitution of deuterons for protons. While few options are available, the continuous refinement of labeling schemes in combination with improved pulse sequences and optimized instrumentation gives promising perspectives for extended applications in the structural evaluation of cell-free synthesized membrane.
Collapse
Affiliation(s)
- Aisha LaGuerre
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany.
| | - Frank Löhr
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany
| |
Collapse
|
15
|
Quast RB, Mrusek D, Hoffmeister C, Sonnabend A, Kubick S. Cotranslational incorporation of non-standard amino acids using cell-free protein synthesis. FEBS Lett 2015; 589:1703-12. [PMID: 25937125 DOI: 10.1016/j.febslet.2015.04.041] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 11/30/2022]
Abstract
Over the last years protein engineering using non-standard amino acids has gained increasing attention. As a result, improved methods are now available, enabling the efficient and directed cotranslational incorporation of various non-standard amino acids to equip proteins with desired characteristics. In this context, the utilization of cell-free protein synthesis is particularly useful due to the direct accessibility of the translational machinery and synthesized proteins without having to maintain a vital cellular host. We review prominent methods for the incorporation of non-standard amino acids into proteins using cell-free protein synthesis. Furthermore, a list of non-standard amino acids that have been successfully incorporated into proteins in cell-free systems together with selected applications is provided.
Collapse
Affiliation(s)
- Robert B Quast
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Devid Mrusek
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Christian Hoffmeister
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Andrei Sonnabend
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany.
| |
Collapse
|
16
|
Michel E, Allain FHT. Selective Amino Acid Segmental Labeling of Multi-Domain Proteins. Methods Enzymol 2015; 565:389-422. [DOI: 10.1016/bs.mie.2015.05.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Terada T, Yokoyama S. Escherichia coli Cell-Free Protein Synthesis and Isotope Labeling of Mammalian Proteins. Methods Enzymol 2015; 565:311-45. [DOI: 10.1016/bs.mie.2015.08.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Cao C, Chen JL, Yang Y, Huang F, Otting G, Su XC. Selective (15)N-labeling of the side-chain amide groups of asparagine and glutamine for applications in paramagnetic NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2014; 59:251-61. [PMID: 25002097 DOI: 10.1007/s10858-014-9844-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/01/2014] [Indexed: 05/24/2023]
Abstract
The side-chain amide groups of asparagine and glutamine play important roles in stabilizing the structural fold of proteins, participating in hydrogen-bonding networks and protein interactions. Selective (15)N-labeling of side-chain amides, however, can be a challenge due to enzyme-catalyzed exchange of amide groups during protein synthesis. In the present study, we developed an efficient way of selectively labeling the side chains of asparagine, or asparagine and glutamine residues with (15)NH2. Using the biosynthesis pathway of tryptophan, a protocol was also established for simultaneous selective (15)N-labeling of the side-chain NH groups of asparagine, glutamine, and tryptophan. In combination with site-specific tagging of the target protein with a lanthanide ion, we show that selective detection of (15)N-labeled side-chains of asparagine and glutamine allows determination of magnetic susceptibility anisotropy tensors based exclusively on pseudocontact shifts of amide side-chain protons.
Collapse
Affiliation(s)
- Chan Cao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | | | | | | | | | | |
Collapse
|
19
|
Sugiki T, Fujiwara T, Kojima C. Latest approaches for efficient protein production in drug discovery. Expert Opin Drug Discov 2014; 9:1189-204. [PMID: 25046062 DOI: 10.1517/17460441.2014.941801] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Pharmaceutical research looks to discover and develop new compounds which influence the function of disease-associated proteins or respective protein-protein interactions. Various scientific methods are available to discover those compounds, such as high-throughput screening of a library comprising chemical or natural compounds and computational rational drug design. The goal of these methods is to identify the seed compounds of future pharmaceuticals through the use of these technologies and laborious experiments. For every drug discovery effort made, the possession of accurate functional and structural information of the disease-associated proteins helps to assist drug development. Therefore, the investigation of the tertiary structure of disease-associated proteins and respective protein-protein interactions at the atomic level are of crucial importance for successful drug discovery. AREAS COVERED In this review article, the authors broadly outline current techniques utilized for recombinant protein production. In particular, the authors focus on bacterial expression systems using Escherichia coli as the living bioreactor. EXPERT OPINION The recently developed pCold-glutathione S-transferase (GST) system is one of the best systems for soluble protein expression in E. coli. Where the pCold-GST system does not succeed, it is preferable to change the host from E. coli to higher organisms such as yeast expression systems like Pichia pastoris and Kluyveromyces lactis. The selection of an appropriate expression system for each desired protein and the optimization of experimental conditions significantly contribute toward the successful outcome of any drug discovery study.
Collapse
Affiliation(s)
- Toshihiko Sugiki
- Osaka University, Institute for Protein Research , 3-2, Yamadaoka, Suita, Osaka 565-0871 , Japan
| | | | | |
Collapse
|
20
|
de la Cruz L, Chen WN, Graham B, Otting G. Binding mode of the activity-modulating C-terminal segment of NS2B to NS3 in the dengue virus NS2B-NS3 protease. FEBS J 2014; 281:1517-33. [PMID: 24472363 DOI: 10.1111/febs.12729] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/16/2022]
Abstract
The two-component dengue virus NS2B-NS3 protease (NS2B-NS3pro) is an established drug target but inhibitor design is hampered by uncertainties about its 3D structure in solution. Crystal structures reported very different conformations for the functionally important C-terminal segment of the NS2B cofactor (NS2Bc), indicating open and closed conformations in the absence and presence of inhibitors, respectively. An earlier NMR study in solution indicated that a closed state is the preferred conformation in the absence of an artificial linker engineered between NS2B and NS3pro. To obtain direct structural information on the fold of unlinked NS2B-NS3pro in solution, we tagged NS3pro with paramagnetic tags and measured pseudocontact shifts by NMR to position NS2Bc relative to NS3pro. NS2Bc was found to bind to NS3pro in the same way as reported in a previously published model and crystal structure of the closed state. The structure is destabilized, however, by high ionic strength and basic pH, showing the importance of electrostatic forces to tie NS2Bc to NS3pro. Narrow NMR signals previously thought to represent the open state are associated with protein degradation. In conclusion, the closed conformation of the NS2B-NS3 protease is the best model for structure-guided drug design.
Collapse
Affiliation(s)
- Laura de la Cruz
- Research School of Chemistry, Australian National University, Canberra, Australia
| | | | | | | |
Collapse
|
21
|
Rosenblum G, Cooperman BS. Engine out of the chassis: cell-free protein synthesis and its uses. FEBS Lett 2013; 588:261-8. [PMID: 24161673 DOI: 10.1016/j.febslet.2013.10.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 12/15/2022]
Abstract
The translation machinery is the engine of life. Extracting the cytoplasmic milieu from a cell affords a lysate capable of producing proteins in concentrations reaching to tens of micromolar. Such lysates, derivable from a variety of cells, allow the facile addition and subtraction of components that are directly or indirectly related to the translation machinery and/or the over-expressed protein. The flexible nature of such cell-free expression systems, when coupled with high throughput monitoring, can be especially suitable for protein engineering studies, allowing one to bypass multiple steps typically required using conventional in vivo protein expression.
Collapse
Affiliation(s)
- Gabriel Rosenblum
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, United States.
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, United States
| |
Collapse
|
22
|
Bellstedt P, Seiboth T, Häfner S, Kutscha H, Ramachandran R, Görlach M. Resonance assignment for a particularly challenging protein based on systematic unlabeling of amino acids to complement incomplete NMR data sets. JOURNAL OF BIOMOLECULAR NMR 2013; 57:65-72. [PMID: 23943084 DOI: 10.1007/s10858-013-9768-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/03/2013] [Indexed: 06/02/2023]
Abstract
NMR-based structure determination of a protein requires the assignment of resonances as indispensable first step. Even though heteronuclear through-bond correlation methods are available for that purpose, challenging situations arise in cases where the protein in question only yields samples of limited concentration and/or stability. Here we present a strategy based upon specific individual unlabeling of all 20 standard amino acids to complement standard NMR experiments and to achieve unambiguous backbone assignments for the fast precipitating 23 kDa catalytic domain of human aprataxin of which only incomplete standard NMR data sets could be obtained. Together with the validation of this approach utilizing the protein GB1 as a model, a comprehensive insight into metabolic interconversion ("scrambling") of NH and CO groups in a standard Escherichia coli expression host is provided.
Collapse
Affiliation(s)
- Peter Bellstedt
- Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research, Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Maslennikov I, Choe S. Advances in NMR structures of integral membrane proteins. Curr Opin Struct Biol 2013; 23:555-62. [PMID: 23721747 DOI: 10.1016/j.sbi.2013.05.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/26/2013] [Accepted: 05/01/2013] [Indexed: 01/26/2023]
Abstract
Integral membrane proteins (IMPs) play a central role in cell communication with the environment. Their structures are essential for our understanding of the molecular mechanisms of signaling and for drug design, yet they remain badly underrepresented in the protein structure databank. Solution NMR is, aside from X-ray crystallography, the major tool in structural biology. Here we review recently reported solution NMR structures of polytopic IMPs and discuss the new approaches, which were developed in the course of these studies to overcome barriers in the field. Advances in cell-free protein expression, combinatorial isotope labeling, resonance assignment, and collection of structural data greatly accelerated IMP structure determination by solution NMR. In addition, novel membrane-mimicking media made possible determination of solution NMR structures of IMPs in a native-like lipid environment.
Collapse
|
24
|
Ozawa K, Horan NP, Robinson A, Yagi H, Hill FR, Jergic S, Xu ZQ, Loscha KV, Li N, Tehei M, Oakley AJ, Otting G, Huber T, Dixon NE. Proofreading exonuclease on a tether: the complex between the E. coli DNA polymerase III subunits α, epsilon, θ and β reveals a highly flexible arrangement of the proofreading domain. Nucleic Acids Res 2013; 41:5354-67. [PMID: 23580545 PMCID: PMC3664792 DOI: 10.1093/nar/gkt162] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 11/24/2022] Open
Abstract
A complex of the three (αεθ) core subunits and the β2 sliding clamp is responsible for DNA synthesis by Pol III, the Escherichia coli chromosomal DNA replicase. The 1.7 Å crystal structure of a complex between the PHP domain of α (polymerase) and the C-terminal segment of ε (proofreading exonuclease) subunits shows that ε is attached to α at a site far from the polymerase active site. Both α and ε contain clamp-binding motifs (CBMs) that interact simultaneously with β2 in the polymerization mode of DNA replication by Pol III. Strengthening of both CBMs enables isolation of stable αεθ:β2 complexes. Nuclear magnetic resonance experiments with reconstituted αεθ:β2 demonstrate retention of high mobility of a segment of 22 residues in the linker that connects the exonuclease domain of ε with its α-binding segment. In spite of this, small-angle X-ray scattering data show that the isolated complex with strengthened CBMs has a compact, but still flexible, structure. Photo-crosslinking with p-benzoyl-L-phenylalanine incorporated at different sites in the α-PHP domain confirm the conformational variability of the tether. Structural models of the αεθ:β2 replicase complex with primer-template DNA combine all available structural data.
Collapse
Affiliation(s)
- Kiyoshi Ozawa
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Nicholas P. Horan
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Andrew Robinson
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Hiromasa Yagi
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Flynn R. Hill
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Slobodan Jergic
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Zhi-Qiang Xu
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Karin V. Loscha
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Nan Li
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Moeava Tehei
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Aaron J. Oakley
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Gottfried Otting
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Thomas Huber
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Nicholas E. Dixon
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
25
|
Bernhard F, Tozawa Y. Cell-free expression--making a mark. Curr Opin Struct Biol 2013; 23:374-80. [PMID: 23628286 DOI: 10.1016/j.sbi.2013.03.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/26/2013] [Accepted: 03/29/2013] [Indexed: 11/27/2022]
Abstract
Cell-free protein production opens new perspectives for the direct manipulation of expression compartments in combination with reduced complexity of physiological requirements. The technology is therefore in particular suitable for the general synthesis of difficult proteins including toxins and membrane proteins as well as for the analysis of their functional folding in artificial environments. A further key application of cell-free expression is the fast and economic labeling of proteins for structural and functional applications. Two extract sources, wheat embryos and Escherichia coli cells, are currently employed for the preparative scale cell-free production of proteins. Recent achievements in structural characterization include cell-free synthesized membrane proteins and even larger protein assemblies may become feasible.
Collapse
Affiliation(s)
- Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany.
| | | |
Collapse
|
26
|
Whittaker JW. Cell-free protein synthesis: the state of the art. Biotechnol Lett 2013; 35:143-52. [PMID: 23086573 PMCID: PMC3553302 DOI: 10.1007/s10529-012-1075-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
Abstract
Cell-free protein synthesis harnesses the synthetic power of biology, programming the ribosomal translational machinery of the cell to create macromolecular products. Like PCR, which uses cellular replication machinery to create a DNA amplifier, cell-free protein synthesis is emerging as a transformative technology with broad applications in protein engineering, biopharmaceutical development, and post-genomic research. By breaking free from the constraints of cell-based systems, it takes the next step towards synthetic biology. Recent advances in reconstituted cell-free protein synthesis (Protein synthesis Using Recombinant Elements expression systems) are creating new opportunities to tailor the reactions for specialized applications including in vitro protein evolution, printing protein microarrays, isotopic labeling, and incorporating nonnatural amino acids.
Collapse
Affiliation(s)
- James W Whittaker
- Division of Environmental and Biomolecular Systems, Institute for Environmental Health, Oregon Health and Science University, 20000 N.W. Walker Road, Beaverton, OR 97006-8921, USA.
| |
Collapse
|
27
|
Michel E, Skrisovska L, Wüthrich K, Allain FHT. Amino Acid-Selective Segmental Isotope Labeling of Multidomain Proteins for Structural Biology. Chembiochem 2013; 14:457-66. [DOI: 10.1002/cbic.201200732] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Indexed: 11/12/2022]
|
28
|
Shapiro YE, Meirovitch E. Slowly Relaxing Local Structure (SRLS) Analysis of 15N–H Relaxation from the Prototypical Small Proteins GB1 and GB3. J Phys Chem B 2012; 116:4056-68. [DOI: 10.1021/jp300245k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yury E. Shapiro
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Eva Meirovitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900 Israel
| |
Collapse
|
29
|
Cell-Free Protein Synthesis Using E. coli Cell Extract for NMR Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 992:167-77. [DOI: 10.1007/978-94-007-4954-2_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Tonelli M, Singarapu KK, Makino SI, Sahu SC, Matsubara Y, Endo Y, Kainosho M, Markley JL. Hydrogen exchange during cell-free incorporation of deuterated amino acids and an approach to its inhibition. JOURNAL OF BIOMOLECULAR NMR 2011; 51:467-76. [PMID: 21984356 PMCID: PMC3254145 DOI: 10.1007/s10858-011-9575-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 09/21/2011] [Indexed: 05/05/2023]
Abstract
Perdeuteration, selective deuteration, and stereo array isotope labeling (SAIL) are valuable strategies for NMR studies of larger proteins and membrane proteins. To minimize scrambling of the label, it is best to use cell-free methods to prepare selectively labeled proteins. However, when proteins are prepared from deuterated amino acids by cell-free translation in H(2)O, exchange reactions can lead to contamination of (2)H sites by (1)H from the solvent. Examination of a sample of SAIL-chlorella ubiquitin prepared by Escherichia coli cell-free synthesis revealed that exchange had occurred at several residues (mainly at Gly, Ala, Asp, Asn, Glu, and Gln). We present results from a study aimed at identifying the exchanging sites and level of exchange and at testing a strategy for minimizing (1)H contamination during wheat germ cell-free translation of proteins produced from deuterated amino acids by adding known inhibitors of transaminases (1 mM aminooxyacetic acid) and glutamate synthetase (0.1 mM L: -methionine sulfoximine). By using a wheat germ cell-free expression system, we produced [U-(2)H, (15)N]-chlorella ubiquitin without and with added inhibitors, and [U-(15)N]-chlorella ubiquitin as a reference to determine the extent of deuterium incorporation. We also prepared a sample of [U-(13)C, (15)N]-chlorella ubiquitin, for use in assigning the sites of exchange. The added inhibitors did not reduce the protein yield and were successful in blocking hydrogen exchange at C(α) sites, with the exception of Gly, and at C(β) sites of Ala. We discovered, in addition, that partial exchange occurred with or without the inhibitors at certain side-chain methyl and methylene groups: Asn-H(β), Asp-H(β), Gln-H(γ), Glu-H(γ), and Lys-H(ε). The side-chain labeling pattern, in particular the mixed chiral labeling resulting from partial exchange at certain sites, should be of interest in studies of large proteins, protein complexes, and membrane proteins.
Collapse
Affiliation(s)
- Marco Tonelli
- National Magnetic Resonance Facility at Madison (NMRFAM), Department of Biochemistry, University of Wisconsin-Madison, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
de la Cruz L, Nguyen THD, Ozawa K, Shin J, Graham B, Huber T, Otting G. Binding of low molecular weight inhibitors promotes large conformational changes in the dengue virus NS2B-NS3 protease: fold analysis by pseudocontact shifts. J Am Chem Soc 2011; 133:19205-15. [PMID: 22007671 DOI: 10.1021/ja208435s] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The two-component dengue virus NS2B-NS3 protease (DEN NS2B-NS3pro) is an established drug target, but inhibitor design is hampered by the lack of a crystal structure of the protease in its fully active form. In solution and without inhibitors, the functionally important C-terminal segment of the NS2B cofactor is dissociated from DEN NS3pro ("open state"), necessitating a large structural change to produce the "closed state" thought to underpin activity. We analyzed the fold of DEN NS2B-NS3pro in solution with and without bound inhibitor by nuclear magnetic resonance (NMR) spectroscopy. Multiple paramagnetic lanthanide tags were attached to different sites to generate pseudocontact shifts (PCS). In the face of severe spectral overlap and broadening of many signals by conformational exchange, methods for assignment of (15)N-HSQC cross-peaks included selective mutation, combinatorial isotope labeling, and comparison of experimental PCSs and PCSs back-calculated for a structural model of the closed conformation built by using the structure of the related West Nile virus (WNV) protease as a template. The PCSs show that, in the presence of a positively charged low-molecular weight inhibitor, the enzyme assumes a closed state that is very similar to the closed state previously observed for the WNV protease. Therefore, a model of the protease built on the closed conformation of the WNV protease is a better template for rational drug design than available crystal structures, at least for positively charged inhibitors. To assess the open state, we created a binding site for a Gd(3+) complex and measured paramagnetic relaxation enhancements. The results show that the specific open conformation displayed in the crystal of DEN NS2B-NS3pro is barely populated in solution. The techniques used open an avenue to the fold analysis of proteins that yield poor NMR spectra, as PCSs from multiple sites in combination with model building generate powerful information even from incompletely assigned (15)N-HSQC spectra.
Collapse
Affiliation(s)
- Laura de la Cruz
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | | | | | |
Collapse
|