1
|
Jahn H, Bartoš L, Dearden GI, Dittman JS, Holthuis JCM, Vácha R, Menon AK. Phospholipids are imported into mitochondria by VDAC, a dimeric beta barrel scramblase. Nat Commun 2023; 14:8115. [PMID: 38065946 PMCID: PMC10709637 DOI: 10.1038/s41467-023-43570-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Mitochondria are double-membrane-bounded organelles that depend critically on phospholipids supplied by the endoplasmic reticulum. These lipids must cross the outer membrane to support mitochondrial function, but how they do this is unclear. We identify the Voltage Dependent Anion Channel (VDAC), an abundant outer membrane protein, as a scramblase-type lipid transporter that catalyzes lipid entry. On reconstitution into membrane vesicles, dimers of human VDAC1 and VDAC2 catalyze rapid transbilayer translocation of phospholipids by a mechanism that is unrelated to their channel activity. Coarse-grained molecular dynamics simulations of VDAC1 reveal that lipid scrambling occurs at a specific dimer interface where polar residues induce large water defects and bilayer thinning. The rate of phospholipid import into yeast mitochondria is an order of magnitude lower in the absence of VDAC homologs, indicating that VDACs provide the main pathway for lipid entry. Thus, VDAC isoforms, members of a superfamily of beta barrel proteins, moonlight as a class of phospholipid scramblases - distinct from alpha-helical scramblase proteins - that act to import lipids into mitochondria.
Collapse
Affiliation(s)
- Helene Jahn
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Ladislav Bartoš
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Grace I Dearden
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jeremy S Dittman
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Joost C M Holthuis
- Department of Molecular Cell Biology, University of Osnabrück, Osnabrück, 49076, Germany
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
2
|
Berezhkovskii AM, Bezrukov SM. Counter-Intuitive Features of Particle Dynamics in Nanopores. Int J Mol Sci 2023; 24:15923. [PMID: 37958906 PMCID: PMC10648703 DOI: 10.3390/ijms242115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Using the framework of a continuous diffusion model based on the Smoluchowski equation, we analyze particle dynamics in the confinement of a transmembrane nanopore. We briefly review existing analytical results to highlight consequences of interactions between the channel nanopore and the translocating particles. These interactions are described within a minimalistic approach by lumping together multiple physical forces acting on the particle in the pore into a one-dimensional potential of mean force. Such radical simplification allows us to obtain transparent analytical results, often in a simple algebraic form. While most of our findings are quite intuitive, some of them may seem unexpected and even surprising at first glance. The focus is on five examples: (i) attractive interactions between the particles and the nanopore create a potential well and thus cause the particles to spend more time in the pore but, nevertheless, increase their net flux; (ii) if the potential well-describing particle-pore interaction occupies only a part of the pore length, the mean translocation time is a non-monotonic function of the well length, first increasing and then decreasing with the length; (iii) when a rectangular potential well occupies the entire nanopore, the mean particle residence time in the pore is independent of the particle diffusivity inside the pore and depends only on its diffusivity in the bulk; (iv) although in the presence of a potential bias applied to the nanopore the "downhill" particle flux is higher than the "uphill" one, the mean translocation times and their distributions are identical, i.e., independent of the translocation direction; and (v) fast spontaneous gating affects nanopore selectivity when its characteristic time is comparable to that of the particle transport through the pore.
Collapse
Affiliation(s)
| | - Sergey M. Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
3
|
Magrì A, Cubisino SAM, Battiato G, Lipari CLR, Conti Nibali S, Saab MW, Pittalà A, Amorini AM, De Pinto V, Messina A. VDAC1 Knockout Affects Mitochondrial Oxygen Consumption Triggering a Rearrangement of ETC by Impacting on Complex I Activity. Int J Mol Sci 2023; 24:ijms24043687. [PMID: 36835102 PMCID: PMC9963415 DOI: 10.3390/ijms24043687] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Voltage-Dependent Anion-selective Channel isoform 1 (VDAC1) is the most abundant isoform of the outer mitochondrial membrane (OMM) porins and the principal gate for ions and metabolites to and from the organelle. VDAC1 is also involved in a number of additional functions, such as the regulation of apoptosis. Although the protein is not directly involved in mitochondrial respiration, its deletion in yeast triggers a complete rewiring of the whole cell metabolism, with the inactivation of the main mitochondrial functions. In this work, we analyzed in detail the impact of VDAC1 knockout on mitochondrial respiration in the near-haploid human cell line HAP1. Results indicate that, despite the presence of other VDAC isoforms in the cell, the inactivation of VDAC1 correlates with a dramatic impairment in oxygen consumption and a re-organization of the relative contributions of the electron transport chain (ETC) enzymes. Precisely, in VDAC1 knockout HAP1 cells, the complex I-linked respiration (N-pathway) is increased by drawing resources from respiratory reserves. Overall, the data reported here strengthen the key role of VDAC1 as a general regulator of mitochondrial metabolism.
Collapse
Affiliation(s)
- Andrea Magrì
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via S. Sofia 64, 95125 Catania, Italy
- we.MitoBiotech S.R.L., C.so Italia 174, 95125 Catania, Italy
- Correspondence:
| | | | - Giuseppe Battiato
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95125 Catania, Italy
| | - Cristiana Lucia Rita Lipari
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95125 Catania, Italy
| | - Stefano Conti Nibali
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95125 Catania, Italy
| | - Miriam Wissam Saab
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Alessandra Pittalà
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Vito De Pinto
- we.MitoBiotech S.R.L., C.so Italia 174, 95125 Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95125 Catania, Italy
| | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via S. Sofia 64, 95125 Catania, Italy
- we.MitoBiotech S.R.L., C.so Italia 174, 95125 Catania, Italy
| |
Collapse
|
4
|
Enhancing the Cell-Free Expression of Native Membrane Proteins by In Silico Optimization of the Coding Sequence-An Experimental Study of the Human Voltage-Dependent Anion Channel. MEMBRANES 2021; 11:membranes11100741. [PMID: 34677509 PMCID: PMC8540592 DOI: 10.3390/membranes11100741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
Membrane proteins are involved in many aspects of cellular biology; for example, they regulate how cells interact with their environment, so such proteins are important drug targets. The rapid advancement in the field of immune effector cell therapy has been expanding the horizons of synthetic membrane receptors in the areas of cell-based immunotherapy and cellular medicine. However, the investigation of membrane proteins, which are key constituents of cells, is hampered by the difficulty and complexity of their in vitro synthesis, which is of unpredictable yield. Cell-free synthesis is herein employed to unravel the impact of the expression construct on gene transcription and translation, without the complex regulatory mechanisms of cellular systems. Through the systematic design of plasmids in the immediacy of the start of the target gene, it was possible to identify translation initiation and the conformation of mRNA as the main factors governing the cell-free expression efficiency of the human voltage-dependent anion channel (VDAC), which is a relevant membrane protein in drug-based therapy. A simple translation initiation model was developed to quantitatively assess the expression potential for the designed constructs. A scoring function that quantifies the feasibility of the formation of the translation initiation complex through the ribosome–mRNA hybridization energy and the accessibility of the mRNA segment binding to the ribosome is proposed. The scoring function enables one to optimize plasmid sequences and semi-quantitatively predict protein expression efficiencies. This scoring function is publicly available as webservice XenoExpressO at University of Vienna, Austria.
Collapse
|
5
|
Di Rosa MC, Guarino F, Conti Nibali S, Magrì A, De Pinto V. Voltage-Dependent Anion Selective Channel Isoforms in Yeast: Expression, Structure, and Functions. Front Physiol 2021; 12:675708. [PMID: 34093236 PMCID: PMC8171188 DOI: 10.3389/fphys.2021.675708] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/20/2021] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial porins, also known as voltage-dependent anion selective channels (VDACs), are pore-forming molecules of the outer mitochondrial membranes, involved in the regulation of metabolic flux between cytosol and mitochondria. Playing such an essential role, VDAC proteins are evolutionary conserved and isoforms are present in numerous species. The quest for specific function(s) related to the raise of multiple isoforms is an intriguing theme. The yeast Saccharomyces cerevisiae genome is endowed with two different VDAC genes encoding for two distinct porin isoforms, definitely less characterized in comparison to mammalian counterpart. While yVDAC1 has been extensively studied, the second isoform, yVDAC2, is much less expressed, and has a still misunderstood function. This review will recapitulate the known and poorly known information in the literature, in the light of the growing interest about the features of VDAC isoforms in the cell.
Collapse
Affiliation(s)
- Maria Carmela Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Francesca Guarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,we.MitoBiotech S.R.L., Catania, Italy
| | - Stefano Conti Nibali
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Andrea Magrì
- we.MitoBiotech S.R.L., Catania, Italy.,Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,we.MitoBiotech S.R.L., Catania, Italy
| |
Collapse
|
6
|
Alpha-Synuclein and Mitochondrial Dysfunction in Parkinson's Disease: The Emerging Role of VDAC. Biomolecules 2021; 11:biom11050718. [PMID: 34064816 PMCID: PMC8170894 DOI: 10.3390/biom11050718] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Alpha-Synuclein (αSyn) is a protein whose function is still debated, as well as its role in modulation of mitochondrial function in both physiological and pathological conditions. Mitochondrial porins or Voltage-Dependent Anion Channel (VDAC) proteins are the main gates for ADP/ATP and various substrates towards the organelle. Furthermore, they act as a mitochondrial hub for many cytosolic proteins, including αSyn. This review analyzes the main aspects of αSyn-mitochondria interaction, focusing on the role of VDAC and its emerging involvement in the pathological processes.
Collapse
|
7
|
Shrivastava R, Ghosh S. Collective Dynamics of Ion Channels on Bilayer Lipid Membranes. ACS OMEGA 2021; 6:7544-7557. [PMID: 33778266 PMCID: PMC7992176 DOI: 10.1021/acsomega.0c06061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/02/2021] [Indexed: 05/06/2023]
Abstract
Ion channels self-organize on cellular and organelle membranes as clusters and mutually modulate their gating behavior. It has been reported that the efficient information transfer is achieved by cooperative clustering of ion channels. To address the origin and nature of collective dynamics in ion channel clusters, a statistical mechanical model, namely, the Zimm-Bragg-type model in two dimensions with unequal weight distribution in channel-channel interactions, has been proposed. Nearest neighbor interaction along with next-nearest neighbor interaction has been considered, assuming symmetric spatial organization. The multichannel bilayer electrophysiology recordings of the voltage-dependent anion channel (VDAC) from rat brain mitochondria have been analyzed in order to test and further extend the model. The model successfully describes the multichannel gating behavior and self-organization of the VDAC cluster.
Collapse
|
8
|
Aguilella-Arzo M, Aguilella VM. Access resistance in protein nanopores. A structure-based computational approach. Bioelectrochemistry 2020; 131:107371. [DOI: 10.1016/j.bioelechem.2019.107371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/27/2019] [Accepted: 09/01/2019] [Indexed: 01/25/2023]
|
9
|
Ischemic postconditioning confers cerebroprotection by stabilizing VDACs after brain ischemia. Cell Death Dis 2018; 9:1033. [PMID: 30305621 PMCID: PMC6180002 DOI: 10.1038/s41419-018-1089-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/11/2018] [Accepted: 09/25/2018] [Indexed: 12/16/2022]
Abstract
Ischemic postconditioning provides robust neuroprotection, therefore, determining the molecular events may provide promising targets for stroke treatment. Here, we showed that the expression of functional mitochondrial voltage-dependent anion channel proteins (VDAC1, VDAC2, and VDAC3) reduced in rat vulnerable hippocampal CA1 subfield after global ischemia. Ischemic postconditioning restored VDACs to physiological levels. Stabilized VDACs contributed to the benefits of postconditioning. VDAC1 was required for maintaining neuronal Ca2+ buffering capacity. We found that microRNA-7 (miR-7) was responsible for postischemic decline of VDAC1 and VDAC3. Notably, miR-7 was more highly expressed in the peripheral blood of patients with acute ischemic stroke compared to healthy controls. Inhibition of miR-7 attenuated neuronal loss and ATP decline after global ischemia, but also diminished the infarct volume with improved neurological functions after focal ischemia. Thus, ischemic postconditioning protects against mitochondrial damage by stabilizing VDACs. MiR-7 may be a potential therapeutic target for ischemic stroke.
Collapse
|
10
|
Berezhkovskii AM, Bezrukov SM. Stochastic Gating as a Novel Mechanism for Channel Selectivity. Biophys J 2018; 114:1026-1029. [PMID: 29448982 DOI: 10.1016/j.bpj.2018.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 11/25/2022] Open
Abstract
An ideal channel, responsible for metabolite fluxes in and out of the cells and cellular compartments, is supposed to be selective for a particular set of molecules only. However, such a channel has to be wide enough to accommodate relatively large metabolites, and, therefore, it allows passage of smaller solutes, for example, sodium, potassium, and chloride ions, thus compromising membrane's barrier function. Here we show that stochastic gating is able to provide a mechanism for the selectivity of wide channels in favor of large metabolites. Specifically, applying our recent theory of the stochastic gating effect on channel-facilitated transport, we demonstrate that under certain conditions gating hinders translocation of fast-diffusing small solutes to a significantly higher degree than that of large solutes that diffuse much slower. We hypothesize that this can be used by Nature to minimize the shunting effect of wide channels with respect to small solutes.
Collapse
Affiliation(s)
- Alexander M Berezhkovskii
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Mathematical and Statistical Computing Laboratory, Division for Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
11
|
Gupta R, Ghosh S. Putative roles of mitochondrial Voltage-Dependent Anion Channel, Bcl-2 family proteins and c-Jun N-terminal Kinases in ischemic stroke associated apoptosis. BIOCHIMIE OPEN 2017; 4:47-55. [PMID: 29450141 PMCID: PMC5802046 DOI: 10.1016/j.biopen.2017.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/05/2017] [Indexed: 12/13/2022]
Abstract
There is a constant need for better stroke treatments. Neurons at the periphery of an ischemic stroke affected brain tissue remains metabolically active for several hours or days after stroke onset. They later undergo mitochondrion-mediated apoptosis. It has been found that inhibiting apoptosis in the peripheral ischemic neurons could be very effective in the prevention of stroke progression. During stroke associated apoptosis, cytosolic c-Jun N-terminal Kinases (JNKs) and Bcl-2 family proteins translocate towards mitochondria and promote cytochrome c release by interacting with the outer mitochondrion membrane associated proteins. This review provides an overview of the plausible interactions of the outer mitochondrial membrane Voltage Dependent Anion Channel, Bcl-2 family proteins and JNKs in cytochrome c release in the peripheral ischemic stroke associated apoptotic neurons. The review ends with a note on designing new anti-stroke treatments.
Collapse
Affiliation(s)
- Rajeev Gupta
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Subhendu Ghosh
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
12
|
Zaouali MA, Panisello A, Lopez A, Castro C, Folch E, Carbonell T, Rolo A, Palmeira CM, Garcia-Gil A, Adam R, Roselló-Catafau J. GSK3β and VDAC Involvement in ER Stress and Apoptosis Modulation during Orthotopic Liver Transplantation. Int J Mol Sci 2017; 18:ijms18030591. [PMID: 28282906 PMCID: PMC5372607 DOI: 10.3390/ijms18030591] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 01/07/2023] Open
Abstract
We investigated the involvement of glycogen synthase kinase-3β (GSK3β) and the voltage-dependent anion channel (VDAC) in livers subjected to cold ischemia-reperfusion injury (I/R) associated with orthotopic liver transplantation (OLT). Rat livers were preserved in University of Wisconsin (UW) and Institute Georges Lopez (IGL-1) solution, the latter enriched or not with trimetazidine, and then subjected to OLT. Transaminase (ALT) and HMGB1 protein levels, glutamate dehydrogenase (GLDH), and oxidative stress (MDA) were measured. The AKT protein kinase and its direct substrates, GSK3β and VDAC, as well as caspases 3, 9, and cytochrome C and reticulum endoplasmic stress-related proteins (GRP78, pPERK, ATF4, and CHOP), were determined by Western blot. IGL-1+TMZ significantly reduced liver injury. We also observed a significant phosphorylation of AKT, which in turn induced the phosphorylation and inhibition of GSK3β. In addition, TMZ protected the mitochondria since, in comparison with IGL-1 alone, we found reductions in VDAC phosphorylation, apoptosis, and GLDH release. All these results were correlated with decreased ER stress. Addition of TMZ to IGL-1 solution increased the tolerance of the liver graft to I/R injury through inhibition of GSK3β and VDAC, contributing to ER stress reduction and cell death prevention.
Collapse
Affiliation(s)
- Mohamed Amine Zaouali
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona 08036, Catalonia, Spain.
- Research Unit of Biology and Molecular Anthropology Applied to Development and Health (UR12ES11), Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia.
- High Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia.
| | - Arnau Panisello
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona 08036, Catalonia, Spain.
| | - Alexandre Lopez
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, Paris 94804, France.
| | - Carlos Castro
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, Paris 94804, France.
| | - Emma Folch
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona 08036, Catalonia, Spain.
| | - Teresa Carbonell
- Department of Physiology, Faculty of Biology, University of Barcelona, Barcelona 08028, Catalonia, Spain.
| | - Anabela Rolo
- Center of Neurosciences and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| | - Carlos Marques Palmeira
- Center of Neurosciences and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| | | | - René Adam
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, Paris 94804, France.
| | - Joan Roselló-Catafau
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona 08036, Catalonia, Spain.
| |
Collapse
|
13
|
Petriz BA, Almeida JA, Gomes CPC, Pereira RW, Murad AM, Franco OL. NanoUPLC/MS(E) proteomic analysis reveals modulation on left ventricle proteome from hypertensive rats after exercise training. J Proteomics 2014; 113:351-65. [PMID: 25451014 DOI: 10.1016/j.jprot.2014.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/03/2014] [Accepted: 10/17/2014] [Indexed: 10/24/2022]
Abstract
UNLABELLED NanoUPLC/MS(E) was used to verify the effects of 8weeks of low (SHR-LIT=4) and high (SHR-HIT=4) intensity training over the left ventricle proteome of hypertensive rats (SHR-C=4). Training enhanced the aerobic capacity and reduced the systolic blood pressure in all exercised rats. NanoUPLC/MS(E) identified 250 proteins, with 233 in common to all groups and 16 exclusive to SHR-C, 2 to SHR-LIT, and 2 to the SHR-HIT. Cardiac hypertrophy related proteins appeared only in SHR-C. The SHR-LIT enhanced the abundance of 30 proteins and diminished 6, while SHR-HIT enhanced the abundance of 39 proteins and reduced other 7. The levels of metabolic (β and γ-enolase, adenine phosphoribosultransferase, and cytochrome b-c1), myofibril (myosin light chain 4, tropomyosin α and β-chain), and transporter proteins (hemoglobin, serum albumin, and hemopexin) were increased by both intensities. Transcription regulator and histone variants were enhanced by SHR-LIT and SHR-HIT respectively. SHR-LIT reduced the concentration of myosin binding protein C, while desmin and membrane voltage dependent anion selective channel protein-3 were reduced only by SHR-HIT. In addition, polyubiquitin B and C, and transcription regulators decreased in both intensities. Exercise also increased the concentration of anti-oxidant proteins, peroxiredozin-6 and glutathione peroxidase-1. BIOLOGICAL SIGNIFICANCE Pathologic left ventricle hypertrophy if one of the major outcomes of hypertension being a strong predictor of heart failure. Among the various risk factors for cardiovascular disorders, arterial hypertension is responsible for the highest rates of mortality worldwide. In this way, this present study contribute to the understanding of the molecular mechanisms involved in the attenuation of hypertension and the regression of pathological cardiac hypertrophy induced by exercise training.
Collapse
Affiliation(s)
- Bernardo A Petriz
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil; UDF - Centro Universitário, Brasília, DF, Brazil
| | - Jeeser A Almeida
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil; UDF - Centro Universitário, Brasília, DF, Brazil; Programa de Pós Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília - UnB, Ceilândia-DF, Brazil
| | - Clarissa P C Gomes
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | - Rinaldo W Pereira
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil; Programa de Pós-Graduação em Educação Física, Universidade Católica de Brasília, Brasília-DF, Brazil
| | - André M Murad
- Embrapa Recursos Genéticos e Biotecnologia - Laboratório de Biologia Sintética, Brasília-DF, Brazil
| | - Octavio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil; S-Inova, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande MS, Brazil; Programa de Pós-Graduação em Educação Física, Universidade Católica de Brasília, Brasília-DF, Brazil.
| |
Collapse
|
14
|
Trapping by clusters of channels, receptors, and transporters: quantitative description. Biophys J 2014; 106:500-9. [PMID: 24507591 DOI: 10.1016/j.bpj.2013.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/06/2013] [Accepted: 12/11/2013] [Indexed: 11/27/2022] Open
Abstract
Various membrane functional units such as receptors, transporters, and channels, whose action necessarily involves capturing diffusing molecules, are often organized into multimeric complexes forming clusters on the cell and organelle membranes. These functional units themselves are usually oligomers of several integral proteins, which have their own symmetry. Depending on the symmetry, they form clusters on different packing lattices. Moreover, local membrane inhomogeneities, e.g., the so-called membrane domains, rafts, stalks, etc., lead to different patterns even within the structures on the same packing lattice. Units in the cluster compete for diffusing molecules and screen each other. Here we propose a general approach that allows one to quantify the screening effects. The approach is used to derive simple approximate formulas giving the trapping rates of diffusing molecules by clusters of absorbers on lattices of different packing symmetries. The obtained results describe smooth variation of the trapping rate from the sum of the rates of individual absorbers forming the cluster to the effective collective rate. The latter shows how the trapping efficiency of an individual absorber decreases as the number of absorbers in the cluster increases and/or the inter-absorber distance decreases. Numerical tests demonstrate good agreement between the rates predicted by the theory and obtained from Brownian dynamics simulations for clusters of different shapes and sizes.
Collapse
|
15
|
O-Uchi J, Ryu SY, Jhun BS, Hurst S, Sheu SS. Mitochondrial ion channels/transporters as sensors and regulators of cellular redox signaling. Antioxid Redox Signal 2014; 21:987-1006. [PMID: 24180309 PMCID: PMC4116125 DOI: 10.1089/ars.2013.5681] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Mitochondrial ion channels/transporters and the electron transport chain (ETC) serve as key sensors and regulators for cellular redox signaling, the production of reactive oxygen species (ROS) and nitrogen species (RNS) in mitochondria, and balancing cell survival and death. Although the functional and pharmacological characteristics of mitochondrial ion transport mechanisms have been extensively studied for several decades, the majority of the molecular identities that are responsible for these channels/transporters have remained a mystery until very recently. RECENT ADVANCES Recent breakthrough studies uncovered the molecular identities of the diverse array of major mitochondrial ion channels/transporters, including the mitochondrial Ca2+ uniporter pore, mitochondrial permeability transition pore, and mitochondrial ATP-sensitive K+ channel. This new information enables us to form detailed molecular and functional characterizations of mitochondrial ion channels/transporters and their roles in mitochondrial redox signaling. CRITICAL ISSUES Redox-mediated post-translational modifications of mitochondrial ion channels/transporters and ETC serve as key mechanisms for the spatiotemporal control of mitochondrial ROS/RNS generation. FUTURE DIRECTIONS Identification of detailed molecular mechanisms for redox-mediated regulation of mitochondrial ion channels will enable us to find novel therapeutic targets for many diseases that are associated with cellular redox signaling and mitochondrial ion channels/transporters.
Collapse
Affiliation(s)
- Jin O-Uchi
- 1 Department of Medicine, Center for Translational Medicine, Jefferson Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
16
|
Cesari IM, Carvalho E, Figueiredo Rodrigues M, Mendonça BDS, Amôedo ND, Rumjanek FD. Methyl jasmonate: putative mechanisms of action on cancer cells cycle, metabolism, and apoptosis. Int J Cell Biol 2014; 2014:572097. [PMID: 24648844 PMCID: PMC3933403 DOI: 10.1155/2014/572097] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 12/29/2022] Open
Abstract
Methyl jasmonate (MJ), an oxylipid that induces defense-related mechanisms in plants, has been shown to be active against cancer cells both in vitro and in vivo, without affecting normal cells. Here we review most of the described MJ activities in an attempt to get an integrated view and better understanding of its multifaceted modes of action. MJ (1) arrests cell cycle, inhibiting cell growth and proliferation, (2) causes cell death through the intrinsic/extrinsic proapoptotic, p53-independent apoptotic, and nonapoptotic (necrosis) pathways, (3) detaches hexokinase from the voltage-dependent anion channel, dissociating glycolytic and mitochondrial functions, decreasing the mitochondrial membrane potential, favoring cytochrome c release and ATP depletion, activating pro-apoptotic, and inactivating antiapoptotic proteins, (4) induces reactive oxygen species mediated responses, (5) stimulates MAPK-stress signaling and redifferentiation in leukemia cells, (6) inhibits overexpressed proinflammatory enzymes in cancer cells such as aldo-keto reductase 1 and 5-lipoxygenase, and (7) inhibits cell migration and shows antiangiogenic and antimetastatic activities. Finally, MJ may act as a chemosensitizer to some chemotherapics helping to overcome drug resistant. The complete lack of toxicity to normal cells and the rapidity by which MJ causes damage to cancer cells turn MJ into a promising anticancer agent that can be used alone or in combination with other agents.
Collapse
Affiliation(s)
- Italo Mario Cesari
- Laboratório de Bioquímica e Biologia Molecular do Câncer, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Prédio CCS, Bloco E, Sala 22, Ilha do Fundão, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Erika Carvalho
- Laboratório de Bioquímica e Biologia Molecular do Câncer, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Prédio CCS, Bloco E, Sala 22, Ilha do Fundão, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Mariana Figueiredo Rodrigues
- Laboratório de Bioquímica e Biologia Molecular do Câncer, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Prédio CCS, Bloco E, Sala 22, Ilha do Fundão, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Bruna dos Santos Mendonça
- Laboratório de Bioquímica e Biologia Molecular do Câncer, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Prédio CCS, Bloco E, Sala 22, Ilha do Fundão, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Nivea Dias Amôedo
- Laboratório de Bioquímica e Biologia Molecular do Câncer, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Prédio CCS, Bloco E, Sala 22, Ilha do Fundão, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Franklin David Rumjanek
- Laboratório de Bioquímica e Biologia Molecular do Câncer, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Prédio CCS, Bloco E, Sala 22, Ilha do Fundão, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
17
|
Michaud M, Maréchal-Drouard L, Duchêne AM. Targeting of cytosolic mRNA to mitochondria: naked RNA can bind to the mitochondrial surface. Biochimie 2013; 100:159-66. [PMID: 24252184 DOI: 10.1016/j.biochi.2013.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 11/08/2013] [Indexed: 01/06/2023]
Abstract
Mitochondria contain hundreds of proteins but only a few are encoded by the mitochondrial genome. The other proteins are nuclear-encoded and imported into mitochondria. These proteins can be translated on free cytosolic polysomes, then targeted and imported into mitochondria. Nonetheless, numerous cytosolic mRNAs encoding mitochondrial proteins are detected at the surface of mitochondria in yeast, plants and animals. The localization of mRNAs to the vicinity of mitochondria would be a way for mitochondrial protein sorting. The mechanisms responsible for mRNA targeting to mitochondria are not clearly identified. Sequences within the mRNA molecules (cis-elements), as well as a few trans-acting factors, have been shown to be essential for targeting of some mRNAs. In order to identify receptors involved in mRNA docking to the mitochondrial surface, we have developed an in vitro mRNA binding assay with isolated plant mitochondria. We show that naked mRNAs are able to bind to isolated mitochondria, and our results strongly suggest that mRNA docking to the plant mitochondrial outer membrane requires at least one component of TOM complex.
Collapse
Affiliation(s)
- Morgane Michaud
- Institut de Biologie Moléculaire des Plantes, UPR 2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Laurence Maréchal-Drouard
- Institut de Biologie Moléculaire des Plantes, UPR 2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Anne-Marie Duchêne
- Institut de Biologie Moléculaire des Plantes, UPR 2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| |
Collapse
|
18
|
Giudici AM, Molina ML, Ayala JL, Montoya E, Renart ML, Fernández AM, Encinar JA, Ferrer-Montiel AV, Poveda JA, González-Ros JM. Detergent-labile, supramolecular assemblies of KcsA: Relative abundance and interactions involved. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:193-200. [DOI: 10.1016/j.bbamem.2012.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 08/22/2012] [Accepted: 09/21/2012] [Indexed: 10/27/2022]
|
19
|
Tian Y, Li J, Cai M, Zhao W, Xu H, Liu Y, Wang H. High resolution imaging of mitochondrial membranes by in situ atomic force microscopy. RSC Adv 2013. [DOI: 10.1039/c2ra22166g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Abstract
This chapter describes methods for isolating and imaging metabolically and toxicologically challenged mitochondria with atomic force microscopy. Mitochondria were isolated from rat dorsal root ganglia or brain and exposed to glucose or dinitrobenzene (DNB) to simulate the cellular environment of a diabetic animal that has been exposed to excess glucose or to DNB. It is one of only a few articles to present images of membrane structures, such as voltage-dependent, anion-selective channel pores, on intact organelles. The purpose of the chapter is not to report on the metabolic or toxic effects, but to communicate in more detail than a typical journal paper allows the methods used to image isolated organelles. We also provide a series images revealing the outer membrane and outer membrane pores. An image of an isolated nucleus as well as a set of notes written to avoid common pitfalls in isolation, labeling, and imaging is also included.
Collapse
Affiliation(s)
- Bradley E Layton
- Applied Computing and Electronics, The University of Montana College of Technology, Missoula, MT, USA.
| | | |
Collapse
|
21
|
Abstract
Gram-negative bacteria and mitochondria are both covered by two distinct biological membranes. These membrane systems have been maintained during the course of evolution from an early evolutionary precursor. Both outer membranes accommodate channels of the porin family, which are designed for the uptake and exchange of metabolites, including ions and small molecules, such as nucleosides or sugars. In bacteria, the structure of the outer membrane porin protein family of β-barrels is generally characterized by an even number of β-strands; usually 14, 16 or 18 strands are observed forming the bacterial porin barrel wall. In contrast, the recent structures of the mitochondrial porin, also known as VDAC (voltage-dependent anion channel), show an uneven number of 19 β-strands, but a similar molecular architecture. Despite the lack of a clear evolutionary link between these protein families, their common principles and differences in assembly, architecture and function are summarized in the present review.
Collapse
|
22
|
Bansal A, Dai Q, Chiao YA, Hakala KW, Zhang JQ, Weintraub ST, Lindsey ML. Proteomic analysis reveals late exercise effects on cardiac remodeling following myocardial infarction. J Proteomics 2010; 73:2041-9. [PMID: 20601275 DOI: 10.1016/j.jprot.2010.06.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 06/22/2010] [Accepted: 06/27/2010] [Indexed: 01/31/2023]
Abstract
Exercise has been shown to improve function of the left ventricle (LV) following myocardial infarction (MI). The mechanisms to explain this benefit have not been fully delineated, but may involve improved mechanics resulting in unloading effects and increased endothelial nitric oxide synthase levels [1,2]. Accordingly, the goal of this study was to determine how the LV infarct proteome is altered by a post-MI exercise regimen. Sprague-Dawley rats underwent ligation of the left descending coronary artery to induce MI. Exercise training was initiated four weeks post-MI and continued for 8 weeks in n=12 rats. Compared with the sedentary MI group (n=10), the infarct region of rats receiving exercise showed 20 protein spots with altered intensities in two-dimensional gels (15 increased and 5 decreased; p<0.05). Of 52 proteins identified in 20 spots, decreased levels of voltage-dependent anion-selective channel 2 and increased levels of glutathione perioxidase and manganese superoxide were confirmed by immunoblotting. Cardiac function was preserved in rats receiving exercise training, and the beneficial effect was linked with changes in these 3 proteins. In conclusion, our results suggest that post-MI exercise training increases anti-oxidant levels and decreases ion channel levels, which may explain, in part, the improved cardiac function seen with exercise.
Collapse
Affiliation(s)
- Arvin Bansal
- Department of Medicine, Division of Cardiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Mitochondrial Ca2+ channels: Great unknowns with important functions. FEBS Lett 2010; 584:1942-7. [PMID: 20074570 DOI: 10.1016/j.febslet.2010.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 12/30/2009] [Accepted: 01/05/2010] [Indexed: 01/31/2023]
Abstract
Mitochondria process local and global Ca(2+) signals. Thereby the spatiotemporal patterns of mitochondrial Ca(2+) signals determine whether the metabolism of these organelles is adjusted or cell death is executed. Mitochondrial Ca(2+) channels of the inner mitochondrial membrane (IMM) actually implement mitochondrial uptake from cytosolic Ca(2+) rises. Despite great efforts in the past, the identity of mitochondrial Ca(2+) channels is still elusive. Numerous studies aimed to characterize mitochondrial Ca(2+) uniport channels and provided a detailed profile of these great unknowns with important functions. This mini-review revisits previous research on the mechanisms of mitochondrial Ca(2+) uptake and aligns them with most recent findings.
Collapse
|
24
|
Atomic Force Microscopy: A Versatile Tool for Studying Cell Morphology, Adhesion and Mechanics. Cell Mol Bioeng 2008. [DOI: 10.1007/s12195-008-0037-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|