1
|
Wang L, Ma S, Su H, Nie D, Wang L. The molecular mechanism of gemcitabine in inhibiting the HIF-1α/VEGFB/FGF2/FGFR1 signaling pathway for ovarian cancer treatment. Discov Oncol 2025; 16:3. [PMID: 39752011 PMCID: PMC11699178 DOI: 10.1007/s12672-024-01723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
Ovarian cancer is a common malignant tumor in women, exhibiting a certain sensitivity to chemotherapy drugs like gemcitabine (GEM). This study, through the analysis of ovarian cancer single-cell RNA sequencing (scRNA-seq) data and transcriptome data post-GEM treatment, identifies the pivotal role of hypoxia-inducible factor 1 alpha (HIF-1α) in regulating the treatment process. The results reveal that HIF-1α modulates the expression of VEGF-B, thereby inhibiting the fibroblast growth factor 2 (FGF2)/FGFR1 signaling pathway and impacting tumor formation. In vitro experiments validate the mechanistic role of HIF-1α in GEM treatment, demonstrating that overexpression of HIF-1α reverses the drug's effects on ovarian cancer cells while silencing fibroblast growth factor receptor 1 (FGFR1) can restore treatment efficacy. These findings provide essential molecular targets and a theoretical foundation for the development of novel treatment strategies for ovarian cancer in the future.
Collapse
Affiliation(s)
- Liangliang Wang
- Department of Oncology and Gynecology, The First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu, Anhui, China
| | - Shanshan Ma
- Department of Oncology and Gynecology, The First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu, Anhui, China
| | - Huiwen Su
- Department of Oncology and Gynecology, The First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu, Anhui, China
| | - Dandan Nie
- Department of Oncology and Gynecology, The First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu, Anhui, China
| | - Lihua Wang
- Department of Oncology and Gynecology, The First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu, Anhui, China.
| |
Collapse
|
2
|
Shen X, Xu S, Zheng Z, Liang W, Guo J. The regulatory role of tRNA-derived small RNAs in the prognosis of gastric cancer. Cell Signal 2024; 125:111511. [PMID: 39551416 DOI: 10.1016/j.cellsig.2024.111511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
In recent years, tRNA-derived small RNAs (tsRNAs) including tRNA-derived stress-induced RNAs (tiRNAs) and tRNA-derived fragments (tRFs), with specific structure and enriched in body fluids, have been found to have specific biological functions. In this paper, the biogenesis, classification, subcellular localization, and biological functions of tsRNAs were summarized. It has been proved that tsRNAs affected tumor cells in proliferation, apoptosis, migration and invasion, and played roles in regulating the occurrence and development of various tumors. In gastric cancer (GC), the imbalance of tsRNAs, such as tRF-33-P4R8YP9LON4VDP, tRF-17-WS7K092, tRF-23-Q99P9P9NDD and others, was closely related to the clinicopathological characteristics of GC patients. Some tsRNAs, such as tRF-23-Q99P9P9NDD, tRF-31-U5YKFN8DYDZDD, and tRF-27-FDXXE6XRK45 promoted the proliferation, migration and invasion of GC cells. Other tsRNAs, such as tRF-41-YDLBRY73W0K5KKOVD, tRF-18-79MP9PO4, and tRF-Glu-TTC-027 inhibited the proliferation, migration and invasion of GC cells. The tsRNAs played roles in the occurrence of GC were through several signaling pathways, such as phosphoinositide 3-kinase (PI3K)-AKT serine/threonine kinase (AKT), Wnt-β-Catenin, and mitogen-activated protein kinase (MAPK) pathways. These findings may provide new strategies for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Xiaoban Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Shiyi Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zhinuo Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Wei Liang
- Department of Laboratory Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315211, China.
| | - Junming Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
3
|
Zhang S, Zhang M, Ma W, Wang L, Yu B. Knockdown of ERO1L attenuates tumor growth, migration and invasion in lung adenocarcinoma through Wnt/β‑catenin pathway. Biotechnol Genet Eng Rev 2024; 40:1910-1923. [PMID: 37014092 DOI: 10.1080/02648725.2023.2197325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023]
Abstract
Recent studies confirm the critical roles of endoplasmic reticulum oxidoreductase 1 alpha (ERO1L) in malignant behavior of various cancers. Nevertheless, what function ERO1L plays in lung adenocarcinoma (LUAD) remains uncovered. The expressions and clinical significance of ERO1L in LUAD were investigated using the TCGA dataset. The ERO1L levels were examined by RT-qPCR. The LUAD cell proliferation was valued using colony formation as well as CCK-8 assays. The invasion and migration abilities of LUAD cells were detected through Transwell in addition to wound healing assays. The effects of ERO1L on LUAD cell apoptosis were determined by flow cytometric analysis. Moreover, we also established mouse xenograft models of LUAD cells to confirm the functions of ERO1L in vivo. The ERO1L levels in tumors were identified by immunohistochemistry. Western blot was used for the detection of the levels of Wnt/βcatenin signaling-related proteins. The TCGA database revealed that ERO1L expressions were higher in LUAD tissues than those in non-cancerous tissues. ERO1L overexpression was related to poorer overall survival of LUAD patients. In addition, ERO1L silence suppresses LUAD cell clone formation, proliferation, migration as well as invasion but induces apoptosis. Moreover, we also verified that ERO1L silence could promote LUAD growth in vivo. Based on the mechanism analysis, ERO1L was confirmed to regulate LUAD development via Wnt/βcatenin cascade signal. ERO1L, the expression of which was increased in LUAD tissues, functioned as an oncogene. ERO1L silence significantly attenuated LUAD tumorigenesis, likely via inhibition of Wnt/βcatenin signaling, indicating that ERO1L could be exploited as a promising biomarker in LUAD treatment.
Collapse
Affiliation(s)
- Shupeng Zhang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Meng Zhang
- Department of Respiratory Medicine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Weichang Ma
- Department of Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Linan Wang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Bing Yu
- Department of Respiratory Medicine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
4
|
Xia Q, Gao W, Yang J, Xing Z, Ji Z. The deregulation of arachidonic acid metabolism in ovarian cancer. Front Oncol 2024; 14:1381894. [PMID: 38764576 PMCID: PMC11100328 DOI: 10.3389/fonc.2024.1381894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/19/2024] [Indexed: 05/21/2024] Open
Abstract
Arachidonic acid (AA) is a crucial polyunsaturated fatty acid in the human body, metabolized through the pathways of COX, LOX, and cytochrome P450 oxidase to generate various metabolites. Recent studies have indicated that AA and its metabolites play significant regulatory roles in the onset and progression of ovarian cancer. This article examines the recent research advancements on the correlation between AA metabolites and ovarian cancer, both domestically and internationally, suggesting their potential use as biological markers for early diagnosis, targeted therapy, and prognosis monitoring.
Collapse
Affiliation(s)
- Qiuyi Xia
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wen Gao
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jintao Yang
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhifang Xing
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhaodong Ji
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Okumura T, Raja Xavier JP, Pasternak J, Yang Z, Hang C, Nosirov B, Singh Y, Admard J, Brucker SY, Kommoss S, Takeda S, Staebler A, Lang F, Salker MS. Rel Family Transcription Factor NFAT5 Upregulates COX2 via HIF-1α Activity in Ishikawa and HEC1a Cells. Int J Mol Sci 2024; 25:3666. [PMID: 38612478 PMCID: PMC11012216 DOI: 10.3390/ijms25073666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Nuclear factor of activated T cells 5 (NFAT5) and cyclooxygenase 2 (COX2; PTGS2) both participate in diverse pathologies including cancer progression. However, the biological role of the NFAT5-COX2 signaling pathway in human endometrial cancer has remained elusive. The present study explored whether NFAT5 is expressed in endometrial tumors and if NFAT5 participates in cancer progression. To gain insights into the underlying mechanisms, NFAT5 protein abundance in endometrial cancer tissue was visualized by immunohistochemistry and endometrial cancer cells (Ishikawa and HEC1a) were transfected with NFAT5 or with an empty plasmid. As a result, NFAT5 expression is more abundant in high-grade than in low-grade endometrial cancer tissue. RNA sequencing analysis of NFAT5 overexpression in Ishikawa cells upregulated 37 genes and downregulated 20 genes. Genes affected included cyclooxygenase 2 and hypoxia inducible factor 1α (HIF1A). NFAT5 transfection and/or treatment with HIF-1α stabilizer exerted a strong stimulating effect on HIF-1α promoter activity as well as COX2 expression level and prostaglandin E2 receptor (PGE2) levels. Our findings suggest that activation of NFAT5-HIF-1α-COX2 axis could promote endometrial cancer progression.
Collapse
Affiliation(s)
- Toshiyuki Okumura
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan;
| | - Janet P. Raja Xavier
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Jana Pasternak
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Zhiqi Yang
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Cao Hang
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Bakhtiyor Nosirov
- Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Yogesh Singh
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, D-72074 Tübingen, Germany;
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, D-72074 Tübingen, Germany;
| | - Sara Y. Brucker
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Stefan Kommoss
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan;
| | - Annette Staebler
- Institute of Pathology, Eberhard Karls University, D-72074 Tübingen, Germany;
| | - Florian Lang
- Institute of Physiology, Eberhard Karls University, D-72074 Tübingen, Germany;
| | - Madhuri S. Salker
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| |
Collapse
|
6
|
Sadozai H, Acharjee A, Kayani HZ, Gruber T, Gorczynski RM, Burke B. High hypoxia status in pancreatic cancer is associated with multiple hallmarks of an immunosuppressive tumor microenvironment. Front Immunol 2024; 15:1360629. [PMID: 38510243 PMCID: PMC10951397 DOI: 10.3389/fimmu.2024.1360629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer, is a particularly lethal disease that is often diagnosed late and is refractory to most forms of treatment. Tumour hypoxia is a key hallmark of PDAC and is purported to contribute to multiple facets of disease progression such as treatment resistance, increased invasiveness, metabolic reprogramming, and immunosuppression. Methods We used the Buffa gene signature as a hypoxia score to profile transcriptomics datasets from PDAC cases. We performed cell-type deconvolution and gene expression profiling approaches to compare the immunological phenotypes of cases with low and high hypoxia scores. We further supported our findings by qPCR analyses in PDAC cell lines cultured in hypoxic conditions. Results First, we demonstrated that this hypoxia score is associated with increased tumour grade and reduced survival suggesting that this score is correlated to disease progression. Subsequently, we compared the immune phenotypes of cases with high versus low hypoxia score expression (HypoxiaHI vs. HypoxiaLOW) to show that high hypoxia is associated with reduced levels of T cells, NK cells and dendritic cells (DC), including the crucial cDC1 subset. Concomitantly, immune-related gene expression profiling revealed that compared to HypoxiaLOW tumours, mRNA levels for multiple immunosuppressive molecules were notably elevated in HypoxiaHI cases. Using a Random Forest machine learning approach for variable selection, we identified LGALS3 (Galectin-3) as the top gene associated with high hypoxia status and confirmed its expression in hypoxic PDAC cell lines. Discussion In summary, we demonstrated novel associations between hypoxia and multiple immunosuppressive mediators in PDAC, highlighting avenues for improving PDAC immunotherapy by targeting these immune molecules in combination with hypoxia-targeted drugs.
Collapse
Affiliation(s)
- Hassan Sadozai
- Centre for Health and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Hateem Z. Kayani
- Centre for Health and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Thomas Gruber
- Independent Scholar, National Coalition of Independent Scholars, Visp, Switzerland
| | | | - Bernard Burke
- Centre for Health and Life Sciences, Coventry University, Coventry, United Kingdom
| |
Collapse
|
7
|
Dzhugashvili E, Tamkovich S. Exosomal Cargo in Ovarian Cancer Dissemination. Curr Issues Mol Biol 2023; 45:9851-9867. [PMID: 38132461 PMCID: PMC10742327 DOI: 10.3390/cimb45120615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Ovarian cancer (OC) has the highest mortality rate among all gynecologic cancers and is characterized by early peritoneal spread. The growth and development of OC are associated with the formation of ascitic fluid, creating a unique tumor microenvironment. Understanding the mechanisms of tumor progression is crucial in identifying new diagnostic biomarkers and developing novel therapeutic strategies. Exosomes, lipid bilayer vesicles measuring 30-150 nm in size, are known to establish a crucial link between malignant cells and their microenvironment. Additionally, the confirmed involvement of exosomes in carcinogenesis enables them to mediate the invasion, migration, metastasis, and angiogenesis of tumor cells. Functionally active non-coding RNAs (such as microRNAs, long non-coding RNAs, circRNAs), proteins, and lipid rafts transported within exosomes can activate numerous signaling pathways and modify gene expression. This review aims to expand our understanding of the role of exosomes and their contents in OC carcinogenesis processes such as epithelial-mesenchymal transition (EMT), angiogenesis, vasculogenic mimicry, tumor cell proliferation, and peritoneal spread. It also discusses the potential for utilizing exosomal cargo to develop novel "liquid biopsy" biomarkers for early OC diagnosis.
Collapse
Affiliation(s)
- Ekaterina Dzhugashvili
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Svetlana Tamkovich
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Sharma A, Sharma I. In vitro chemo-preventive efficacy of synthetic progestin Norethindrone in human epithelial ovarian cancer. Med Oncol 2023; 40:195. [PMID: 37270458 DOI: 10.1007/s12032-023-02061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
Progestin-only based oral contraceptives are majorly used as 'minipill' to prevent unintended pregnancy and treat conditions like polycystic ovary syndrome, hirsutism, and acne. However, the dearth of literature has constrained our comprehension of the exogenous progestin in relation to ovarian cancer progression. Therefore, the aim of the present study was to evaluate the chemo-preventive potential of synthetic progestin Norethindrone (NET) in epithelial ovarian cancer in vitro. Briefly, SKOV3 cells were treated with 1, 10 and 100 µM concentrations of NET for seven days period. The assays for cell viability, wound-healing, cell cycle progression, detection of reactive oxygen species (ROS) and apoptosis were executed to illustrate the protective role of NET. To further clarify the underlying process, quantitative analysis of mRNA levels of oncogenes linked to angiogenesis, inflammation, proliferation, and metastasis (VEGF, HIF-1α, COX-2, and PGRMC1) and tumour suppressor (TP53) genes was conducted. Our study revealed that NET treatment significantly reduced SKOV3 cell growth by inducing cell cycle arrest at G2/M phase, elevating ROS levels, triggering cell death via apoptosis and necrosis, and inhibiting cell migration in a dose-dependent manner. Notably, NET also upregulated TP53 expression while concurrently downregulating VEGF, HIF-1α, COX-2, and PGRMC1 expression. Our results demonstrated that the chemo-preventive effect of Norethindrone may originate from the interaction of genes which exert a protective effect against ovarian carcinogenesis. The current findings also support further investigation, which may lead to changes in prescription practices or health-related advice for women.
Collapse
Affiliation(s)
- Anuradha Sharma
- Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Indu Sharma
- Department of Zoology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
9
|
Zhang A, Zou X, Yang S, Yang H, Ma Z, Li J. Effect of NETs/COX-2 pathway on immune microenvironment and metastasis in gastric cancer. Front Immunol 2023; 14:1177604. [PMID: 37153547 PMCID: PMC10156975 DOI: 10.3389/fimmu.2023.1177604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Background Neutrophil extracellular traps (NETs) are crucial in the progression of several cancers. The formation of NETs is closely related to reactive oxygen species (ROS), and the granule proteins involved in nucleosome depolymerization under the action of ROS together with the loosened DNA compose the basic structure of NETs. This study aims to investigate the specific mechanisms of NETs promoting gastric cancer metastasis in order to perfect the existing immunotherapy strategies. Methods In this study, the cells and tumor tissues of gastric cancer were detected by immunological experiments, real-time polymerase chain reaction and cytology experiments. Besides, bioinformatics analysis was used to analyze the correlation between cyclooxygenase-2 (COX-2) and the immune microenvironment of gastric cancer, as well as its effect on immunotherapy. Results Examination of clinical specimens showed that NETs were deposited in tumor tissues of patients with gastric cancer and their expression was significantly correlated with tumor staging. Bioinformatics analysis showed that COX-2 was involved in gastric cancer progression and was associated with immune cell infiltration as well as immunotherapy. In vitro experiments, we demonstrated that NETs could activate COX-2 through Toll-like receptor 2 (TLR2) and thus enhance the metastatic ability of gastric cancer cells. In addition, in a liver metastasis model of nude mice we also demonstrated the critical role of NETs and COX-2 in the distant metastasis of gastric cancer. Conclusion NETs can promote gastric cancer metastasis by initiating COX-2 through TLR2, and COX-2 may become a target for gastric cancer immunotherapy.
Collapse
Affiliation(s)
- Ange Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Xiaoming Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- *Correspondence: Xiaoming Zou,
| | - Shifeng Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Hao Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Zhen Ma
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Jiacheng Li
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|
10
|
Ervin EH, French R, Chang CH, Pauklin S. Inside the stemness engine: Mechanistic links between deregulated transcription factors and stemness in cancer. Semin Cancer Biol 2022; 87:48-83. [PMID: 36347438 DOI: 10.1016/j.semcancer.2022.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/07/2022]
Abstract
Cell identity is largely determined by its transcriptional profile. In tumour, deregulation of transcription factor expression and/or activity enables cancer cell to acquire a stem-like state characterised by capacity to self-renew, differentiate and form tumours in vivo. These stem-like cancer cells are highly metastatic and therapy resistant, thus warranting a more complete understanding of the molecular mechanisms downstream of the transcription factors that mediate the establishment of stemness state. Here, we review recent research findings that provide a mechanistic link between the commonly deregulated transcription factors and stemness in cancer. In particular, we describe the role of master transcription factors (SOX, OCT4, NANOG, KLF, BRACHYURY, SALL, HOX, FOX and RUNX), signalling-regulated transcription factors (SMAD, β-catenin, YAP, TAZ, AP-1, NOTCH, STAT, GLI, ETS and NF-κB) and unclassified transcription factors (c-MYC, HIF, EMT transcription factors and P53) across diverse tumour types, thereby yielding a comprehensive overview identifying shared downstream targets, highlighting unique mechanisms and discussing complexities.
Collapse
Affiliation(s)
- Egle-Helene Ervin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Rhiannon French
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| |
Collapse
|
11
|
Hypoxia as a Modulator of Inflammation and Immune Response in Cancer. Cancers (Basel) 2022; 14:cancers14092291. [PMID: 35565420 PMCID: PMC9099524 DOI: 10.3390/cancers14092291] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
A clear association between hypoxia and cancer has heretofore been established; however, it has not been completely developed. In this sense, the understanding of the tumoral microenvironment is critical to dissect the complexity of cancer, including the reduction in oxygen distribution inside the tumoral mass, defined as tumoral hypoxia. Moreover, hypoxia not only influences the tumoral cells but also the surrounding cells, including those related to the inflammatory processes. In this review, we analyze the participation of HIF, NF-κB, and STAT signaling pathways as the main components that interconnect hypoxia and immune response and how they modulate tumoral growth. In addition, we closely examine the participation of the immune cells and how they are affected by hypoxia, the effects of the progression of cancer, and some innovative applications that take advantage of this knowledge, to suggest potential therapies. Therefore, we contribute to the understanding of the complexity of cancer to propose innovative therapeutic strategies in the future.
Collapse
|