1
|
Nakatani Y, Ishikawa K, Aoki Y, Shimooki T, Yamamoto N, Amano T. Inhibitory effect of atomoxetine on Nav1.2 voltage-gated sodium channel currents. Pharmacol Rep 2023; 75:746-752. [PMID: 36914846 DOI: 10.1007/s43440-023-00477-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Atomoxetine (ATX), a norepinephrine reuptake inhibitor (NRI), is used to attenuate the symptoms of Attention Deficit/Hyperactivity Disorder (AD/HD) by increasing neurotransmitter concentrations at the synaptic cleft. Although Nav1.2 voltage-gated sodium channels (VGSCs) are thought to play a role in monoamine transmitter release in the synaptic junction, it is unclear how atomoxetine affects Nav1.2 VGSCs. METHODS In this study, we investigated the effect of ATX on Nav1.2 VGSC-transfected HEK293 cells with the whole-patch clamp technique. RESULTS Nav1.2 VGSC current decreased by 51.15 ± 12.75% under treatment with 50 µM ATX in the resting state (holding membrane potential at - 80 mV). The IC50 of ATX against Nav1.2 VGSC current was 45.57 µM. The activation/inactivation curve of Nav1.2 VGSC currents was shifted toward hyperpolarization by 50 µM ATX. In addition, the inhibitory effect of ATX increased with membrane depolarization (holding membrane potential at - 50 mV) and its IC50 was 10.16 µM. Moreover, ATX showed the time-dependent interaction in the inactivation state. CONCLUSION These findings suggest that ATX interacts with Nav1.2 VGSCs producing the inhibition of current and the modification of kinetic properties in the state-dependent manner.
Collapse
Affiliation(s)
- Yoshihiko Nakatani
- Department of Pharmacotherapeutics, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan.
| | - Kanami Ishikawa
- Department of Pharmacotherapeutics, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Yuko Aoki
- Department of Pharmacotherapeutics, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Takahiro Shimooki
- Department of Pharmacotherapeutics, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Naoki Yamamoto
- Department of Pharmacotherapeutics, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan.,Center for Basic Medical Research, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan.,Laboratory of Neurobiology, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-Shi, Tokyo, 192-0397, Japan
| | - Taku Amano
- Tochigi Prefectural Okamotodai Hospital, 2162 Shimookamotomachi, Utsunomiya, Tochigi, 329-1104, Japan
| |
Collapse
|
2
|
Screening an In-House Isoquinoline Alkaloids Library for New Blockers of Voltage-Gated Na+ Channels Using Voltage Sensor Fluorescent Probes: Hits and Biases. Molecules 2022; 27:molecules27134133. [PMID: 35807390 PMCID: PMC9268414 DOI: 10.3390/molecules27134133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Voltage-gated Na+ (NaV) channels are significant therapeutic targets for the treatment of cardiac and neurological disorders, thus promoting the search for novel NaV channel ligands. With the objective of discovering new blockers of NaV channel ligands, we screened an In-House vegetal alkaloid library using fluorescence cell-based assays. We screened 62 isoquinoline alkaloids (IA) for their ability to decrease the FRET signal of voltage sensor probes (VSP), which were induced by the activation of NaV channels with batrachotoxin (BTX) in GH3b6 cells. This led to the selection of five IA: liriodenine, oxostephanine, thalmiculine, protopine, and bebeerine, inhibiting the BTX-induced VSP signal with micromolar IC50. These five alkaloids were then assayed using the Na+ fluorescent probe ANG-2 and the patch-clamp technique. Only oxostephanine and liriodenine were able to inhibit the BTX-induced ANG-2 signal in HEK293-hNaV1.3 cells. Indeed, liriodenine and oxostephanine decreased the effects of BTX on Na+ currents elicited by the hNaV1.3 channel, suggesting that conformation change induced by BTX binding could induce a bias in fluorescent assays. However, among the five IA selected in the VSP assay, only bebeerine exhibited strong inhibitory effects against Na+ currents elicited by the hNav1.2 and hNav1.6 channels, with IC50 values below 10 µM. So far, bebeerine is the first BBIQ to have been reported to block NaV channels, with promising therapeutical applications.
Collapse
|
3
|
Pharmacological Dissection of the Crosstalk between Na V and Ca V Channels in GH3b6 Cells. Int J Mol Sci 2022; 23:ijms23020827. [PMID: 35055012 PMCID: PMC8775721 DOI: 10.3390/ijms23020827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 02/01/2023] Open
Abstract
Thanks to the crosstalk between Na+ and Ca2+ channels, Na+ and Ca2+ homeostasis interplay in so-called excitable cells enables the generation of action potential in response to electrical stimulation. Here, we investigated the impact of persistent activation of voltage-gated Na+ (NaV) channels by neurotoxins, such as veratridine (VTD), on intracellular Ca2+ concentration ([Ca2+]i) in a model of excitable cells, the rat pituitary GH3b6 cells, in order to identify the molecular actors involved in Na+-Ca2+ homeostasis crosstalk. By combining RT-qPCR, immunoblotting, immunocytochemistry, and patch-clamp techniques, we showed that GH3b6 cells predominantly express the NaV1.3 channel subtype, which likely endorses their voltage-activated Na+ currents. Notably, these Na+ currents were blocked by ICA-121431 and activated by the β-scorpion toxin Tf2, two selective NaV1.3 channel ligands. Using Fura-2, we showed that VTD induced a [Ca2+]i increase. This effect was suppressed by the selective NaV channel blocker tetrodotoxin, as well by the selective L-type CaV channel (LTCC) blocker nifedipine. We also evidenced that crobenetine, a NaV channel blocker, abolished VTD-induced [Ca2+]i elevation, while it had no effects on LTCC. Altogether, our findings highlight a crosstalk between NaV and LTCC in GH3b6 cells, providing a new insight into the mode of action of neurotoxins.
Collapse
|
4
|
Isabel Vergara-Reyes R, Cervantes-Acosta P, Hernández-Beltrán A, Barrientos-Morales M, Domínguez-Mancera B. Leptin Chronic Effect on Differentiation, Ion Currents and Protein Expression in N1E-115 Neuroblastoma Cells. Pak J Biol Sci 2021; 24:297-309. [PMID: 34486314 DOI: 10.3923/pjbs.2021.297.309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> Arcuate nucleus (ARC), a component of appetite-regulatory factors, contains populations of both orexigenic and anorexigenic neurons and one of the fundamental components of its system is leptin. Studies have evidenced the critical neurotrophic role in the development of ARC. To determine such effects on neuron development, N1E-115 neuroblastoma cells were used as an ARC model. <b>Materials and Methods:</b> N1E-115 neuroblastoma cells were treated with leptin [10 nM] for 24, 48 and 72 hrs. Dimethyl sulfoxide (DMSO) 1.5% was used as a known drug that promotes neurite expression. Cells percentage (%) that developed neurites was evaluated by bright field microscopy. Patch-clamp electrophysiology was used to analyze membrane ion currents, RT-PCR for quantifying changes in mRNA expression of anorexic peptides, proopiomelanocortin (POMC) and cocaine and amphetamine-related transcript (CART), in addition to principal Na<sub>v</sub>, Ca<sub>v</sub> ion channel subunits. <b>Results:</b> N1E-115 cells treated with leptin show neurite expression after 24 hrs of treatment, similar effects were obtained with DMSO. Leptin (time-dependent) increases the inward current in comparison with the control value at 72 hrs. Outward currents were not affected by leptin. Leptin and DMSO increased Na<sup>+</sup> and Ca<sup>2+</sup> current without changes in the kinetic properties. Lastly, leptin promotes an increase in mRNA level expression of transcripts to POMC, CART, Na<sub>v</sub>1.2 and Ca<sub>v</sub>1.3. <b>Conclusion:</b> Leptin chronic treatment promotes neurite expression, Up-regulation of Na<sup>+</sup> and Ca<sup>2+</sup> ion channels determining neuronal excitability, besides increasing the mRNA level expression of anorexic peptides POMC and CART in neuroblastoma N1E-115.
Collapse
|
5
|
Neves RAF, Pardal MA, Nascimento SM, Oliveira PJ, Rodrigues ET. Screening-level evaluation of marine benthic dinoflagellates toxicity using mammalian cell lines. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110465. [PMID: 32199217 DOI: 10.1016/j.ecoenv.2020.110465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 03/01/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
Complementary studies at different levels of the biological organization are fundamental to fully link environmental exposure to marine benthic dinoflagellate toxins and their effects. In order to contribute to this transdisciplinary evaluation, and for the first time, the present study aims to study the effects of Gambierdiscus excentricus, Ostreopsis cf. ovata, Prorocentrum hoffmannianum and Prorocentrum lima extracts on seven functionally different mammalian cell lines: HEK 293, HepG2, HNDF, H9c2(2-1), MC3T3-E1, Raw 264.7 and SH-SY5Y. All the cell lines presented cell mass decrease in a concentration-dependence of dinoflagellate extracts, exhibiting marked differences in cell toxicity. Gambierdiscus excentricus presented the highest effect, at very low concentrations with EC50,24h (i.e., the concentration that gives half-maximal response after a 24-h exposure) between 1.3 and 13 cells mL-1, followed by O. cf. ovata (EC50,24h between 3.3 and 40 cells mL-1), and Prorocentrum species (P. lima: EC50,24h between 191 and 1027 cells mL-1 and P. hoffmannianum: EC50,24h between 152 and 783 cells mL-1). Cellular specificities were also detected and rat cardiomyoblast H9c2(2-1) cells were in general the most sensitive to dinoflagellate toxic compounds, suggesting that this cell line is an animal-free potential model for dinoflagellate toxin testing. Finally, the sensitivity of cells expressing distinct phenotypes to each dinoflagellate extract exhibited low relation to human poisoning symptoms.
Collapse
Affiliation(s)
- Raquel A F Neves
- Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Av Pasteur 458-314B, 22290-240, Rio de Janeiro, Brazil; CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Miguel A Pardal
- CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Silvia M Nascimento
- Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Av Pasteur 458-314B, 22290-240, Rio de Janeiro, Brazil.
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197, Cantanhede, Portugal.
| | - Elsa T Rodrigues
- CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| |
Collapse
|
6
|
Imai R, Horita S, Ono Y, Hagihara K, Shimizu M, Maejima Y, Shimomura K. Goshajinkigan, a Traditional Japanese Medicine, Suppresses Voltage-Gated Sodium Channel Nav1.4 Currents in C2C12 Cells. Biores Open Access 2020; 9:116-120. [PMID: 32368413 PMCID: PMC7194311 DOI: 10.1089/biores.2019.0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Goshajinkigan (GJG) is a traditional Japanese Kampo medicine used clinically to treat muscle pain in Japan. However, its underlying mechanism remains unclear. Since voltage-gated sodium channel (Nav) 1.4 is involved in skeletal muscle contraction, we investigated the possibility that GJG may affect Nav1.4 currents. By using an electrophysiological technique on skeletal muscle cell line C2C12, we found that GJG suppresses Nav1.4 currents in C2C12 cells. It is suggested that GJG may improve skeletal muscle stiffness or cramps by inhibiting abnormal Nav1.4 excitation. GJG may act as a Nav1.4 blocker and may be useful to treat muscle stiffness and clamps as well as easing the pain.
Collapse
Affiliation(s)
- Ryota Imai
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shoichiro Horita
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuko Ono
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan.,Department of Disaster and Emergency Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Keisuke Hagihara
- Department of Kampo Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaru Shimizu
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan.,Department of Neurology, Matsumura General Hospital, Fukushima, Japan
| | - Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
7
|
Wang L, Han Z, Dai J, Cao K. Brugada Syndrome Caused by Sodium Channel Dysfunction Associated with a SCN1B Variant A197V. Arch Med Res 2020; 51:245-253. [PMID: 32192759 DOI: 10.1016/j.arcmed.2020.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/18/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE We aimed to identify and characterize a SCN1B variant, A197V, associated with Brugada Syndrome (BrS). METHODS Whole-exome sequencing was employed to explore the potential causative genes in 8 unrelated clinically diagnosed BrS patients. A197V variant was only detected in exon 4 of SCN1B in a 46 year old patient, who was admitted due to syncope. Wild type (WT) and mutant (A197V) genes were co-expressed with SCN5A in human embryonic kidney cells (HEK293 cells) and studied using whole-cell patch clamp and immunodetection techniques. RESULTS Coexpression of 5A/WT + 1B/A197V resulted in a marked decrease in current density compared to 5A/WT + 1B/WT. The activation velocity was decelerated by A197V mutation. No significant changes were observed in recovery from inactivation parameters. Cell surface protein analyses confirmed that Nav1.5 channel membrane distribution was affected by A197V mutation. CONCLUSIONS The current study is the first to report the functional analysis of SCN1B/ A197V, serving as a substrate responsible for BrS.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Cardiology, Nanjing Brain Hospital, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhonglin Han
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Jian Dai
- Department of Cardiology, Nanjing Brain Hospital, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Kejiang Cao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Baroni D, Picco C, Moran O. A mutation of SCN1B associated with GEFS+ causes functional and maturation defects of the voltage-dependent sodium channel. Hum Mutat 2018; 39:1402-1415. [PMID: 29992740 DOI: 10.1002/humu.23589] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/25/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022]
Abstract
Voltage-dependent sodium channels are responsible of the rising phase of the action potential in excitable cells. These integral membrane proteins are composed of a pore-forming α-subunit, and one or more auxiliary β subunits. Mutation p.Asp25Asn (D25N; c.73G > A) of the β1 subunit, coded by the gene SCN1B, has been reported in a patient with generalized epilepsy with febrile seizure plus type 1 (GEFS+). In human embryonic kidney 293 (HEK) cells, the heterologous coexpression of D25N-β1 subunit with Nav1.2, Nav1.4, and Nav1.5 α subunits, representative of brain, skeletal muscle, and heart voltage gated sodium channels, determines a reduced sodium channel functional expression and a negative shift of the activation and inactivation steady state curves. The D25N mutation of the β1 subunit causes a maturation (glycosylation) defect of the protein, leading to a reduced targeting to the plasma membrane. Also the β1-dependent gating properties of the sodium channels are abolished by the mutation, suggesting that D25N is no more able to interact with the α subunit. Our work underscores the role played by the β1 subunit, highlighting how a defective interaction between the sodium channel constituents could lead to a disabling pathological condition, and opens the possibility to design a mutation-specific GEFS+ treatment based on protein maturation.
Collapse
|
9
|
Mutation E87Q of the β1-subunit impairs the maturation of the cardiac voltage-dependent sodium channel. Sci Rep 2017; 7:10683. [PMID: 28878239 PMCID: PMC5587543 DOI: 10.1038/s41598-017-10645-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/11/2017] [Indexed: 12/19/2022] Open
Abstract
Voltage-dependent sodium channels are responsible of the rising phase of the action potential in excitable cells. These membrane integral proteins are composed by a pore-forming α-subunit, and one or more auxiliary β subunits. Mutation E87Q of the β1 subunit is correlated with Brugada syndrome, a genetic disease characterised by ventricular fibrillation, right precordial ST segment elevation on ECG and sudden cardiac death. Heterologous expression of E87Q-β1 subunit in CHO cells determines a reduced sodium channel functional expression. The effect the E87Q mutation of the β1 subunit on sodium currents and α protein expression is correlated with a reduced availability of the mature form of the α subunit in the plasma membrane. This finding offers a new target for the treatment of the Brugada syndrome, based on protein maturation management. This work highlights the role played by the β1 subunit in the maturation and expression of the entire sodium channel complex and underlines how the defective interaction between the sodium channel constituents could lead to a disabling pathological condition.
Collapse
|
10
|
Yang Y, Luo Z, Hao Y, Ba W, Wang R, Wang W, Ding X, Li C. mTOR-mediated Na +/Ca 2+ exchange affects cell proliferation and metastasis of melanoma cells. Biomed Pharmacother 2017; 92:744-749. [PMID: 28591687 DOI: 10.1016/j.biopha.2017.05.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022] Open
Abstract
Melanoma is a common malignant tumor, which is associated with high mortality rate. The multiple-drug resistance of tumor cells often results in failure of chemotherapy. The aim of our study is to investigate the expression of Nav 1.6 in human melanoma cells and human epidermal melanocytes. Additionally, the effect of Na+channels on Ca+ current and mTOR activity in melanoma cells were also analyzed. The protein expression levels of Nav1.6 in human melanocyte PIG1, WM266 and WM115 cells were investigated by western blot. After treatment of Na+ channel inhibitor Tetroadotoxin (TTX) or mTOR inhibitor rapamycin (RAPA), the electrophysiological activity (Na+ current and Ca2+ current) in WM266 and WM115 cells was detected by patch clamp technique. The expression of mTORC1 phosphorylates S6 kinase (p-S6), cell invasion and migration, cell proliferation and cell apoptosis were also performed. Results shown that Nav 1.6 was overexpressed in WM266 and WM115 cells, and the inhibition of Na+ channel by TTX reduced Na+ current. Both TTX and RAPA suppressed Ca2+ current and the expression of p-S6, thus inducing Na+ channel which activates the mTOR-Ca2+ signaling pathway. Both TTX and RAPA suppressed cell invasion, migration and proliferation, and promoted cell apoptosis of WM266 cells. Thus, the Nav1.6 sodium channel promotes cell proliferation and invasion through mTOR-mediated Na+/Ca2+ exchange in melanoma. The observations will provide a new perspective for understanding the malignant biological behavior of melanoma cells, and potentially provide a new drug target.
Collapse
Affiliation(s)
- Yi Yang
- Department of Dermatology, The Chinese PLA General Hospital, China
| | | | - Yonghong Hao
- Department of Dermatology, The Chinese PLA General Hospital, China
| | - Wei Ba
- Department of Dermatology, The Chinese PLA General Hospital, China
| | - Rui Wang
- Department of Dermatology, The Chinese PLA General Hospital, China
| | - Wenjuan Wang
- Department of Dermatology, The Chinese PLA General Hospital, China
| | - Xiangyu Ding
- Department of Dermatology, The Chinese PLA General Hospital, China
| | - Chengxin Li
- Department of Dermatology, The Chinese PLA General Hospital, China.
| |
Collapse
|
11
|
Ramachandra R, Elmslie KS. EXPRESS: Voltage-dependent sodium (NaV) channels in group IV sensory afferents. Mol Pain 2016; 12:12/0/1744806916660721. [PMID: 27385723 PMCID: PMC4956173 DOI: 10.1177/1744806916660721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Patients with intermittent claudication suffer from both muscle pain and an exacerbated exercise pressor reflex. Excitability of the group III and group IV afferent fibers mediating these functions is controlled in part by voltage-dependent sodium (NaV) channels. We previously found tetrodotoxin-resistant NaV1.8 channels to be the primary type in muscle afferent somata. However, action potentials in group III and IV afferent axons are blocked by TTX, supporting a minimal role of NaV1.8 channels. To address these apparent differences in NaV channel expression between axon and soma, we used immunohistochemistry to identify the NaV channels expressed in group IV axons within the gastrocnemius muscle and the dorsal root ganglia sections. Positive labeling by an antibody against the neurofilament protein peripherin was used to identify group IV neurons and axons. We show that >67% of group IV fibers express NaV1.8, NaV1.6, or NaV1.7. Interestingly, expression of NaV1.8 channels in group IV somata was significantly higher than in the fibers, whereas there were no significant differences for either NaV1.6 or NaV1.7. When combined with previous work, our results suggest that NaV1.8 channels are expressed in most group IV axons, but that, under normal conditions, NaV1.6 and/or NaV1.7 play a more important role in action potential generation to signal muscle pain and the exercise pressor reflex.
Collapse
Affiliation(s)
- Renuka Ramachandra
- The Baker Laboratory of Pharmacology, Department of Pharmacology, AT Still University of Health Sciences, Kirksville, MO, USA
- Renuka Ramachandra, The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, AT Still University of Health Sciences, Kirksville, MO 63501, USA.
| | - Keith S Elmslie
- The Baker Laboratory of Pharmacology, Department of Pharmacology, AT Still University of Health Sciences, Kirksville, MO, USA
| |
Collapse
|
12
|
Abstract
The lipid landscapes of cellular membranes are complex and dynamic, are tissue dependent, and can change with the age and the development of a variety of diseases. Researchers are now gaining new appreciation for the regulation of ion channel proteins by the membrane lipids in which they are embedded. Thus, as membrane lipids change, for example, during the development of disease, it is likely that the ionic currents that conduct through the ion channels embedded in these membranes will also be altered. This chapter provides an overview of the complex regulation of prokaryotic and eukaryotic voltage-dependent sodium (Nav) channels by fatty acids, sterols, glycerophospholipids, sphingolipids, and cannabinoids. The impact of lipid regulation on channel gating kinetics, voltage-dependence, trafficking, toxin binding, and structure are explored for Nav channels that have been examined in heterologous expression systems, native tissue, and reconstituted into artificial membranes. Putative mechanisms for Nav regulation by lipids are also discussed.
Collapse
Affiliation(s)
- N D'Avanzo
- Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
13
|
Baroni D, Moran O. Differential gene expression profiles of two excitable rat cell lines after over-expression of WT- and C121W-β1 sodium channel subunits. Neuroscience 2015; 297:105-17. [PMID: 25827112 DOI: 10.1016/j.neuroscience.2015.03.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/11/2015] [Accepted: 03/22/2015] [Indexed: 12/19/2022]
Abstract
Voltage-dependent sodium channels are membrane proteins essential for cell excitability. They are composed by a pore-forming α-subunit, encoded in mammals by up to nine different genes, and four different ancillary β-subunits. The expression pattern of the α subunit isoforms confers the distinctive functional and pharmacological properties to different excitable tissues. β-Subunits are important modulators of channel function and expression. Mutation C121W of the β1-subunit causes an autosomal dominant epileptic syndrome without cardiac symptoms. In neuroectoderm GH3 and cardiac H9C2 cells, the over-expression of β1 subunit augments α subunit mRNA and protein levels as well as sodium current density. Interestingly, the introduction of the epileptogenic C121W-β1 subunit produces additional changes in the α-subunit expression pattern of H9C2 cells, leaving unaltered the sodium channel isoform composition of GH3 cells. The challenge of the present work was to identify those genes that were differentially expressed in response to WT- or C121W-β1 subunit over-expression in the two rat cell lines under analysis. Hence, we analyzed the total mRNA extracted from control-untransfected and from WT- and C121W-β1-transfected GH3 and H9C2 cells by DNA-microarray. We found that, in agreement with their different embryonal origin, the over-expression of WT- and C121W-β1 subunits modifies the expression of different gene sets in GH3 and H9C2 cells. Focusing on the effects of the C121W mutation, we found that it causes the modification of 214 genes, most of them were down-regulated (202) in GH3 cells; on the contrary, it determined the up-regulation of only five genes in H9C2 cells. Interestingly, most genes modified by the C121W β1 subunit are involved in pivotal processes of the cell such as cellular communication and protein expression. Our results confirm the important role of the sodium channel β1 subunit in the control of NaCh gene expression, and highlight once more the tissue-specific effect of the C121W mutation.
Collapse
Affiliation(s)
- D Baroni
- Istituto di Biofisica, CNR, Via De Marini 6, 16149 Genova, Italy.
| | - O Moran
- Istituto di Biofisica, CNR, Via De Marini 6, 16149 Genova, Italy
| |
Collapse
|
14
|
Baroni D, Picco C, Barbieri R, Moran O. Antisense-mediated post-transcriptional silencing of SCN1B gene modulates sodium channel functional expression. Biol Cell 2013; 106:13-29. [PMID: 24138709 DOI: 10.1111/boc.201300040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/11/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND INFORMATION Voltage-dependent sodium channels are membrane proteins essential for cell excitability. They are composed by a pore-forming α-subunit and one or more β subunits. Nine α subunit and five β subunit isoforms have been identified in mammals: β1, its splice variant β1B, β2, β3 and β4. Although they do not form the ion channel pore, β subunits modulate both function as well as expression of sodium channels on cell membrane. RESULTS To investigate the role of β1 subunit on the modulation of sodium channel expression, we silenced this auxiliary subunit with specific antisense oligonucleotides (ASONs) in two rat cell lines, the GH3 and the H9C2, from neuro-ectoderm and cardiac myocyte origin, respectively. Treatment of cells with ASONs determined a reduction of about 50% of β1 subunit mRNA and protein expression in both cell lines. We found that this level of β1 subunit silencing resulted in an overall decrease of α subunit mRNA, protein expression and a decrease of sodium current density, without altering significantly the voltage-dependent and kinetic properties of the currents. In GH3 cells, the β1 subunit silencing reduced the expression of Nav1.1, Nav1.3 and Nav1.6 isoforms, whereas the Nav 1.2 isoform expression remained unaltered. The expression of the only α subunit present in H9C2 cells, the Nav1.5, was also reduced by β1 subunit silencing. CONCLUSIONS These results indicate that the β1 subunit may exert an isoform-specific fine-tuned modulation of sodium channel expression.
Collapse
|
15
|
Baroni D, Barbieri R, Picco C, Moran O. Functional modulation of voltage-dependent sodium channel expression by wild type and mutated C121W-β1 subunit. J Bioenerg Biomembr 2013; 45:353-68. [DOI: 10.1007/s10863-013-9510-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/25/2013] [Indexed: 12/19/2022]
|