1
|
Zhang Y, Liu W, Shu Z, Li Y, Sun F, Li ZG, Han TX, Mao HW, Wang TY. Delayed-onset adenosine deaminase deficiency with a novel synonymous mutation and a case series from China. World J Pediatr 2023; 19:687-700. [PMID: 37154862 DOI: 10.1007/s12519-023-00729-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Adenosine deaminase (ADA) is a key enzyme in the purine salvage pathway. Genetic defects of the ADA gene can cause a subtype of severe combined immunodeficiency. To date, few Chinese cases have been reported. METHODS We retrospectively reviewed the medical records of patients diagnosed with ADA deficiency in Beijing Children's Hospital and summarized the previously published ADA deficiency cases from China in the literature. RESULTS Nine patients were identified with two novel mutations (W272X and Q202 =). Early-onset infection, thymic abnormalities and failure to thrive were the most common manifestations of Chinese ADA-deficient patients. The ADA genotype has a major effect on the clinical phenotype. Notably, a novel synonymous mutation (c.606G>A, p.Q202=) was identified in a delayed-onset patient, which affected pre-mRNA splicing leading to a frameshift and premature truncation of the protein. Furthermore, the patient showed γδT cells expansion with an increased effect or phenotype, which may be associated with the delayed onset of disease. In addition, we reported cerebral aneurysm and intracranial artery stenosis for the first time in ADA deficiency. Five patients died with a median age of four months, while two patients received stem cell transplantation and are alive. CONCLUSIONS This study described the first case series of Chinese ADA-deficient patients. Early-onset infection, thymic abnormalities and failure to thrive were the most common manifestations in our patients. We identified a synonymous mutation that affected pre-mRNA splicing in the ADA gene, which had never been reported in ADA deficiency. Furthermore, we reported cerebral aneurysm in a delayed-onset patient for the first time. Further study is warranted to investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Xicheng District, Beijing, 100045, China
| | - Wei Liu
- Hematology Oncology Center, Henan Children's Hospital, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Zhou Shu
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Xicheng District, Beijing, 100045, China
| | - Yan Li
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Xicheng District, Beijing, 100045, China
| | - Fei Sun
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Xicheng District, Beijing, 100045, China
| | - Zhi-Gang Li
- Hematologic Disease Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Xicheng District, Beijing, 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Tong-Xin Han
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Xicheng District, Beijing, 100045, China
| | - Hua-Wei Mao
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Xicheng District, Beijing, 100045, China.
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.
| | - Tian-You Wang
- Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Xicheng District, Beijing, 100045, China.
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.
| |
Collapse
|
2
|
Grunebaum E, Booth C, Cuvelier GDE, Loves R, Aiuti A, Kohn DB. Updated Management Guidelines for Adenosine Deaminase Deficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1665-1675. [PMID: 36736952 DOI: 10.1016/j.jaip.2023.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 02/04/2023]
Abstract
Inherited defects in the adenosine deaminase (ADA) gene typically cause severe combined immunodeficiency. In addition to infections, ADA-deficient patients can present with neurodevelopmental, behavioral, hearing, skeletal, lung, heart, skin, kidney, urogenital, and liver abnormalities. Some patients also suffer from autoimmunity and malignancies. In recent years, there have been remarkable advances in the management of ADA deficiency. Most ADA-deficient patients can be identified by newborn screening for severe combined immunodeficiency, which facilitates early diagnosis and treatment of asymptomatic infants. Most patients benefit from enzyme replacement therapy (ERT). Allogeneic hematopoietic cell transplantation from an HLA-matched sibling donor or HLA-matched family member donor with no conditioning is currently the preferable treatment. When matched sibling donor or matched family member donor is not available, autologous ADA gene therapy with nonmyeloablative conditioning and ERT withdrawal, which is reported in recent studies to result in 100% overall survival and 90% to 95% engraftment, should be pursued. If gene therapy is not immediately available, ERT can be continued for a few years, although its excessive cost might be prohibitive. The recent improved outcome of hematopoietic cell transplantation using HLA-mismatched family-related donors or HLA-matched unrelated donors, after reduced-intensity conditioning, suggests that such procedures might also be considered rather than continuing ERT for prolonged periods. Long-term follow-up will further assist in determining the optimal treatment approach for ADA-deficient patients.
Collapse
Affiliation(s)
- Eyal Grunebaum
- Division of Immunology and Allergy, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Claire Booth
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital, London, United Kingdom
| | - Geoffrey D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robyn Loves
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, and the Università Vita-Salute San Raffaele, Milan, Italy
| | - Donald B Kohn
- Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, Calif
| |
Collapse
|
3
|
Castiello MC, Ferrari S, Villa A. Correcting inborn errors of immunity: From viral mediated gene addition to gene editing. Semin Immunol 2023; 66:101731. [PMID: 36863140 PMCID: PMC10109147 DOI: 10.1016/j.smim.2023.101731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation is an effective treatment to cure inborn errors of immunity. Remarkable progress has been achieved thanks to the development and optimization of effective combination of advanced conditioning regimens and use of immunoablative/suppressive agents preventing rejection as well as graft versus host disease. Despite these tremendous advances, autologous hematopoietic stem/progenitor cell therapy based on ex vivo gene addition exploiting integrating γ-retro- or lenti-viral vectors, has demonstrated to be an innovative and safe therapeutic strategy providing proof of correction without the complications of the allogeneic approach. The recent advent of targeted gene editing able to precisely correct genomic variants in an intended locus of the genome, by introducing deletions, insertions, nucleotide substitutions or introducing a corrective cassette, is emerging in the clinical setting, further extending the therapeutic armamentarium and offering a cure to inherited immune defects not approachable by conventional gene addition. In this review, we will analyze the current state-of-the art of conventional gene therapy and innovative protocols of genome editing in various primary immunodeficiencies, describing preclinical models and clinical data obtained from different trials, highlighting potential advantages and limits of gene correction.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy.
| |
Collapse
|
4
|
Bogdał A, Badeński A, Pac M, Wójcicka A, Badeńska M, Didyk A, Trembecka-Dubel E, Dąbrowska-Leonik N, Walaszczyk M, Matysiak N, Morawiec-Knysak A, Szczepański T, Szczepańska M. Atypical Hemolytic Uremic Syndrome (aHUS) and Adenosine Deaminase (ADA)-Deficient Severe Combined Immunodeficiency (SCID)-Two Diseases That Exacerbate Each Other: Case Report. Int J Mol Sci 2021; 22:ijms22179479. [PMID: 34502390 PMCID: PMC8430959 DOI: 10.3390/ijms22179479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Hemolytic uremic syndrome (HUS) is defined by the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury (AKI). Atypical HUS (aHUS), distinguished by its etiology, is caused by uncontrolled overactivation of the alternative complement pathway. The correct diagnosis of aHUS is complex and involves various gene mutations. Severe combined immunodeficiency (SCID), characterized by severe T-cell lymphocytopenia and a lack of antigen-specific T-cell and B-cell immune responses, is of seldom occurrence. In 10–15% of pediatric patients, SCID is caused by adenosine deaminase (ADA) deficiency. The authors describe the case of a boy who suffered from both aHUS and ADA-deficient SCID. At the age of 9 months, the patient presented acute kidney injury with anuria and coagulopathy. The diagnosis of aHUS was established on the basis of alternative complement pathway deregulation and disease-associated gene mutations. Further examination revealed immune system failure and, at the age of 13 months, the ADA deficiency was confirmed by genetic tests and the boy was diagnosed with ADA-SCID. ADA SCID has recently been described as a possible triggering factor of aHUS development and progression. However, more research is required in this field. Nevertheless, it is crucial in clinical practice to be aware of these two co-existing life-threatening diseases.
Collapse
Affiliation(s)
- Anna Bogdał
- District Hospital in Zawiercie, ul. Miodowa 14, 42-400 Zawiercie, Poland;
| | - Andrzej Badeński
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13/15, 41-800 Zabrze, Poland; (A.B.); (M.B.)
| | - Małgorzata Pac
- Department of Immunology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.P.); (N.D.-L.)
| | | | - Marta Badeńska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13/15, 41-800 Zabrze, Poland; (A.B.); (M.B.)
| | - Agnieszka Didyk
- Department of Pediatric Nephrology with Dialysis Division for Children, Public Clinical Hospital No. 1 in Zabrze, 41-800 Zabrze, Poland; (A.D.); (E.T.-D.); (A.M.-K.)
| | - Elżbieta Trembecka-Dubel
- Department of Pediatric Nephrology with Dialysis Division for Children, Public Clinical Hospital No. 1 in Zabrze, 41-800 Zabrze, Poland; (A.D.); (E.T.-D.); (A.M.-K.)
| | - Nel Dąbrowska-Leonik
- Department of Immunology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.P.); (N.D.-L.)
| | - Małgorzata Walaszczyk
- Department of Anaesthesiology and Intensive Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13/15, 41-800 Zabrze, Poland;
| | - Natalia Matysiak
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13/15, 41-800 Zabrze, Poland;
| | - Aurelia Morawiec-Knysak
- Department of Pediatric Nephrology with Dialysis Division for Children, Public Clinical Hospital No. 1 in Zabrze, 41-800 Zabrze, Poland; (A.D.); (E.T.-D.); (A.M.-K.)
| | - Tomasz Szczepański
- Department of Pediatric Hematology and Oncology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice ul. 3 Maja 13/15, 41-800 Zabrze, Poland;
| | - Maria Szczepańska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13/15, 41-800 Zabrze, Poland; (A.B.); (M.B.)
- Correspondence: ; Tel.: +48-32-3704305; Fax: +48-32-3704292
| |
Collapse
|
5
|
Kohn DB, Hershfield MS, Puck JM, Aiuti A, Blincoe A, Gaspar HB, Notarangelo LD, Grunebaum E. Consensus approach for the management of severe combined immune deficiency caused by adenosine deaminase deficiency. J Allergy Clin Immunol 2019; 143:852-863. [PMID: 30194989 PMCID: PMC6688493 DOI: 10.1016/j.jaci.2018.08.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/07/2018] [Accepted: 08/28/2018] [Indexed: 12/29/2022]
Abstract
Inherited defects in adenosine deaminase (ADA) cause a subtype of severe combined immunodeficiency (SCID) known as severe combined immune deficiency caused by adenosine deaminase defects (ADA-SCID). Most affected infants can receive a diagnosis while still asymptomatic by using an SCID newborn screening test, allowing early initiation of therapy. We review the evidence currently available and propose a consensus management strategy. In addition to treatment of the immune deficiency seen in patients with ADA-SCID, patients should be followed for specific noninfectious respiratory, neurological, and biochemical complications associated with ADA deficiency. All patients should initially receive enzyme replacement therapy (ERT), followed by definitive treatment with either of 2 equal first-line options. If an HLA-matched sibling donor or HLA-matched family donor is available, allogeneic hematopoietic stem cell transplantation (HSCT) should be pursued. The excellent safety and efficacy observed in more than 100 patients with ADA-SCID who received gammaretrovirus- or lentivirus-mediated autologous hematopoietic stem cell gene therapy (HSC-GT) since 2000 now positions HSC-GT as an equal alternative. If HLA-matched sibling donor/HLA-matched family donor HSCT or HSC-GT are not available or have failed, ERT can be continued or reinstituted, and HSCT with alternative donors should be considered. The outcomes of novel HSCT, ERT, and HSC-GT strategies should be evaluated prospectively in "real-life" conditions to further inform these management guidelines.
Collapse
Affiliation(s)
- Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, and the Division of Hematology & Oncology, Department of Pediatrics, David Geffen School of Medicine University of California, Los Angeles, Calif
| | - Michael S Hershfield
- Department of Medicine and Biochemistry, Duke University Medical Center, Durham, NC
| | - Jennifer M Puck
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, and Università Vita Salute San Raffaele, Milan, Italy
| | - Annaliesse Blincoe
- Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - H Bobby Gaspar
- Infection, Immunity, Inflammation, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Eyal Grunebaum
- Division of Immunology and Allergy, and the Department of Pediatrics, Developmental and Stem Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Tripodi SI, Corti P, Giliani S, Lanfranchi A, Biondi A, Badolato R. Heterozygous Mutation in Adenosine Deaminase Gene in a Patient With Severe Lymphopenia Following Corticosteroid Treatment of Autoimmune Hemolytic Anemia. Front Pediatr 2018; 6:272. [PMID: 30327760 PMCID: PMC6174357 DOI: 10.3389/fped.2018.00272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/10/2018] [Indexed: 11/30/2022] Open
Abstract
We describe a previously healthy 14-year-old girl with acute onset autoimmune hemolytic anemia, associated with severe but transient lymphopenia during corticosteroid therapy, without infectious episodes during follow-up. After detailed investigations to rule out an underlying immunodeficiency, we detected a heterozygous ADA gene mutation. This was associated with slightly increased blood levels of adenosine and deoxyadenosine nucleotides and with reduced ADA activity in red blood cells, but within the normal range. This observation suggests that heterozygous ADA mutation might be a predisposing factor for lymphopenia in patients receiving corticosteroid therapy.
Collapse
Affiliation(s)
- Serena I. Tripodi
- Department of Pediatrics, University of Brescia, Spedali Civili Hospital, Brescia, Italy
| | - Paola Corti
- Department of Pediatrics, University of Milan-Bicocca, Monza, Italy
| | - Silvia Giliani
- Cytogenetic and Medical Genetics Unit and “A. Nocivelli” Institute for Molecular Medicine, Spedali Civili Hospital and Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Arnalda Lanfranchi
- Stem Cell Laboratory, Section of Hematology and Blood Coagulation, Spedali Civili Hospital, Brescia, Italy
| | - Andrea Biondi
- Department of Pediatrics, University of Milan-Bicocca, Monza, Italy
| | - Raffaele Badolato
- Department of Pediatrics, University of Brescia, Spedali Civili Hospital, Brescia, Italy
| |
Collapse
|
7
|
Flinn AM, Gennery AR. Adenosine deaminase deficiency: a review. Orphanet J Rare Dis 2018; 13:65. [PMID: 29690908 PMCID: PMC5916829 DOI: 10.1186/s13023-018-0807-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/12/2018] [Indexed: 04/07/2023] Open
Abstract
Adenosine deaminase (ADA) deficiency leads to an accumulation of toxic purine degradation by-products, most potently affecting lymphocytes, leading to adenosine deaminase-deficient severe combined immunodeficiency. Whilst most notable affects are on lymphocytes, other manifestations include skeletal abnormalities, neurodevelopmental affects and pulmonary manifestations associated with pulmonary-alveolar proteinosis. Affected patients present in early infancy, usually with persistent infection, or with pulmonary insufficiency. Three treatment options are currently available. Initial treatment with enzyme replacement therapy may alleviate acute symptoms and enable partial immunological reconstitution, but treatment is life-long, immune reconstitution is incomplete, and the reconstituted immune system may nullify the effects of the enzyme replacement. Hematopoietic stem cell transplant has long been established as the treatment of choice, particularly where a matched sibling or well matched unrelated donor is available. More recently, the use of gene addition techniques to correct the genetic defect in autologous haematopoietic stem cells treatment has demonstrated immunological and clinical efficacy. This article reviews the biology, clinical presentation, diagnosis and treatment of ADA-deficiency.
Collapse
Affiliation(s)
- Aisling M Flinn
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Great North Children's Hospital, Clinical Resource Building, Floor 4, Block 2, Queen Victoria Road, NE1 4LP, Newcastle upon Tyne, UK
| | - Andrew R Gennery
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK. .,Great North Children's Hospital, Clinical Resource Building, Floor 4, Block 2, Queen Victoria Road, NE1 4LP, Newcastle upon Tyne, UK.
| |
Collapse
|
8
|
Cicalese MP, Ferrua F, Castagnaro L, Rolfe K, De Boever E, Reinhardt RR, Appleby J, Roncarolo MG, Aiuti A. Gene Therapy for Adenosine Deaminase Deficiency: A Comprehensive Evaluation of Short- and Medium-Term Safety. Mol Ther 2018; 26:917-931. [PMID: 29433935 PMCID: PMC5910668 DOI: 10.1016/j.ymthe.2017.12.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 12/20/2017] [Accepted: 12/24/2017] [Indexed: 12/22/2022] Open
Abstract
Loss of adenosine deaminase activity leads to severe combined immunodeficiency (ADA-SCID); production and function of T, B, and natural killer (NK) cells are impaired. Gene therapy (GT) with an autologous CD34+-enriched cell fraction that contains CD34+ cells transduced with a retroviral vector encoding the human ADA cDNA sequence leads to immune reconstitution in most patients. Here, we report short- and medium-term safety analyses from 18 patients enrolled as part of single-arm, open-label studies or compassionate use programs. Survival was 100% with a median of 6.9 years follow-up (range, 2.3 to 13.4 years). Adverse events were mostly grade 1 or grade 2 and were reported by all 18 patients following GT. Thirty-nine serious adverse events (SAEs) were reported by 15 of 18 patients; no SAEs were considered related to GT. The most common adverse events reported post-GT include upper respiratory tract infection, gastroenteritis, rhinitis, bronchitis, oral candidiasis, cough, neutropenia, diarrhea, and pyrexia. Incidence rates for all of these events were highest during pre-treatment, treatment, and/or 3-month follow-up and then declined over medium-term follow-up. GT did not impact the incidence of neurologic/hearing impairments. No event indicative of leukemic transformation was reported.
Collapse
Affiliation(s)
- Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy, 20132; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy, 20132
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy, 20132; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy, 20132; Vita-Salute San Raffaele University, Milan, Italy, 20132
| | - Laura Castagnaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy, 20132; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy, 20132
| | - Katie Rolfe
- GSK Research and Development, GlaxoSmithKline, UB11 1BT and SG1 2NY, UK
| | - Erika De Boever
- GSK Research and Development, GlaxoSmithKline, King of Prussia, PA 19406, USA
| | - Rickey R Reinhardt
- GSK Research and Development, GlaxoSmithKline, King of Prussia, PA 19406, USA
| | - Jonathan Appleby
- GSK Research and Development, GlaxoSmithKline, UB11 1BT and SG1 2NY, UK
| | - Maria Grazia Roncarolo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy, 20132; Vita-Salute San Raffaele University, Milan, Italy, 20132; Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy, 20132; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy, 20132; Vita-Salute San Raffaele University, Milan, Italy, 20132.
| |
Collapse
|
9
|
Kim VHD, Murguia-Favela L, Grunebaum E. Adenosine deaminase deficiency: current treatments and emerging therapeutics. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2018.1418660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Vy Hong-Diep Kim
- Division of Immunology and Allergy, Department of Pediatrics, Hospital for Sick Children, Toronto, Canada
| | - Luis Murguia-Favela
- Section of Hematology and Immunology, Department of Pediatrics, Alberta Children’s Hospital and University of Calgary, Calgary, Canada
| | - Eyal Grunebaum
- Division of Immunology and Allergy, Department of Pediatrics, Hospital for Sick Children, Toronto, Canada
- Developmental and Stem Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
10
|
Whitmore KV, Gaspar HB. Adenosine Deaminase Deficiency - More Than Just an Immunodeficiency. Front Immunol 2016; 7:314. [PMID: 27579027 PMCID: PMC4985714 DOI: 10.3389/fimmu.2016.00314] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/02/2016] [Indexed: 11/24/2022] Open
Abstract
Adenosine deaminase (ADA) deficiency is best known as a form of severe combined immunodeficiency (SCID) that results from mutations in the gene encoding ADA. Affected patients present with clinical and immunological manifestations typical of a SCID. Therapies are currently available that can target these immunological disturbances and treated patients show varying degrees of clinical improvement. However, there is now a growing body of evidence that deficiency of ADA has significant impact on non-immunological organ systems. This review will outline the impact of ADA deficiency on various organ systems, starting with the well-understood immunological abnormalities. We will discuss possible pathogenic mechanisms and also highlight ways in which current treatments could be improved. In doing so, we aim to present ADA deficiency as more than an immunodeficiency and suggest that it should be recognized as a systemic metabolic disorder that affects multiple organ systems. Only by fully understanding ADA deficiency and its manifestations in all organ systems can we aim to deliver therapies that will correct all the clinical consequences.
Collapse
Affiliation(s)
- Kathryn V. Whitmore
- Molecular and Cellular Immunology Section, UCL Institute of Child Health, University College London, London, UK
| | - Hubert B. Gaspar
- Molecular and Cellular Immunology Section, UCL Institute of Child Health, University College London, London, UK
| |
Collapse
|