1
|
Wang Q, Lin J, Li S, Tian H, Zhang D, Xin Q. Label-Free Detection of Single Living Bacteria: Single-Entity Electrochemistry Targeting Metabolic Products. Anal Chem 2023; 95:13082-13090. [PMID: 37603710 DOI: 10.1021/acs.analchem.3c01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
This study presents a novel approach employing single-entity electrochemistry for the label-free detection of living Escherichia coli. By examination of the collision signals generated from the reduction of hydrogen peroxide, a metabolic product of E. coli that accumulates on the cell surface, the concentration of living bacteria can be determined. Within a broad concentration range from 3.0 × 107 to 1.0 × 109 cells/mL, cell aggregation was not observed. Cell migration in the solution was primarily governed by diffusion, exhibiting a diffusion coefficient of 6.8 × 10-9 cm2/s. The collision frequency exhibits a linear relationship with the cell concentration, aligning well with theoretical predictions. Through statistical analysis of each collision signal's integrated charge quantity, the metabolic activity of single cells can be assessed. This method was applied to a cytotoxicity assay, where it monitored the decline in living cell numbers and metabolic activities in addition to identifying potential cell damage during antibiotic treatment.
Collapse
Affiliation(s)
- Qingwen Wang
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Jun Lin
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Shuang Li
- Zhejiang Energy Technology Co., Ltd., Hangzhou 310023, P. R. China
| | - Huike Tian
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Dong Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Xiasha Campus, Hangzhou 310018, P. R. China
| | - Qing Xin
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| |
Collapse
|
2
|
Velic A, Hasan J, Li Z, Yarlagadda PKDV. Mechanics of Bacterial Interaction and Death on Nanopatterned Surfaces. Biophys J 2020; 120:217-231. [PMID: 33333030 DOI: 10.1016/j.bpj.2020.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/20/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Nanopatterned surfaces are believed to kill bacteria through physical deformation, a mechanism that has immense potential against biochemical resistance. Because of its elusive nature, this mechanism is mostly understood through biophysical modeling. Problematically, accurate descriptions of the contact mechanics and various boundary conditions involved in the bacteria-nanopattern interaction remain to be seen. This may underpin conflicting predictions, found throughout the literature, regarding two important aspects of the mechanism-that is, its critical action site and relationship with geometry. Herein, a robust computational analysis of bacteria-nanopattern interaction is performed using a three-dimensional finite element modeling that incorporates relevant continuum mechanical properties, multilayered envelope structure, and adhesion interaction conditions. The model is applied to more accurately study the elusory mechanism and its enhancement via nanopattern geometry. Additionally, micrographs of bacteria adhered on a nanopatterned cicada wing are examined to further inform and verify the major modeling predictions. Together, the results indicate that nanopatterned surfaces do not kill bacteria predominantly by rupture in between protruding pillars as previously thought. Instead, nondevelopable deformation about pillar tips is more likely to create a critical site at the pillar apex, which delivers significant in-plane strains and may locally rupture and penetrate the cell. The computational analysis also demonstrates that envelope deformation is increased by adhesion to nanopatterns with smaller pillar radii and spacing. These results further progress understanding of the mechanism of nanopatterned surfaces and help guide their design for enhanced bactericidal efficiency.
Collapse
Affiliation(s)
- Amar Velic
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jafar Hasan
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Zhiyong Li
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Prasad K D V Yarlagadda
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
3
|
Zhang X, Ma C, Zhang W, Li W, Yu J, Xue D, Wu X, Deng G. Shifts in microbial community, pathogenicity-related genes and antibiotic resistance genes during dairy manure piled up. Microb Biotechnol 2020; 13:1039-1053. [PMID: 32202696 PMCID: PMC7264890 DOI: 10.1111/1751-7915.13551] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 01/02/2023] Open
Abstract
The uncomposted faeces of dairy cow are usually stacked on cow breeding farms, dried under natural conditions and then used as cow bedding material or they may be continuously piled up. However, no information is available to evaluate variations in the human and animal pathogen genes and antibiotic resistance during the accumulation of fresh faeces of dairy cow to manure. Here, we present the metagenomic analysis of fresh faeces and manure from a dairy farm in Ning Xia, showing a unique enrichment of human and animal pathogen genes and antibiotic resistance genes (ARGs) in manure. We found that manure accumulation could significantly increase the diversity and abundance of the pathogenic constituents. Furthermore, pathogens from manure could spread to the plant environment and enphytotic pathogens could affect the yield and quality of crops during the use of manure as a fertilizer. Levels of virulence genes and ARGs increased with the enrichment of microbes and pathogens when faeces accumulated to manure. Accumulated manure was also the transfer station of ARGs to enrich the ARGs in the environment, indicating the ubiquitous presence of environmental antibiotic resistance genes. Our results demonstrate that manure accumulation and usage without effective manure management is an unreasonable approach that could enrich pathogenic microorganisms and ARGs in the environment. The manure metagenome structure allows us to appreciate the overall influence and interaction of animal waste on water, soil and other areas impacted by faecal accumulation and the factors that influence pathogen occurrence in products from dairy cows.
Collapse
Affiliation(s)
- Xu Zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western ChinaNingxia UniversityNingxiaChina
- School of Life ScienceNingxia UniversityNingxiaChina
| | - Chenjie Ma
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western ChinaNingxia UniversityNingxiaChina
- School of Life ScienceNingxia UniversityNingxiaChina
| | - Wen Zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western ChinaNingxia UniversityNingxiaChina
- School of Life ScienceNingxia UniversityNingxiaChina
| | - Wu Li
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western ChinaNingxia UniversityNingxiaChina
- School of Life ScienceNingxia UniversityNingxiaChina
| | - Jialin Yu
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western ChinaNingxia UniversityNingxiaChina
- School of Life ScienceNingxia UniversityNingxiaChina
| | - Di Xue
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western ChinaNingxia UniversityNingxiaChina
- School of Life ScienceNingxia UniversityNingxiaChina
| | - Xiaolin Wu
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western ChinaNingxia UniversityNingxiaChina
- School of Life ScienceNingxia UniversityNingxiaChina
| | - Guangcun Deng
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western ChinaNingxia UniversityNingxiaChina
- School of Life ScienceNingxia UniversityNingxiaChina
| |
Collapse
|
4
|
Evidence of Multi-Domain Morphological Structures in Living Escherichia coli. Sci Rep 2017; 7:5660. [PMID: 28720785 PMCID: PMC5516040 DOI: 10.1038/s41598-017-05897-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/23/2017] [Indexed: 01/08/2023] Open
Abstract
A combination of light-microscopy and image processing was used to elaborate on the fluctuation in the width of the cylindrical part of Escherichia coli at sub-pixel-resolution, and under in vivo conditions. The mean-squared-width-difference along the axial direction of the cylindrical part of a number of bacteria was measured. The results reveal that the cylindrical part of Escherichia coli is composed of multi-domain morphological structures. The length of the domains starts at 150 nm in newborn cells, and linearly increases in length up to 300 nm in aged cells. The fluctuation in the local-cell-widths in each domain is less than the fluctuation of local-cell-widths between different domains. Local cell width correlations along the cell body occur on a length scale of less than 50 nm. This finding could be associated with the flexibility of the cell envelope in the radial versus longitudinal directions.
Collapse
|