1
|
Williams MD, Ragireddy V, Dent MR, Tejero J. Engineering neuroglobin nitrite reductase activity based on myoglobin models. Biochem Biophys Rep 2023; 36:101560. [PMID: 37929291 PMCID: PMC10623171 DOI: 10.1016/j.bbrep.2023.101560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023] Open
Abstract
Neuroglobin is a hemoprotein expressed in several nervous system cell lineages with yet unknown physiological functions. Neuroglobin presents a very similar structure to that of the related globins hemoglobin and myoglobin, but shows an hexacoordinate heme as compared to the pentacoordinated heme of myoglobin and hemoglobin. While several reactions of neuroglobin have been characterized in vitro, the relative importance of most of those reactions in vivo is yet undefined. Neuroglobin, like other heme proteins, can reduce nitrite to nitric oxide, providing a possible route to generate nitric oxide in vivo in low oxygen conditions. The reaction kinetics are highly dependent on the nature of the distal residue, and replacement of the distal histidine His64(E7) can increase the reaction rate constants by several orders of magnitude. However, mutation of other distal pocket positions such as Phe28(B10) or Val68(E11) has more limited impact on the rates. Computational analysis using myoglobin as template, guided by the structure of dedicated nitrite reductases like cytochrome cd1 nitrite reductase, has pointed out that combined mutations of the residues B10 and CD1 could increase the nitrite reductase activity of myoglobin, by mimicking the environment of the distal heme pocket in cytochrome cd1 nitrite reductase. As neuroglobin shows high sequence and structural homology with myoglobin, we hypothesized that such mutations (F28H and F42Y in neuroglobin) could also modify the nitrite reductase activity of neuroglobin. Here we study the effect of these mutations. Unfortunately, we do not observe in any case an increase in the nitrite reduction rates. Our results provide some further indications of nitrite reductase regulation in neuroglobin and highlight the minor but critical differences between the structure of penta- and hexacoordinate globins.
Collapse
Affiliation(s)
- Mark D. Williams
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Venkata Ragireddy
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Matthew R. Dent
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Jesús Tejero
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
2
|
Freindorf M, Delgado AAA, Kraka E. CO bonding in hexa‐ and pentacoordinate carboxy‐neuroglobin: A quantum mechanics/molecular mechanics and local vibrational mode study. J Comput Chem 2022. [DOI: 10.1002/jcc.26973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marek Freindorf
- Department of Chemistry Southern Methodist University Dallas Texas USA
| | | | - Elfi Kraka
- Department of Chemistry Southern Methodist University Dallas Texas USA
| |
Collapse
|
3
|
Ascenzi P, di Masi A, Leboffe L, Fiocchetti M, Nuzzo MT, Brunori M, Marino M. Neuroglobin: From structure to function in health and disease. Mol Aspects Med 2016; 52:1-48. [DOI: 10.1016/j.mam.2016.10.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 01/01/2023]
|
4
|
Van Doorslaer S, Trandafir F, Harmer JR, Moens L, Dewilde S. EPR analysis of cyanide complexes of wild-type human neuroglobin and mutants in comparison to horse heart myoglobin. Biophys Chem 2014; 190-191:8-16. [DOI: 10.1016/j.bpc.2014.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/21/2014] [Accepted: 03/28/2014] [Indexed: 02/05/2023]
|
5
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
6
|
EPR investigation of the role of B10 phenylalanine in neuroglobin — Evidence that B10Phe mediates structural changes in the heme region upon disulfide-bridge formation. J Inorg Biochem 2011; 105:1131-7. [DOI: 10.1016/j.jinorgbio.2011.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/31/2011] [Accepted: 05/31/2011] [Indexed: 11/18/2022]
|
7
|
Zhang B, Xu J, Li Y, Du W, Fang W. Molecular dynamics simulation of carboxy and deoxy human cytoglobin in solution. J Inorg Biochem 2011; 105:949-56. [DOI: 10.1016/j.jinorgbio.2011.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 11/30/2022]
|
8
|
Xu J, Yin G, Du W. Distal mutation modulates the heme sliding in mouse neuroglobin investigated by molecular dynamics simulation. Proteins 2010; 79:191-202. [DOI: 10.1002/prot.22872] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Nienhaus K, Dominici P, Astegno A, Abbruzzetti S, Viappiani C, Nienhaus GU. Ligand migration and binding in nonsymbiotic hemoglobins of Arabidopsis thaliana. Biochemistry 2010; 49:7448-58. [PMID: 20666470 DOI: 10.1021/bi100768g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We have studied carbon monoxide (CO) migration and binding in the nonsymbiotic hemoglobins AHb1 and AHb2 of Arabidopsis thaliana using Fourier transform infrared (FTIR) spectroscopy combined with temperature derivative spectroscopy (TDS) at cryogenic temperatures. Both proteins have similar amino acid sequences but display pronounced differences in ligand binding properties, at both physiological and cryogenic temperatures. Near neutral pH, the distal HisE7 side chain is close to the heme-bound ligand in the majority of AHb1-CO molecules, as indicated by a low CO stretching frequency at 1921 cm(-1). In this fraction, two CO docking sites can be populated, the primary site B and the secondary site C. When the pH is lowered, a high-frequency stretching band at approximately 1964 cm(-1) grows at the expense of the low-frequency band, indicating that HisE7 protonates and, concomitantly, moves away from the bound ligand. Geminate rebinding barriers are markedly different for the two conformations, and docking site C is not accessible in the low-pH conformation. Rebinding of NO ligands was observed only from site B of AHb1, regardless of conformation. In AHb2, the HisE7 side chain is removed from the bound ligand; rebinding barriers are low, and CO molecules can populate only primary docking site B. These results are interpreted in terms of differences in the active site structures and physiological functions.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Nienhaus K, Nienhaus GU. Ligand dynamics in heme proteins observed by Fourier transform infrared-temperature derivative spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:1030-41. [PMID: 20656073 DOI: 10.1016/j.bbapap.2010.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 11/29/2022]
Abstract
Fourier transform infrared (FTIR) spectroscopy is a powerful tool for the investigation of protein-ligand interactions in heme proteins. Nitric oxide and carbon monoxide are attractive physiologically relevant ligands because their bond stretching vibrations give rise to strong mid-infrared absorption bands that can be measured with exquisite sensitivity and precision using photolysis difference spectroscopy at cryogenic temperatures. These stretching bands are fine-tuned by electrostatic interactions with the environment and, therefore, ligands can be utilized as local probes of structure and dynamics. Bound to the heme iron, the ligand stretching bands are susceptible to changes in the iron-ligand bond and the electric field at the active site. Upon photolysis, the vibrational bands display changes due to ligand relocation to docking sites within the protein, rotational motions of the ligand in these sites and protein conformational changes. Photolysis difference spectra taken over a wide temperature range (3-300K) using specific temperature protocols for sample photodissociation can provide detailed insights into both protein and ligand dynamics. Moreover, temperature-derivative spectroscopy (TDS) has proven to be a particularly powerful technique to study protein-ligand interactions. The FTIR-TDS technique has been extensively applied to studies of carbon monoxide binding to heme proteins, whereas measurements with nitric oxide are still scarce. Here we describe infrared cryo-spectroscopy and present a variety of applications to the study of protein-ligand interactions in heme proteins. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- Karin Nienhaus
- Karlsruhe Institute of Technology (KIT), Institute of Applied Physics and Center for Functional Nanostructures, Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe, Germany
| | | |
Collapse
|
11
|
Lin X, Zhao W, Wang X. Characterization of conformational changes and noncovalent complexes of myoglobin by electrospray ionization mass spectrometry, circular dichroism and fluorescence spectroscopy. JOURNAL OF MASS SPECTROMETRY : JMS 2010; 45:618-626. [PMID: 20527030 DOI: 10.1002/jms.1747] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) was employed to monitor the heme release and the conformational changes of myoglobin (Mb) under different solvent conditions, and to observe ligand bindings of Mb. ESI-MS, complemented by circular dichroism and fluorescence spectroscopy, was used to study the mechanism of acid- and organic solvent-induced denaturation by probing the changes in the secondary and the tertiary structure of Mb. The results obtained show that complete disruption of the heme-protein interactions occurs when Mb is subjected to one of the following solution conditions: pH 3.2-3.6, or solution containing 20-30% acetonitrile or 40-50% methanol. Outside these ranges, Mb is present entirely in its native state (binding with a heme group) or as apomyoglobin (i.e. without the heme). Spectroscopic data demonstrate that the denaturation mechanism of Mb induced by acid may be significantly different from that by the organic solvent. Low pH reduces helices in Mb, whereas certain organic content level in solution results in the loss of the tertiary structure. ESI-MS conditions were established to observe the H(2)O- and CO-bound Mb complexes, respectively. H(2)O binding to metmyoglobin (17,585 Da), where the heme iron is in the ferric oxidation state, is observed in ESI-MS. CO binding to Mb (17,595 Da), on the other hand, can be only observed after the heme iron is reduced to the ferrous form. Therefore, ESI-MS combined with spectroscopic techniques provides a useful means for probing the formation of ligand-binding complexes and characterizing protein conformational changes.
Collapse
Affiliation(s)
- Xin Lin
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, Hubei 430074, China
| | | | | |
Collapse
|
12
|
Elber R. Ligand diffusion in globins: simulations versus experiment. Curr Opin Struct Biol 2010; 20:162-7. [PMID: 20116995 PMCID: PMC2854186 DOI: 10.1016/j.sbi.2010.01.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/04/2010] [Accepted: 01/05/2010] [Indexed: 11/15/2022]
Abstract
Computer simulations in molecular biophysics describe in atomic detail the structure, dynamics, and function of biological macromolecules. To assess the quality of these models and to pick up new mechanisms, comparisons with experimental measurements are made. Most comparisons examine thermodynamic and average structural properties. Here we discuss studies of dynamics and fluctuations in a protein. The diffusion of a small ligand between internal cavities in myoglobin, and its escape to solvent are considered. Qualitative and semi-quantitative agreements between experiment and simulation are obtained for the identities of the cavities that physically trap the ligand and for the connections between them. However, experimental and computational 'doors' are at significant variance. Simulations suggest multiple gates while kinetic experiments point to one dominant exit.
Collapse
Affiliation(s)
- Ron Elber
- Department of Chemistry and Biochemistry, Institute of Computational Engineering and Sciences (ICES), 1 University Station, ICES, C0200, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
13
|
Nienhaus K, Lutz S, Meuwly M, Nienhaus GU. Structural Identification of Spectroscopic Substates in Neuroglobin. Chemphyschem 2010; 11:119-29. [DOI: 10.1002/cphc.200900637] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Lutz S, Nienhaus K, Nienhaus GU, Meuwly M. Ligand Migration between Internal Docking Sites in Photodissociated Carbonmonoxy Neuroglobin. J Phys Chem B 2009; 113:15334-43. [DOI: 10.1021/jp905673p] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stephan Lutz
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland; Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany; and Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801
| | - Karin Nienhaus
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland; Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany; and Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801
| | - G. Ulrich Nienhaus
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland; Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany; and Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland; Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany; and Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801
| |
Collapse
|
15
|
Mishra S, Meuwly M. Nitric oxide dynamics in truncated hemoglobin: docking sites, migration pathways, and vibrational spectroscopy from molecular dynamics simulations. Biophys J 2009; 96:2105-18. [PMID: 19289037 DOI: 10.1016/j.bpj.2008.11.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 11/28/2022] Open
Abstract
Atomistic simulations of nitric oxide (NO) dynamics and migration in the trHbN of Mycobacterium tuberculosis are reported. From extensive molecular dynamics simulations (48 ns in total), the structural and energetic properties of the ligand docking sites in the protein have been characterized and a connectivity network between the ligand docking sites has been built. Several novel migration and exit pathways are found and are analyzed in detail. The interplay between a hydrogen-bonding network involving residues Tyr(33) and Gln(58) and the bound O(2) ligand is discussed and the role of Phe(62) residue in ligand migration is examined. It is found that Phe(62) is directly involved in controlling ligand migration. This is reminiscent of His(64) in myoglobin, which also plays a central role in CO migration pathways. Finally, infrared spectra of the NO molecule in different ligand docking sites of the protein are calculated. The pocket-specific spectra are typically blue-shifted by 5-10 cm(-1), which should be detectable in future spectroscopic experiments.
Collapse
|