1
|
Zhang Y, Yu L, Zhang Y, Tang X, Zhao X, An Y. Unidentified Fever and Persistent Liver Dysfunction in a Patient with X-Linked Agamaglobulinemia. J Clin Immunol 2024; 45:39. [PMID: 39535697 DOI: 10.1007/s10875-024-01834-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Yishi Zhang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lang Yu
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Zhang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Tang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Zhao
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Yunfei An
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Sharma D, Ben Yakov G, Kapuria D, Viana Rodriguez G, Gewirtz M, Haddad J, Kleiner DE, Koh C, Bergerson JRE, Freeman AF, Heller T. Tip of the iceberg: A comprehensive review of liver disease in Inborn errors of immunity. Hepatology 2022; 76:1845-1861. [PMID: 35466407 DOI: 10.1002/hep.32539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/30/2022] [Accepted: 04/17/2022] [Indexed: 12/08/2022]
Abstract
Inborn errors of immunity (IEIs) consist of numerous rare, inherited defects of the immune system that affect about 500,000 people in the United States. As advancements in diagnosis through genetic testing and treatment with targeted immunotherapy and bone marrow transplant emerge, increasing numbers of patients survive into adulthood posing fresh clinical challenges. A large spectrum of hepatobiliary diseases now present in those with immunodeficiency diseases, leading to morbidity and mortality in this population. Awareness of these hepatobiliary diseases has lagged the improved management of the underlying disorders, leading to missed opportunities to improve clinical outcomes. This review article provides a detailed description of specific liver diseases occurring in various inborn errors of immunity. A generalized approach to diagnosis and management of hepatic complications is provided, and collaboration with hepatologists, immunologists, and pathologists is emphasized as a requirement for optimizing management and outcomes.
Collapse
Affiliation(s)
- Disha Sharma
- Department of Internal MedicineMedStar Washington Hospital Center & Georgetown UniversityWashingtonDCUSA.,Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - Gil Ben Yakov
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA.,26744Center for Liver DiseaseSheba Medical CenterTel HaShomerIsrael
| | - Devika Kapuria
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA.,Department of GastroenterologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Gracia Viana Rodriguez
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - Meital Gewirtz
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - James Haddad
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - David E Kleiner
- 3421Laboratory of PathologyNational Cancer InstituteBethesdaMarylandUSA
| | - Christopher Koh
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and MicrobiologyNIAID, NIHBethesdaMarylandUSA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and MicrobiologyNIAID, NIHBethesdaMarylandUSA
| | - Theo Heller
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| |
Collapse
|
3
|
Fjordside L, Herløv C, Drabe CH, Andersen LP, Katzenstein TL. Helicobacter trogontum Bacteremia and Lower Limb Skin Lesion in a Patient with X-Linked Agammaglobulinemia-A Case Report and Review of the Literature. Pathogens 2022; 11:1247. [PMID: 36364998 PMCID: PMC9696073 DOI: 10.3390/pathogens11111247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 06/29/2024] Open
Abstract
We describe the first case of infection with Helicobacter trogontum in a patient with X-linked agammaglobulinemia. A 22-year-old male with X-linked agammaglobulinemia presented with fever, malaise and a painful skin lesion on the lower left extremity. Spiral shaped Gram-negative rods were isolated from blood cultures and later identified as Helicobacter trogontum. The patient was treated with various intravenous and oral antibiotic regimens over a period of 10 months, each causing seemingly full clinical and paraclinical remission, yet several episodes of relapse occurred after cessation of antibiotic treatment. The review of the literature showed that only a few cases of infections with enterohepatic helicobacters belonging to the Flexispira rappini taxons have previously been reported. The majority of cases included patients with X-linked agammaglobulinemia and the symptomatology and course of disease were similar to the case described here. Infections with enterohepatic helicobacters, including Helicobacter trogontum, should be considered in patients with X-linked agammaglobulinemia presenting with fever, malaise and skin lesions. Careful cultivation and microbiological investigation are essential to determine the diagnosis and a long treatment period of over 6 months must be expected for successful eradication.
Collapse
Affiliation(s)
- Lasse Fjordside
- Department of Infectious Diseases, University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Caroline Herløv
- Department of Clinical Microbiology, University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Camilla Heldbjerg Drabe
- Department of Infectious Diseases, University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Leif Percival Andersen
- Department of Clinical Microbiology, University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Terese L. Katzenstein
- Department of Infectious Diseases, University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
4
|
Romo-Gonzalez C, Bustamante-Ogando JC, Yamazaki-Nakashimada MA, Aviles-Jimenez F, Otero-Mendoza F, Espinosa-Rosales FJ, Espinosa-Padilla SE, Scheffler Mendoza SC, Durán-McKinster C, García-Romero MT, Saez-de-Ocariz M, Lopez-Herrera G. Infections With Enterohepatic Non-H. pylori Helicobacter Species in X-Linked Agammaglobulinemia: Clinical Cases and Review of the Literature. Front Cell Infect Microbiol 2022; 11:807136. [PMID: 35186782 PMCID: PMC8855360 DOI: 10.3389/fcimb.2021.807136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/03/2021] [Indexed: 11/29/2022] Open
Abstract
The genus Helicobacter is classified into two main groups according to its habitat: gastric and enterohepatic. Patients with X-linked agammaglobulinemia (XLA) appear to be associated with invasive infection with enterohepatic non-Helicobacter pylori species (NHPH), mainly H. cinaedi and H. bilis. Such infections are difficult to control and have a high potential for recurrence. The spectrum of illnesses caused by these species includes recurrent fever, bacteremia, arthritis, osteomyelitis, cellulitis, abdominal abscesses, and pyoderma gangrenosum-like ulcer. The presence of these Helicobacters is particularly difficult to diagnose and eradicate, as they are very fastidious bacteria and present resistance to several types of antibiotics. We report two clinical cases of XLA patients infected with H. bilis. These infections were chronic in these patients and could not be eradicated in one of them. We also review the cases of enterohepatic non-Helicobacter pylori species (NHPH) in patients with this inborn error of immunity.
Collapse
Affiliation(s)
- Carolina Romo-Gonzalez
- Laboratory of Experimental Bacteriology, National Institute of Pediatrics, Mexico City, Mexico
| | | | | | - Francisco Aviles-Jimenez
- Medical Unit in Infectious and Parasitic Diseases, High Specialty Medical Unit (UMAE) Pediatrics, National Medical Center (CMN) XXI Century, Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | | | | | | | | | | | | | | | - Gabriela Lopez-Herrera
- Immunodeficiency Research Unit, National Institute of Pediatrics, Mexico City, Mexico
- *Correspondence: Gabriela Lopez-Herrera,
| |
Collapse
|
5
|
Demirdag YY, Gupta S. Update on Infections in Primary Antibody Deficiencies. Front Immunol 2021; 12:634181. [PMID: 33643318 PMCID: PMC7905085 DOI: 10.3389/fimmu.2021.634181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/07/2021] [Indexed: 11/14/2022] Open
Abstract
Bacterial respiratory tract infections are the hallmark of primary antibody deficiencies (PADs). Because they are also among the most common infections in healthy individuals, PADs are usually overlooked in these patients. Careful evaluation of the history, including frequency, chronicity, and presence of other infections, would help suspect PADs. This review will focus on infections in relatively common PADs, discussing diagnostic challenges, and some management strategies to prevent infections.
Collapse
Affiliation(s)
- Yesim Yilmaz Demirdag
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, United States
| | | |
Collapse
|
6
|
Helicobacter cinaedi-Associated Refractory Cellulitis in Patients with X-Linked Agammaglobulinemia. J Clin Immunol 2020; 40:1132-1137. [PMID: 32914284 DOI: 10.1007/s10875-020-00830-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]
Abstract
X-linked agammaglobulinemia (XLA) is characterized by severe or recurrent infections, hypogammaglobulinemia, and circulating B cell deficiency. The frequent pathogens seen in patients with XLA include Streptococcus pneumoniae, Haemophilus influenzae, Pseudomonas aeruginosa, and enterovirus as well as Campylobacter and Helicobacter species. Here, we describe two patients with XLA who developed cellulitis and bacteremia caused by Helicobacter cinaedi even when administered an appropriate immunoglobulin replacement therapy. H. cinaedi may be difficult to isolate using a conventional blood culture system and could be identified by sequence analysis and mass spectrometry. H. cinaedi infection causes recurrent symptoms frequently, and patients require a long course of antibiotic treatment. Recently, the case of non-H. pylori Helicobacter (NHPH) infection such as H. cinaedi and H. bilis infection is increasing in number in patients with XLA. Systemic NHPH infection should be suspected, and extensive microbiological analysis should be performed to appropriately treat patients with XLA who present with fever and skin lesions.
Collapse
|
7
|
Degand N, Dautremer J, Pilmis B, Ferroni A, Lanternier F, Bruneau J, Hermine O, Blanche S, Nassif X, Lortholary O, Lecuit M. Helicobacter bilis-Associated Suppurative Cholangitis in a Patient with X-Linked Agammaglobulinemia. J Clin Immunol 2017; 37:727-731. [DOI: 10.1007/s10875-017-0437-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/21/2017] [Indexed: 12/31/2022]
|
8
|
Sullivan KE, Bassiri H, Bousfiha AA, Costa-Carvalho BT, Freeman AF, Hagin D, Lau YL, Lionakis MS, Moreira I, Pinto JA, de Moraes-Pinto MI, Rawat A, Reda SM, Reyes SOL, Seppänen M, Tang MLK. Emerging Infections and Pertinent Infections Related to Travel for Patients with Primary Immunodeficiencies. J Clin Immunol 2017; 37:650-692. [PMID: 28786026 PMCID: PMC5693703 DOI: 10.1007/s10875-017-0426-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/21/2017] [Indexed: 12/18/2022]
Abstract
In today's global economy and affordable vacation travel, it is increasingly important that visitors to another country and their physician be familiar with emerging infections, infections unique to a specific geographic region, and risks related to the process of travel. This is never more important than for patients with primary immunodeficiency disorders (PIDD). A recent review addressing common causes of fever in travelers provides important information for the general population Thwaites and Day (N Engl J Med 376:548-560, 2017). This review covers critical infectious and management concerns specifically related to travel for patients with PIDD. This review will discuss the context of the changing landscape of infections, highlight specific infections of concern, and profile distinct infection phenotypes in patients who are immune compromised. The organization of this review will address the environment driving emerging infections and several concerns unique to patients with PIDD. The first section addresses general considerations, the second section profiles specific infections organized according to mechanism of transmission, and the third section focuses on unique phenotypes and unique susceptibilities in patients with PIDDs. This review does not address most parasitic diseases. Reference tables provide easily accessible information on a broader range of infections than is described in the text.
Collapse
Affiliation(s)
- Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| | - Hamid Bassiri
- Division of Infectious Diseases and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 3501 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Ahmed A Bousfiha
- Clinical Immunology Unit, Infectious Department, Hopital d'Enfant Abderrahim Harouchi, CHU Ibn Rochd, Laboratoire d'Immunologie Clinique, d'Inflammation et d'Allergie LICIA, Faculté de Médecine et de Pharmacie, Université Hassan II, Casablanca, Morocco
| | - Beatriz T Costa-Carvalho
- Department of Pediatrics, Federal University of São Paulo, Rua dos Otonis, 725, São Paulo, SP, 04025-002, Brazil
| | - Alexandra F Freeman
- NIAID, NIH, Building 10 Room 12C103, 9000 Rockville, Pike, Bethesda, MD, 20892, USA
| | - David Hagin
- Division of Allergy and Immunology, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, University of Tel Aviv, 6 Weizmann St, 64239, Tel Aviv, Israel
| | - Yu L Lau
- Department of Paediatrics & Adolescent Medicine, The University of Hong Kong, Rm 106, 1/F New Clinical Building, Pok Fu Lam, Hong Kong.,Queen Mary Hospital, 102 Pokfulam Road, Pok Fu Lam, Hong Kong
| | - Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, Room 11C102, Bethesda, MD, 20892, USA
| | - Ileana Moreira
- Immunology Unit, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, 1425, Buenos Aires, Argentina
| | - Jorge A Pinto
- Division of Immunology, Department of Pediatrics, Federal University of Minas Gerais, Av. Alfredo Balena 190, room # 161, Belo Horizonte, MG, 30130-100, Brazil
| | - M Isabel de Moraes-Pinto
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Federal University of São Paulo, Rua Pedro de Toledo, 781/9°andar, São Paulo, SP, 04039-032, Brazil
| | - Amit Rawat
- Pediatric Allergy and Immunology, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shereen M Reda
- Pediatric Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Saul Oswaldo Lugo Reyes
- Immunodeficiencies Research Unit, National Institute of Pediatrics, Av Iman 1, Torre de Investigacion, Piso 9, Coyoacan, 04530, Mexico City, Mexico
| | - Mikko Seppänen
- Harvinaissairauksien yksikkö (HAKE), Rare Disease Center, Helsinki University Hospital (HUH), Helsinki, Finland
| | - Mimi L K Tang
- Murdoch Children's Research Institute, The Royal Children's Hospital, University of Melbourne, Melbourne, Australia
| |
Collapse
|
9
|
Dropulic LK, Lederman HM. Overview of Infections in the Immunocompromised Host. Microbiol Spectr 2016; 4:10.1128/microbiolspec.DMIH2-0026-2016. [PMID: 27726779 PMCID: PMC8428766 DOI: 10.1128/microbiolspec.dmih2-0026-2016] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 12/12/2022] Open
Abstract
Understanding the components of the immune system that contribute to host defense against infection is key to recognizing infections that are more likely to occur in an immunocompromised patient. In this review, we discuss the integrated system of physical barriers and of innate and adaptive immunity that contributes to host defense. Specific defects in the components of this system that predispose to particular infections are presented. This is followed by a review of primary immunodeficiency diseases and secondary immunodeficiencies, the latter of which develop because of a specific illness or condition or are treatment-related. The effects of treatment for neoplasia, autoimmune diseases, solid organ and stem cell transplants on host defenses are reviewed and associated with susceptibility to particular infections. In conclusion, an approach to laboratory screening for a suspected immunodeficiency is presented. Knowledge of which host defects predispose to specific infections allows clinicians to prevent, diagnose, and manage infections in their immunocompromised patients most effectively.
Collapse
Affiliation(s)
- Lesia K Dropulic
- The National Institutes of Health, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Bethesda, MD 20892
| | - Howard M Lederman
- Departments of Pediatrics, Medicine, and Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
| |
Collapse
|
10
|
Bonilla FA, Khan DA, Ballas ZK, Chinen J, Frank MM, Hsu JT, Keller M, Kobrynski LJ, Komarow HD, Mazer B, Nelson RP, Orange JS, Routes JM, Shearer WT, Sorensen RU, Verbsky JW, Bernstein DI, Blessing-Moore J, Lang D, Nicklas RA, Oppenheimer J, Portnoy JM, Randolph CR, Schuller D, Spector SL, Tilles S, Wallace D. Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol 2015; 136:1186-205.e1-78. [PMID: 26371839 DOI: 10.1016/j.jaci.2015.04.049] [Citation(s) in RCA: 434] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/18/2015] [Accepted: 04/23/2015] [Indexed: 02/07/2023]
Abstract
The American Academy of Allergy, Asthma & Immunology (AAAAI) and the American College of Allergy, Asthma & Immunology (ACAAI) have jointly accepted responsibility for establishing the "Practice parameter for the diagnosis and management of primary immunodeficiency." This is a complete and comprehensive document at the current time. The medical environment is a changing environment, and not all recommendations will be appropriate for all patients. Because this document incorporated the efforts of many participants, no single individual, including those who served on the Joint Task Force, is authorized to provide an official AAAAI or ACAAI interpretation of these practice parameters. Any request for information about or an interpretation of these practice parameters by the AAAAI or ACAAI should be directed to the Executive Offices of the AAAAI, the ACAAI, and the Joint Council of Allergy, Asthma & Immunology. These parameters are not designed for use by pharmaceutical companies in drug promotion.
Collapse
|
11
|
High-throughput sequencing reveals an altered T cell repertoire in X-linked agammaglobulinemia. Clin Immunol 2015; 161:190-6. [PMID: 26360253 DOI: 10.1016/j.clim.2015.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/01/2015] [Indexed: 11/22/2022]
Abstract
To examine the T cell receptor structure in the absence of B cells, the TCR β CDR3 was sequenced from DNA of 15 X-linked agammaglobulinemia (XLA) subjects and 18 male controls, using the Illumina HiSeq platform and the ImmunoSEQ analyzer. V gene usage and the V-J combinations, derived from both productive and non-productive sequences, were significantly different between XLA samples and controls. Although the CDR3 length was similar for XLA and control samples, the CDR3 region of the XLA T cell receptor contained significantly fewer deletions and insertions in V, D, and J gene segments, differences intrinsic to the V(D)J recombination process and not due to peripheral T cell selection. XLA CDR3s demonstrated fewer charged amino acid residues, more sharing of CDR3 sequences, and almost completely lacked a population of highly modified Vβ gene segments found in control DNA, suggesting both a skewed and contracted T cell repertoire in XLA.
Collapse
|
12
|
Mitchell HM, Rocha GA, Kaakoush NO, O’Rourke JL, Queiroz DMM. The Family Helicobacteraceae. THE PROKARYOTES 2014:337-392. [DOI: 10.1007/978-3-642-39044-9_275] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
13
|
Flahou B, Haesebrouck F, Smet A, Yonezawa H, Osaki T, Kamiya S. Gastric and enterohepatic non-Helicobacter pylori Helicobacters. Helicobacter 2013; 18 Suppl 1:66-72. [PMID: 24011248 DOI: 10.1111/hel.12072] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A substantial number of reports published in the last year have contributed to a better understanding of both human and animal infection with non-Helicobacter pylori Helicobacter species (NHPH). Gastric infection of humans with Helicobacter suis and Helicobacter felis as well as unidentified NHPH has been described to cause a chronic gastritis and a variety of clinical symptoms, whereas enterohepatic NHPH, including Helicobacter cinaedi, Helicobacter bilis, and Helicobacter canis, have been reported to be associated with human diseases such as bacteremia, cellulitis, cutaneous diseases, and fever of unknown origin in immunocompromised hosts. In various animal species, including dogs and laboratory mice, high rates of infection with NHPH were described. For gastric NHPH, mainly H. suis and H. felis infection was studied, revealing that differences in the immune response evoked in the host do exist when compared to Helicobacter pylori. Pathogenic mechanisms of infection with Helicobacter pullorum, H. bilis, and Helicobacter hepaticus were investigated, as well as immune responses involved in H. bilis-, Helicobacter typhlonius-, and H. hepaticus-induced intestinal inflammation. Complete genome sequences of Helicobacter heilmannii strain ASB1 and a H. cinaedi strain isolated in a case of human bacteremia were published, as well as comparative genomics of a human-derived Helicobacter bizzozeronii strain and proteome or secretome analyses for H. hepaticus and Helicobacter trogontum, respectively. Molecular analysis has revealed a function for type VI secretion systems of H. hepaticus and H. pullorum, the Helicobacter mustelae iron urease, and several other functional components of NHPH. In each section of this chapter, new findings on gastric NHPH will first be discussed, followed by those on enterohepatic Helicobacter species.
Collapse
Affiliation(s)
- Bram Flahou
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | | | | | | |
Collapse
|