1
|
Asor R, Singaram SW, Levi-Kalisman Y, Hagan MF, Raviv U. Effect of ionic strength on the assembly of simian vacuolating virus capsid protein around poly(styrene sulfonate). THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:107. [PMID: 37917241 DOI: 10.1140/epje/s10189-023-00363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
Virus-like particles (VLPs) are noninfectious nanocapsules that can be used for drug delivery or vaccine applications. VLPs can be assembled from virus capsid proteins around a condensing agent, such as RNA, DNA, or a charged polymer. Electrostatic interactions play an important role in the assembly reaction. VLPs assemble from many copies of capsid protein, with a combinatorial number of intermediates. Hence, the mechanism of the reaction is poorly understood. In this paper, we combined solution small-angle X-ray scattering (SAXS), cryo-transmission electron microscopy (TEM), and computational modeling to determine the effect of ionic strength on the assembly of Simian Vacuolating Virus 40 (SV40)-like particles. We mixed poly(styrene sulfonate) with SV40 capsid protein pentamers at different ionic strengths. We then characterized the assembly product by SAXS and cryo-TEM. To analyze the data, we performed Langevin dynamics simulations using a coarse-grained model that revealed incomplete, asymmetric VLP structures consistent with the experimental data. We found that close to physiological ionic strength, [Formula: see text] VLPs coexisted with VP1 pentamers. At lower or higher ionic strengths, incomplete particles coexisted with pentamers and [Formula: see text] particles. Including the simulated structures was essential to explain the SAXS data in a manner that is consistent with the cryo-TEM images.
Collapse
Affiliation(s)
- Roi Asor
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Surendra W Singaram
- Department of Physics, Brandeis University, 415 South Street, Waltham, 02453, MA, USA
| | - Yael Levi-Kalisman
- Institute of Life Sciences and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Michael F Hagan
- Department of Physics, Brandeis University, 415 South Street, Waltham, 02453, MA, USA.
| | - Uri Raviv
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel.
| |
Collapse
|
2
|
Duran-Meza AL, Oster L, Sportsman R, Phillips M, Knobler CM, Gelbart WM. Long ssRNA undergoes continuous compaction in the presence of polyvalent cations. Biophys J 2023; 122:3469-3475. [PMID: 37501368 PMCID: PMC10502455 DOI: 10.1016/j.bpj.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023] Open
Abstract
In the presence of polyvalent cations, long double-stranded DNA (dsDNA) in dilute solution undergoes a single-molecule, first-order, phase transition ("condensation"), a phenomenon that has been documented and analyzed by many years of experimental and theoretical studies. There has been no systematic effort, however, to determine whether long single-stranded RNA (ssRNA) shows an analogous behavior. In this study, using dynamic light scattering, analytical ultracentrifugation, and gel electrophoresis, we examine the effects of increasing polyvalent cation concentrations on the effective size of long ssRNAs ranging from 3000 to 12,000 nucleotides. Our results indicate that ssRNA does not undergo a discontinuous condensation as does dsDNA but rather a "continuous" decrease in size with increasing polyvalent cation concentration. And, instead of the 10-fold decrease in size shown by long dsDNA, we document a 50% decrease, as demonstrated for a range of lengths and sequences of ssRNA.
Collapse
Affiliation(s)
| | - Liya Oster
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California
| | - Richard Sportsman
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California
| | - Martin Phillips
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California
| | - Charles M Knobler
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California.
| | - William M Gelbart
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California; Molecular Biology Institute, UCLA, Los Angeles, California; California NanoSystems Institute, UCLA, Los Angeles, California
| |
Collapse
|
3
|
Clark AB, Safdari M, Zoorob S, Zandi R, van der Schoot P. Relaxational dynamics of the T-number conversion of virus capsids. J Chem Phys 2023; 159:084904. [PMID: 37610017 DOI: 10.1063/5.0160822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023] Open
Abstract
We extend a recently proposed kinetic theory of virus capsid assembly based on Model A kinetics and study the dynamics of the interconversion of virus capsids of different sizes triggered by a quench, that is, by sudden changes in the solution conditions. The work is inspired by in vitro experiments on functionalized coat proteins of the plant virus cowpea chlorotic mottle virus, which undergo a reversible transition between two different shell sizes (T = 1 and T = 3) upon changing the acidity and salinity of the solution. We find that the relaxation dynamics are governed by two time scales that, in almost all cases, can be identified as two distinct processes. Initially, the monomers and one of the two types of capsids respond to the quench. Subsequently, the monomer concentration remains essentially constant, and the conversion between the two capsid species completes. In the intermediate stages, a long-lived metastable steady state may present itself, where the thermodynamically less stable species predominate. We conclude that a Model A based relaxational model can reasonably describe the early and intermediate stages of the conversion experiments. However, it fails to provide a good representation of the time evolution of the state of assembly of the coat proteins in the very late stages of equilibration when one of the two species disappears from the solution. It appears that explicitly incorporating the nucleation barriers to assembly and disassembly is crucial for an accurate description of the experimental findings, at least under conditions where these barriers are sufficiently large.
Collapse
Affiliation(s)
- Alexander Bryan Clark
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Mohammadamin Safdari
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Selim Zoorob
- Biophysics Graduate Program, University of California, Riverside, California 92521, USA
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
- Biophysics Graduate Program, University of California, Riverside, California 92521, USA
| | - Paul van der Schoot
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
4
|
Muhren HJ, van der Schoot P. Electrostatic Theory of the Acidity of the Solution in the Lumina of Viruses and Virus-Like Particles. J Phys Chem B 2023; 127:2160-2168. [PMID: 36881522 PMCID: PMC10026070 DOI: 10.1021/acs.jpcb.2c08604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Recently, Maassen et al. measured an appreciable pH difference between the bulk solution and the solution in the lumen of virus-like particles, self-assembled in an aqueous buffer solution containing the coat proteins of a simple plant virus and polyanions (Maassen, S. J.; et al. Small 2018, 14, 1802081). They attribute this to the Donnan effect, caused by an imbalance between the number of negative charges on the encapsulated polyelectrolyte molecules and the number of positive charges on the RNA binding domains of the coat proteins that make up the virus shell or capsid. By applying Poisson-Boltzmann theory, we confirm this conclusion and show that simple Donnan theory is accurate even for the smallest of viruses and virus-like particles. This, in part, is due to the additional screening caused by the presence of a large number of immobile charges in the cavity of the shell. The presence of a net charge on the outer surface of the capsid we find in practice to not have a large effect on the pH shift. Hence, Donnan theory can indeed be applied to connect the local pH and the amount of encapsulated material. The large shifts up to a full pH unit that we predict must have consequences for applications of virus capsids as nanocontainers in bionanotechnology and artificial cell organelles.
Collapse
Affiliation(s)
- H J Muhren
- Soft Matter and Biological Physics, Department of Applied Physics and Science Education, Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands
| | - Paul van der Schoot
- Soft Matter and Biological Physics, Department of Applied Physics and Science Education, Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
5
|
Tsidilkovski L, Mohajerani F, Hagan MF. Microcompartment assembly around multicomponent fluid cargoes. J Chem Phys 2022; 156:245104. [PMID: 35778087 PMCID: PMC9249432 DOI: 10.1063/5.0089556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This article describes dynamical simulations of the assembly of an icosahedral protein shell around a bicomponent fluid cargo. Our simulations are motivated by bacterial microcompartments, which are protein shells found in bacteria that assemble around a complex of enzymes and other components involved in certain metabolic processes. The simulations demonstrate that the relative interaction strengths among the different cargo species play a key role in determining the amount of each species that is encapsulated, their spatial organization, and the nature of the shell assembly pathways. However, the shell protein–shell protein and shell protein–cargo component interactions that help drive assembly and encapsulation also influence cargo composition within certain parameter regimes. These behaviors are governed by a combination of thermodynamic and kinetic effects. In addition to elucidating how natural microcompartments encapsulate multiple components involved within reaction cascades, these results have implications for efforts in synthetic biology to colocalize alternative sets of molecules within microcompartments to accelerate specific reactions. More broadly, the results suggest that coupling between self-assembly and multicomponent liquid–liquid phase separation may play a role in the organization of the cellular cytoplasm.
Collapse
Affiliation(s)
- Lev Tsidilkovski
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Michael F Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
6
|
Marichal L, Gargowitsch L, Rubim RL, Sizun C, Kra K, Bressanelli S, Dong Y, Panahandeh S, Zandi R, Tresset G. Relationships between RNA topology and nucleocapsid structure in a model icosahedral virus. Biophys J 2021; 120:3925-3936. [PMID: 34418368 PMCID: PMC8511167 DOI: 10.1016/j.bpj.2021.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/21/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022] Open
Abstract
The process of genome packaging in most of viruses is poorly understood, notably the role of the genome itself in the nucleocapsid structure. For simple icosahedral single-stranded RNA viruses, the branched topology due to the RNA secondary structure is thought to lower the free energy required to complete a virion. We investigate the structure of nucleocapsids packaging RNA segments with various degrees of compactness by small-angle x-ray scattering and cryotransmission electron microscopy. The structural differences are mild even though compact RNA segments lead on average to better-ordered and more uniform particles across the sample. Numerical calculations confirm that the free energy is lowered for the RNA segments displaying the larger number of branch points. The effect is, however, opposite with synthetic polyelectrolytes, in which a star topology gives rise to more disorder in the capsids than a linear topology. If RNA compactness and size account in part for the proper assembly of the nucleocapsid and the genome selectivity, other factors most likely related to the host cell environment during viral assembly must come into play as well.
Collapse
Affiliation(s)
- Laurent Marichal
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Laetitia Gargowitsch
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Rafael Leite Rubim
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Christina Sizun
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Kalouna Kra
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France; Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Stéphane Bressanelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Yinan Dong
- Department of Physics and Astronomy, University of California, Riverside, California
| | - Sanaz Panahandeh
- Department of Physics and Astronomy, University of California, Riverside, California
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California
| | - Guillaume Tresset
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France.
| |
Collapse
|
7
|
Mohajerani F, Sayer E, Neil C, Inlow K, Hagan MF. Mechanisms of Scaffold-Mediated Microcompartment Assembly and Size Control. ACS NANO 2021; 15:4197-4212. [PMID: 33683101 PMCID: PMC8058603 DOI: 10.1021/acsnano.0c05715] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This article describes a theoretical and computational study of the dynamical assembly of a protein shell around a complex consisting of many cargo molecules and long, flexible scaffold molecules. Our study is motivated by bacterial microcompartments, which are proteinaceous organelles that assemble around a condensed droplet of enzymes and reactants. As in many examples of cytoplasmic liquid-liquid phase separation, condensation of the microcompartment interior cargo is driven by flexible scaffold proteins that have weak multivalent interactions with the cargo. Our results predict that the shell size, amount of encapsulated cargo, and assembly pathways depend sensitively on properties of the scaffold, including its length and valency of scaffold-cargo interactions. Moreover, the ability of self-assembling protein shells to change their size to accommodate scaffold molecules of different lengths depends crucially on whether the spontaneous curvature radius of the protein shell is smaller or larger than a characteristic elastic length scale of the shell. Beyond natural microcompartments, these results have important implications for synthetic biology efforts to target alternative molecules for encapsulation by microcompartments or viral shells. More broadly, the results elucidate how cells exploit coupling between self-assembly and liquid-liquid phase separation to organize their interiors.
Collapse
Affiliation(s)
- Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Evan Sayer
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Christopher Neil
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Koe Inlow
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Michael F Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
8
|
Dong Y, Li S, Zandi R. Effect of the charge distribution of virus coat proteins on the length of packaged RNAs. Phys Rev E 2020; 102:062423. [PMID: 33466113 DOI: 10.1103/physreve.102.062423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/17/2020] [Indexed: 01/20/2023]
Abstract
Single-stranded RNA viruses efficiently encapsulate their genome into a protein shell called the capsid. Electrostatic interactions between the positive charges in the capsid protein's N-terminal tail and the negatively charged genome have been postulated as the main driving force for virus assembly. Recent experimental results indicate that the N-terminal tail with the same number of charges and same lengths packages different amounts of RNA, which reveals that electrostatics alone cannot explain all the observed outcomes of the RNA self-assembly experiments. Using a mean-field theory, we show that the combined effect of genome configurational entropy and electrostatics can explain to some extent the amount of packaged RNA with mutant proteins where the location and number of charges on the tails are altered. Understanding the factors contributing to the virus assembly could promote the attempt to block viral infections or to build capsids for gene therapy applications.
Collapse
Affiliation(s)
- Yinan Dong
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Siyu Li
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| |
Collapse
|
9
|
Buzón P, Maity S, Roos WH. Physical virology: From virus self-assembly to particle mechanics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1613. [PMID: 31960585 PMCID: PMC7317356 DOI: 10.1002/wnan.1613] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/01/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022]
Abstract
Viruses are highly ordered supramolecular complexes that have evolved to propagate by hijacking the host cell's machinery. Although viruses are very diverse, spreading through cells of all kingdoms of life, they share common functions and properties. Next to the general interest in virology, fundamental viral mechanisms are of growing importance in other disciplines such as biomedicine and (bio)nanotechnology. However, in order to optimally make use of viruses and virus-like particles, for instance as vehicle for targeted drug delivery or as building blocks in electronics, it is essential to understand their basic chemical and physical properties and characteristics. In this context, the number of studies addressing the mechanisms governing viral properties and processes has recently grown drastically. This review summarizes a specific part of these scientific achievements, particularly addressing physical virology approaches aimed to understand the self-assembly of viruses and the mechanical properties of viral particles. Using a physicochemical perspective, we have focused on fundamental studies providing an overview of the molecular basis governing these key aspects of viral systems. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Pedro Buzón
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Sourav Maity
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Martínez M, Cooper CD, Poma AB, Guzman HV. Free Energies of the Disassembly of Viral Capsids from a Multiscale Molecular Simulation Approach. J Chem Inf Model 2019; 60:974-981. [DOI: 10.1021/acs.jcim.9b00883] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Matías Martínez
- Department of Mechanical Engineering, Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile
| | - Christopher D. Cooper
- Department of Mechanical Engineering, Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile
- Centro Científico Tecnológico de Valparaíso (CCTVal), 2390123 Valparaíso, Chile
| | - Adolfo B. Poma
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Horacio V. Guzman
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
A New Model System for Exploring Assembly Mechanisms of the HIV-1 Immature Capsid In Vivo. Bull Math Biol 2019; 81:1506-1526. [PMID: 30706326 DOI: 10.1007/s11538-019-00571-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
Abstract
The assembly of the HIV-1 immature capsid (HIC) is an essential step in the virus life cycle. In vivo, the HIC is composed of [Formula: see text] hexameric building blocks, and it takes 5-6 min to complete the assembly process. The involvement of numerous building blocks and the rapid timecourse makes it difficult to understand the HIC assembly process. In this work, we study HIC assembly in vivo by using differential equations. We first obtain a full model with 420 differential equations. Then, we reduce six addition reactions for separate building blocks to a single complex reaction. This strategy reduces the full model to 70 equations. Subsequently, the theoretical analysis of the reduced model shows that it might not be an effective way to decrease the HIC concentration at the equilibrium state by decreasing the microscopic on-rate constants. Based on experimental data, we estimate that the nucleating structure is much smaller than the HIC. We also estimate that the microscopic on-rate constant for nucleation reactions is far less than that for elongation reactions. The parametric collinearity investigation testifies the reliability of these two characteristics, which might explain why free building blocks do not readily polymerize into higher-order polymers until their concentration reaches a threshold value. These results can provide further insight into the assembly mechanisms of the HIC in vivo.
Collapse
|
12
|
van der Holst B, Kegel WK, Zandi R, van der Schoot P. The different faces of mass action in virus assembly. J Biol Phys 2018; 44:163-179. [PMID: 29616429 PMCID: PMC5928020 DOI: 10.1007/s10867-018-9487-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/16/2018] [Indexed: 02/06/2023] Open
Abstract
The spontaneous encapsulation of genomic and non-genomic polyanions by coat proteins of simple icosahedral viruses is driven, in the first instance, by electrostatic interactions with polycationic RNA binding domains on these proteins. The efficiency with which the polyanions can be encapsulated in vitro, and presumably also in vivo, must in addition be governed by the loss of translational and mixing entropy associated with co-assembly, at least if this co-assembly constitutes a reversible process. These forms of entropy counteract the impact of attractive interactions between the constituents and hence they counteract complexation. By invoking mass action-type arguments and a simple model describing electrostatic interactions, we show how these forms of entropy might settle the competition between negatively charged polymers of different molecular weights for co-assembly with the coat proteins. In direct competition, mass action turns out to strongly work against the encapsulation of RNAs that are significantly shorter, which is typically the case for non-viral (host) RNAs. We also find that coat proteins favor forming virus particles over nonspecific binding to other proteins in the cytosol even if these are present in vast excess. Our results rationalize a number of recent in vitro co-assembly experiments showing that short polyanions are less effective at attracting virus coat proteins to form virus-like particles than long ones do, even if both are present at equal weight concentrations in the assembly mixture.
Collapse
Affiliation(s)
- Bart van der Holst
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Willem K Kegel
- Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Roya Zandi
- Department of Physics and Astronomy, University of California Riverside, Riverside, USA
| | - Paul van der Schoot
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands. .,Institute for Theoretical Physics, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Li S, Erdemci-Tandogan G, van der Schoot P, Zandi R. The effect of RNA stiffness on the self-assembly of virus particles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:044002. [PMID: 29235442 PMCID: PMC7104906 DOI: 10.1088/1361-648x/aaa159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/06/2017] [Accepted: 12/13/2017] [Indexed: 05/21/2023]
Abstract
Under many in vitro conditions, some small viruses spontaneously encapsidate a single stranded (ss) RNA into a protein shell called the capsid. While viral RNAs are found to be compact and highly branched because of long distance base-pairing between nucleotides, recent experiments reveal that in a head-to-head competition between an ssRNA with no secondary or higher order structure and a viral RNA, the capsid proteins preferentially encapsulate the linear polymer! In this paper, we study the impact of genome stiffness on the encapsidation free energy of the complex of RNA and capsid proteins. We show that an increase in effective chain stiffness because of base-pairing could be the reason why under certain conditions linear chains have an advantage over branched chains when it comes to encapsidation efficiency. While branching makes the genome more compact, RNA base-pairing increases the effective Kuhn length of the RNA molecule, which could result in an increase of the free energy of RNA confinement, that is, the work required to encapsidate RNA, and thus less efficient packaging.
Collapse
Affiliation(s)
- Siyu Li
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, United States of America
| | - Gonca Erdemci-Tandogan
- Department of Physics, Syracuse University, Syracuse, NY 13244, United States of America
| | - Paul van der Schoot
- Group Theory of Polymers and Soft Matter, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, Netherlands
- Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, Netherlands
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, United States of America
| |
Collapse
|
14
|
Erdemci-Tandogan G, Orland H, Zandi R. RNA Base Pairing Determines the Conformations of RNA Inside Spherical Viruses. PHYSICAL REVIEW LETTERS 2017; 119:188102. [PMID: 29219580 DOI: 10.1103/physrevlett.119.188102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Indexed: 05/21/2023]
Abstract
Many simple RNA viruses enclose their genetic material by a protein shell called the capsid. While the capsid structures are well characterized for most viruses, the structure of RNA inside the shells and the factors contributing to it remain poorly understood. We study the impact of base pairing on the conformations of RNA and find that it undergoes a swollen coil to globule continuous transition as a function of the strength of the pairing interaction. We also observe a first order transition and kink profile as a function of RNA length. All these transitions could explain the different RNA profiles observed inside viral shells.
Collapse
Affiliation(s)
- Gonca Erdemci-Tandogan
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Henri Orland
- Institut de Physique Théorique, CEA-Saclay, CEA, F-91191 Gif-sur-Yvette, France
- Beijing Computational Science Research Center, No. 10 East Xibeiwang Road, Haidan District, Beijing 100193, China
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| |
Collapse
|
15
|
Li S, Erdemci-Tandogan G, Wagner J, van der Schoot P, Zandi R. Impact of a nonuniform charge distribution on virus assembly. Phys Rev E 2017; 96:022401. [PMID: 28950450 DOI: 10.1103/physreve.96.022401] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Indexed: 01/04/2023]
Abstract
Many spherical viruses encapsulate their genomes in protein shells with icosahedral symmetry. This process is spontaneous and driven by electrostatic interactions between positive domains on the virus coat proteins and the negative genomes. We model the effect of the nonuniform icosahedral charge distribution from the protein shell instead using a mean-field theory. We find that this nonuniform charge distribution strongly affects the optimal genome length and that it can explain the experimentally observed phenomenon of overcharging of virus and viruslike particles.
Collapse
Affiliation(s)
- Siyu Li
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Gonca Erdemci-Tandogan
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Jef Wagner
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Paul van der Schoot
- Group Theory of Polymers and Soft Matter, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| |
Collapse
|
16
|
Maassen SJ, van der Ham AM, Cornelissen JJLM. Combining Protein Cages and Polymers: from Understanding Self-Assembly to Functional Materials. ACS Macro Lett 2016; 5:987-994. [PMID: 35607217 DOI: 10.1021/acsmacrolett.6b00509] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein cages, such as viruses, are well-defined biological nanostructures which are highly symmetrical and monodisperse. They are found in various shapes and sizes and can encapsulate or template non-native materials. Furthermore, the proteins can be chemically or genetically modified giving them new properties. For these reasons, these protein structures have received increasing attention in the field of polymer-protein hybrid materials over the past years, however, advances are still to be made. This Viewpoint highlights the different ways polymers and protein cages or their subunits have been combined to understand self-assembly and create functional materials.
Collapse
Affiliation(s)
- Stan J. Maassen
- Laboratory for Biomolecular
Nanotechnology, MESA+ Institute, University of Twente, P.O. Box 207, 7500 AE Enschede, The Netherlands
| | - Anne M. van der Ham
- Laboratory for Biomolecular
Nanotechnology, MESA+ Institute, University of Twente, P.O. Box 207, 7500 AE Enschede, The Netherlands
| | - Jeroen J. L. M. Cornelissen
- Laboratory for Biomolecular
Nanotechnology, MESA+ Institute, University of Twente, P.O. Box 207, 7500 AE Enschede, The Netherlands
| |
Collapse
|
17
|
Erdemci-Tandogan G, Wagner J, van der Schoot P, Podgornik R, Zandi R. Effects of RNA branching on the electrostatic stabilization of viruses. Phys Rev E 2016; 94:022408. [PMID: 27627336 DOI: 10.1103/physreve.94.022408] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 11/07/2022]
Abstract
Many single-stranded (ss) ribonucleic acid (RNA) viruses self-assemble from capsid protein subunits and the nucleic acid to form an infectious virion. It is believed that the electrostatic interactions between the negatively charged RNA and the positively charged viral capsid proteins drive the encapsidation, although there is growing evidence that the sequence of the viral RNA also plays a role in packaging. In particular, the sequence will determine the possible secondary structures that the ssRNA will take in solution. In this work, we use a mean-field theory to investigate how the secondary structure of the RNA combined with electrostatic interactions affects the efficiency of assembly and stability of the assembled virions. We show that the secondary structure of RNA may result in negative osmotic pressures while a linear polymer causes positive osmotic pressures for the same conditions. This may suggest that the branched structure makes the RNA more effectively packaged and the virion more stable.
Collapse
Affiliation(s)
- Gonca Erdemci-Tandogan
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Jef Wagner
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Paul van der Schoot
- Group Theory of Polymers and Soft Matter, Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
| | - Rudolf Podgornik
- Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA.,Department of Theoretical Physics, J. Stefan Institute, SI-1000 Ljubljana, Slovenia.,Department of Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| |
Collapse
|
18
|
Kim J, Wu J. A Thermodynamic Model for Genome Packaging in Hepatitis B Virus. Biophys J 2016; 109:1689-97. [PMID: 26488660 DOI: 10.1016/j.bpj.2015.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/02/2015] [Accepted: 08/10/2015] [Indexed: 12/12/2022] Open
Abstract
Understanding the fundamentals of genome packaging in viral capsids is important for finding effective antiviral strategies and for utilizing benign viral particles for gene therapy. While the structure of encapsidated genomic materials has been routinely characterized with experimental techniques such as cryo-electron microscopy and x-ray diffraction, much less is known about the molecular driving forces underlying genome assembly in an intracellular environment and its in vivo interactions with the capsid proteins. Here we study the thermodynamic basis of the pregenomic RNA encapsidation in human Hepatitis B virus in vivo using a coarse-grained molecular model that captures the essential components of nonspecific intermolecular interactions. The thermodynamic model is used to examine how the electrostatic interaction between the packaged RNA and the highly charged C-terminal domains (CTD) of capsid proteins regulate the nucleocapsid formation. The theoretical model predicts optimal RNA content in Hepatitis B virus nucleocapsids with different CTD lengths in good agreement with mutagenesis measurements, confirming the predominant role of electrostatic interactions and molecular excluded-volume effects in genome packaging. We find that the amount of encapsidated RNA is not linearly correlated with the net charge of CTD tails as suggested by earlier theoretical studies. Our thermodynamic analysis of the nucleocapsid structure and stability indicates that ∼10% of the CTD residues are free from complexation with RNA, resulting in partially exposed CTD tails. The thermodynamic model also predicts the free energy of complex formation between macromolecules, which corroborates experimental results for the impact of CTD truncation on the nucleocapsid stability.
Collapse
Affiliation(s)
- Jehoon Kim
- Department of Chemical and Environmental Engineering, University of California at Riverside, Riverside, California
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California at Riverside, Riverside, California.
| |
Collapse
|
19
|
Kelly J, Grosberg AY, Bruinsma R. Sequence Dependence of Viral RNA Encapsidation. J Phys Chem B 2016; 120:6038-50. [PMID: 27116641 DOI: 10.1021/acs.jpcb.6b01964] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We develop a Flory mean-field theory for viral RNA (vRNA) molecules that extends the current RNA folding algorithms to include interactions between different sections of the secondary structure. The theory is applied to sequence-selective vRNA encapsidation. The dependence on sequence enters through a single parameter: the largest eigenvalue of the Kramers matrix of the branched polymer obtained by coarse graining the secondary structure. Differences between the work of encapsidation of vRNA molecules and of randomized isomers are found to be in the range of 20 kBT, more than sufficient to provide a strong bias in favor of vRNA encapsidation. The method is applied to a packaging competition experiment where large vRNA molecules compete for encapsidation with two smaller RNA species that together have the same nucleotide sequence as the large molecule. We encounter a substantial, generic free energy bias, that also is of the order of 20 kBT, in favor of encapsidating the single large RNA molecule. The bias is mainly the consequence of the fact that dividing up a large vRNA molecule involves the release of stored elastic energy. This provides an important, nonspecific mechanism for preferential encapsidation of single larger vRNA molecules over multiple smaller mRNA molecules with the same total number of nucleotides. The result is also consistent with recent RNA packaging competition experiments by Comas-Garcia et al.1 Finally, the Flory method leads to the result that when two RNA molecules are copackaged, they are expected to remain segregated inside the capsid.
Collapse
Affiliation(s)
- Joshua Kelly
- Department of Physics and Astronomy, University of California , Los Angeles, California 90095, United States
| | - Alexander Y Grosberg
- Department of Physics and Center for Soft Matter Research, New York University , New York, New York 10003, United States
| | - Robijn Bruinsma
- Department of Physics and Astronomy, University of California , Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
20
|
Smith GR, Xie L, Schwartz R. Modeling Effects of RNA on Capsid Assembly Pathways via Coarse-Grained Stochastic Simulation. PLoS One 2016; 11:e0156547. [PMID: 27244559 PMCID: PMC4887116 DOI: 10.1371/journal.pone.0156547] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 05/16/2016] [Indexed: 12/02/2022] Open
Abstract
The environment of a living cell is vastly different from that of an in vitro reaction system, an issue that presents great challenges to the use of in vitro models, or computer simulations based on them, for understanding biochemistry in vivo. Virus capsids make an excellent model system for such questions because they typically have few distinct components, making them amenable to in vitro and modeling studies, yet their assembly can involve complex networks of possible reactions that cannot be resolved in detail by any current experimental technology. We previously fit kinetic simulation parameters to bulk in vitro assembly data to yield a close match between simulated and real data, and then used the simulations to study features of assembly that cannot be monitored experimentally. The present work seeks to project how assembly in these simulations fit to in vitro data would be altered by computationally adding features of the cellular environment to the system, specifically the presence of nucleic acid about which many capsids assemble. The major challenge of such work is computational: simulating fine-scale assembly pathways on the scale and in the parameter domains of real viruses is far too computationally costly to allow for explicit models of nucleic acid interaction. We bypass that limitation by applying analytical models of nucleic acid effects to adjust kinetic rate parameters learned from in vitro data to see how these adjustments, singly or in combination, might affect fine-scale assembly progress. The resulting simulations exhibit surprising behavioral complexity, with distinct effects often acting synergistically to drive efficient assembly and alter pathways relative to the in vitro model. The work demonstrates how computer simulations can help us understand how assembly might differ between the in vitro and in vivo environments and what features of the cellular environment account for these differences.
Collapse
Affiliation(s)
- Gregory R. Smith
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Lu Xie
- Joint Carnegie Mellon/University of Pittsburgh Ph.D. Program in Computational Biology, Pittsburgh, Pennsylvania, United States of America
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Russell Schwartz
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
21
|
Erdemci-Tandogan G, Wagner J, van der Schoot P, Zandi R. Role of Genome in the Formation of Conical Retroviral Shells. J Phys Chem B 2016; 120:6298-305. [PMID: 27128962 DOI: 10.1021/acs.jpcb.6b02712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human immunodeficiency virus (HIV) capsid proteins spontaneously assemble around the genome into a protective protein shell called the capsid, which can take on a variety of shapes broadly classified as conical, cylindrical, and irregular. The majority of capsids seen in in vivo studies are conical in shape, while in vitro experiments have shown a preference for cylindrical capsids. The factors involved in the selection of the unique shape of HIV capsids are not well understood, and in particular the impact of RNA on the formation of the capsid is not known. In this work, we study the role of the genome and its interaction with the capsid protein by modeling the genomic RNA through a mean-field theory. Our results show that the confinement free energy for a homopolymeric model genome confined in a conical capsid is lower than that in a cylindrical capsid, at least when the genome does not interact with the capsid, which seems to be the case in in vivo experiments. Conversely, the confinement free energy for the cylinder is lower than that for a conical capsid if the genome is attracted to the capsid proteins as the in vitro experiments. Understanding the factors that contribute to the formation of conical capsids may shed light on the infectivity of HIV particles.
Collapse
Affiliation(s)
- Gonca Erdemci-Tandogan
- Department of Physics and Astronomy, University of California , Riverside, California 92521, United States
| | - Jef Wagner
- Department of Physics and Astronomy, University of California , Riverside, California 92521, United States
| | - Paul van der Schoot
- Group Theory of Polymers and Soft Matter, Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Theoretical Physics, Utrecht University , Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
| | - Roya Zandi
- Department of Physics and Astronomy, University of California , Riverside, California 92521, United States
| |
Collapse
|
22
|
Hagan MF, Zandi R. Recent advances in coarse-grained modeling of virus assembly. Curr Opin Virol 2016; 18:36-43. [PMID: 27016708 DOI: 10.1016/j.coviro.2016.02.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/29/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02453, USA.
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA.
| |
Collapse
|
23
|
Wagner J, Erdemci-Tandogan G, Zandi R. Adsorption of annealed branched polymers on curved surfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:495101. [PMID: 26574170 DOI: 10.1088/0953-8984/27/49/495101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The behavior of annealed branched polymers near adsorbing surfaces plays a fundamental role in many biological and industrial processes. Most importantly single stranded RNA in solution tends to fold up and self-bind to form a highly branched structure. Using a mean field theory, we both perturbatively and numerically examine the adsorption of branched polymers on surfaces of several different geometries in a good solvent. Independent of the geometry of the wall, we observe that as branching density increases, surface tension decreases. However, we find a coupling between the branching density and curvature in that a further lowering of surface tension occurs when the wall curves towards the polymer, but the amount of lowering of surface tension decreases when the wall curves away from the polymer. We find that for branched polymers confined into spherical cavities, most of branch-points are located in the vicinity of the interior wall and the surface tension is minimized for a critical cavity radius. For branch polymers next to sinusoidal surfaces, we find that branch-points accumulate at the valleys while end-points on the peaks.
Collapse
Affiliation(s)
- Jef Wagner
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
24
|
Abstract
On the basis of a T = 1 icosahedral capsid model, the capsomer-polyion co-assembly process has been investigated by molecular dynamics simulations using capsomers with different net charge and charge distribution as well as linear, branched, and hyper-branched polyions. The assembly process was characterized in terms of the time-dependent cluster size probabilities, averaged cluster size, encapsulation efficiency, and polyion extension. The kinetics of the capsid formation displayed a two-step process. The first one comprised adsorption of capsomers on the polyion, driven by their electrostatic attraction, whereas the second one involved a relocation and/or reorientation of adsorbed capsomers, which rate is reduced upon increasing electrostatic interaction. We found that increased polyion branching facilitated a more rapid encapsulation process towards a higher yield. Moreover, the hyper-branched polyions were entirely encapsulated at all polyion-capsid charge ratios considered.
Collapse
Affiliation(s)
- Ran Zhang
- Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Per Linse
- Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
25
|
Kim J, Wu J. A molecular thermodynamic model for the stability of hepatitis B capsids. J Chem Phys 2015; 140:235101. [PMID: 24952568 DOI: 10.1063/1.4882068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Self-assembly of capsid proteins and genome encapsidation are two critical steps in the life cycle of most plant and animal viruses. A theoretical description of such processes from a physiochemical perspective may help better understand viral replication and morphogenesis thus provide fresh insights into the experimental studies of antiviral strategies. In this work, we propose a molecular thermodynamic model for predicting the stability of Hepatitis B virus (HBV) capsids either with or without loading nucleic materials. With the key components represented by coarse-grained thermodynamic models, the theoretical predictions are in excellent agreement with experimental data for the formation free energies of empty T4 capsids over a broad range of temperature and ion concentrations. The theoretical model predicts T3/T4 dimorphism also in good agreement with the capsid formation at in vivo and in vitro conditions. In addition, we have studied the stability of the viral particles in response to physiological cellular conditions with the explicit consideration of the hydrophobic association of capsid subunits, electrostatic interactions, molecular excluded volume effects, entropy of mixing, and conformational changes of the biomolecular species. The course-grained model captures the essential features of the HBV nucleocapsid stability revealed by recent experiments.
Collapse
Affiliation(s)
- Jehoon Kim
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| |
Collapse
|
26
|
Zhang L, Lua LHL, Middelberg APJ, Sun Y, Connors NK. Biomolecular engineering of virus-like particles aided by computational chemistry methods. Chem Soc Rev 2015; 44:8608-18. [DOI: 10.1039/c5cs00526d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multi-scale investigation of VLP self-assembly aided by computational methods is facilitating the design, redesign, and modification of functionalized VLPs.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072, People's Republic of China
| | - Linda H. L. Lua
- Protein Expression Facility
- The University of Queensland
- Brisbane, Australia
| | - Anton P. J. Middelberg
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane, Australia
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072, People's Republic of China
| | - Natalie K. Connors
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane, Australia
| |
Collapse
|
27
|
Perlmutter JD, Perkett MR, Hagan MF. Pathways for virus assembly around nucleic acids. J Mol Biol 2014; 426:3148-3165. [PMID: 25036288 DOI: 10.1016/j.jmb.2014.07.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/17/2014] [Accepted: 07/07/2014] [Indexed: 12/25/2022]
Abstract
Understanding the pathways by which viral capsid proteins assemble around their genomes could identify key intermediates as potential drug targets. In this work, we use computer simulations to characterize assembly over a wide range of capsid protein-protein interaction strengths and solution ionic strengths. We find that assembly pathways can be categorized into two classes, in which intermediates are either predominantly ordered or disordered. Our results suggest that estimating the protein-protein and the protein-genome binding affinities may be sufficient to predict which pathway occurs. Furthermore, the calculated phase diagrams suggest that knowledge of the dominant assembly pathway and its relationship to control parameters could identify optimal strategies to thwart or redirect assembly to block infection. Finally, analysis of simulation trajectories suggests that the two classes of assembly pathways can be distinguished in single-molecule fluorescence correlation spectroscopy or bulk time-resolved small-angle X-ray scattering experiments.
Collapse
Affiliation(s)
- Jason D Perlmutter
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454, USA
| | - Matthew R Perkett
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454, USA
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|