1
|
Patel H, Sheikh MS, Huang Y. ECRG2/SPINK7 Tumor Suppressor as Modulator of DNA Damage Response. Int J Mol Sci 2024; 25:5854. [PMID: 38892042 PMCID: PMC11172197 DOI: 10.3390/ijms25115854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Esophageal Cancer-Related Gene 2 (ECRG2), also known as Serine Peptidase Inhibitor Kazal type 7 (SPINK7), is a novel tumor suppressor gene from the SPINK family of genes that exhibits anticancer potential. ECRG2 was originally identified during efforts to discover genes involved in esophageal tumorigenesis. ECRG2 was one of those genes whose expression was absent or reduced in primary human esophageal cancers. Additionally, absent or reduced ECRG2 expression was also noted in several other types of human malignancies. ECRG2 missense mutations were identified in various primary human cancers. It was reported that a cancer-derived ECRG2 mutant (valine to glutamic acid at position 30) failed to induce cell death and caspase activation triggered by DNA-damaging anticancer drugs. Furthermore, ECRG2 suppressed cancer cell proliferation in cultured cells and grafted tumors in animals and inhibited cancer cell migration/invasion and metastasis. ECRG2 also was identified as a negative regulator of Hu-antigen R (HuR), an oncogenic RNA-binding protein that is known to regulate mRNA stability and the expression of transcripts corresponding to many cancer-related genes. ECRG2 function is important also for the regulation of inflammatory responses and the maintenance of epithelial barrier integrity in the esophagus. More recently, ECRG2 was discovered as one of the newest members of the pro-apoptotic transcriptional targets of p53. Two p53-binding sites (BS-1 and BS-2) were found within the proximal region of the ECRG2 gene promoter; the treatment of DNA-damaging agents in cancer cells significantly increased p53 binding to the ECRG2 promoter and triggered a strong ECRG2 promoter induction following DNA damage. Further, the genetic depletion of ECRG2 expression significantly impeded apoptotic cell death induced by DNA damage and wild-type p53 in cancer cells. These findings suggest that the loss of ECRG2 expression, commonly observed in human cancers, could play important roles in conferring anticancer drug resistance in human cancers. Thus, ECRG2 is a novel regulator in DNA damage-induced cell death that may also be a potential target for anticancer therapeutics.
Collapse
Affiliation(s)
| | - M. Saeed Sheikh
- Department of Pharmacology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA;
| | - Ying Huang
- Department of Pharmacology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA;
| |
Collapse
|
2
|
Zhao N, Wang G, Long S, Liu D, Gao J, Xu Y, Wang C, Wang A, Wang F, Hao Y, Ran X, Wang J, Su Y, Wang T. Neutrophils-derived Spink7 as one safeguard against experimental murine colitis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166125. [PMID: 33722746 DOI: 10.1016/j.bbadis.2021.166125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/25/2021] [Accepted: 03/05/2021] [Indexed: 12/20/2022]
Abstract
The uncontrolled abnormal intestinal immune responses play important role in eliciting inflammatory bowel disease (IBD), yet the molecular events regulating intestinal inflammation during IBD remain poorly understood. Here, we describe an endogenous, homeostatic pattern that controls inflammatory responses in experimental murine colitis. We show that Spink7 (serine peptidase inhibitor, kazal type 7), the ortholog of human SPINK7, is significantly upregulated in dextran sodium sulfate (DSS)-induced murine colitis model. Spink7-deficient mice showed highly susceptible to experimental colitis characterized by enhanced weight loss, shorter colon length, higher disease activity index and increased colonic tissue destruction. Bone marrow reconstitution experiments demonstrated that expression of Spink7 in the immune compartment makes main contribution to its protective role in colitis. What's more, neutrophils are the primary sources of Spink7 in experimental murine colitis. Loss of Spink7 leads to augmented productions of multiple chemokines and cytokines in colitis. In summary, this study identifies neutrophils-derived endogenous Spink7-mediated control of chemokines/cytokines production as a molecular mechanism contributing to inflammation resolution during colitis.
Collapse
Affiliation(s)
- Na Zhao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Guojian Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Shuang Long
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Dengqun Liu
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Preventive Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China
| | - Jining Gao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yang Xu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Cheng Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Aiping Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Fengchao Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yuhui Hao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Xinze Ran
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Junping Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yongping Su
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Tao Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
3
|
Wiedemann C, Kumar A, Lang A, Ohlenschläger O. Cysteines and Disulfide Bonds as Structure-Forming Units: Insights From Different Domains of Life and the Potential for Characterization by NMR. Front Chem 2020; 8:280. [PMID: 32391319 PMCID: PMC7191308 DOI: 10.3389/fchem.2020.00280] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
Disulfide bridges establish a fundamental element in the molecular architecture of proteins and peptides which are involved e.g., in basic biological processes or acting as toxins. NMR spectroscopy is one method to characterize the structure of bioactive compounds including cystine-containing molecules. Although the disulfide bridge itself is invisible in NMR, constraints obtained via the neighboring NMR-active nuclei allow to define the underlying conformation and thereby to resolve their functional background. In this mini-review we present shortly the impact of cysteine and disulfide bonds in the proteasome from different domains of life and give a condensed overview of recent NMR applications for the characterization of disulfide-bond containing biomolecules including advantages and limitations of the different approaches.
Collapse
Affiliation(s)
- Christoph Wiedemann
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Amit Kumar
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Andras Lang
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | | |
Collapse
|
4
|
Cabrera-Muñoz A, Valiente PA, Rojas L, Alonso-Del-Rivero Antigua M, Pires JR. NMR structure of CmPI-II, a non-classical Kazal protease inhibitor: Understanding its conformational dynamics and subtilisin A inhibition. J Struct Biol 2019; 206:280-294. [PMID: 30930219 DOI: 10.1016/j.jsb.2019.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/18/2022]
Abstract
Subtilisin-like proteases play crucial roles in host-pathogen interactions. Thus, protease inhibitors constitute important tools in the regulation of this interaction. CmPI-II is a Kazal proteinase inhibitor isolated from Cenchritis muricatus that inhibits subtilisin A, trypsin and elastases. Based on sequence analysis it defines a new group of non-classical Kazal inhibitors. Lacking solved 3D structures from this group prevents the straightforward structural comparison with other Kazal inhibitors. The 3D structure of CmPI-II, solved in this work using NMR techniques, shows the typical fold of Kazal inhibitors, but has significant differences in its N-terminal moiety, the disposition of the CysI-CysV disulfide bond and the reactive site loop (RSL) conformation. The high flexibility of its N-terminal region, the RSL, and the α-helix observed in NMR experiments and molecular dynamics simulations, suggest a coupled motion of these regions that could explain CmPI-II broad specificity. The 3D structure of the CmPI-II/subtilisin A complex, obtained by modeling, allows understanding of the energetic basis of the subtilisin A inhibition. The residues at the P2 and P2' positions of the inhibitor RSL were predicted to be major contributors to the binding free energy of the complex, rather than those at the P1 position. Site directed mutagenesis experiments confirmed the Trp14 (P2') contribution to CmPI-II/subtilisin A complex formation. Overall, this work provides the structural determinants for the subtilisin A inhibition by CmPI-II and allows the designing of more specific and potent molecules. In addition, the 3D structure obtained supports the existence of a new group in non-classical Kazal inhibitors.
Collapse
Affiliation(s)
- Aymara Cabrera-Muñoz
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana-Cuba, Calle 25 No 455, Vedado, La Habana, Cuba.
| | - Pedro A Valiente
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana-Cuba, Calle 25 No 455, Vedado, La Habana, Cuba
| | - Laritza Rojas
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana-Cuba, Calle 25 No 455, Vedado, La Habana, Cuba.
| | - Maday Alonso-Del-Rivero Antigua
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana-Cuba, Calle 25 No 455, Vedado, La Habana, Cuba.
| | - José R Pires
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS / Bloco E - sala 32, 21941-902 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
5
|
Jung S, Fischer J, Spudy B, Kerkow T, Sönnichsen FD, Xue L, Bonvin AMJJ, Goettig P, Magdolen V, Meyer-Hoffert U, Grötzinger J. The solution structure of the kallikrein-related peptidases inhibitor SPINK6. Biochem Biophys Res Commun 2016; 471:103-8. [PMID: 26828269 DOI: 10.1016/j.bbrc.2016.01.172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 01/04/2023]
Abstract
Kallikrein-related peptidases (KLKs) are crucial for epidermal barrier function and are involved in the proteolytic regulation of the desquamation process. Elevated KLK levels were reported in atopic dermatitis. In skin, the proteolytic activity of KLKs is regulated by specific inhibitors of the serine protease inhibitor of Kazal-type (SPINK) family. SPINK6 was shown to be expressed in human stratum corneum and is able to inhibit several KLKs such as KLK4, -5, -12, -13 and -14. In order to understand the structural traits of the specific inhibition we solved the structure of SPINK6 in solution by NMR-spectroscopy and studied its interaction with KLKs. Thereby, beside the conserved binding mode, we identified an alternate binding mode which has so far not been observed for SPINK inhibitors.
Collapse
Affiliation(s)
- Sascha Jung
- Institute of Biochemistry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany
| | - Jan Fischer
- Department of Dermatology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Björn Spudy
- Institute of Biochemistry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany
| | - Tim Kerkow
- Institute of Biochemistry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany
| | - Frank D Sönnichsen
- Otto Diels Institute of Organic Chemistry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany
| | - Li Xue
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Peter Goettig
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Viktor Magdolen
- Klinische Forschergruppe der Frauenklinik, Klinikum rechts der Isar, TU München, Munich, Germany
| | - Ulf Meyer-Hoffert
- Department of Dermatology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Joachim Grötzinger
- Institute of Biochemistry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany.
| |
Collapse
|