1
|
Inoue S, Ikai M, Nambu R, Moriya K, Kojima R, Tagami Y, Hoshino Y, Kyushiki M, Ichimura K, Nakazawa A, Hoshino A, Isoda T, Kanegane H, Imai K. JAK inhibitor ameliorates inflammatory bowel disease in a patient with IKZF1 haploinsufficiency. Clin Immunol 2025; 274:110470. [PMID: 40037506 DOI: 10.1016/j.clim.2025.110470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/06/2025]
Abstract
IKAROS, encoded by IKZF1, is a crucial transcription factor regulating hematopoiesis and B cell development. While IKZF1 haploinsufficiency variants are associated with various immunological disorders, inflammatory bowel disease (IBD) has been rarely reported. We report a case of IKZF1 haploinsufficiency presenting with an atypical IBD phenotype and its response to filgotinib. The patient was previously diagnosed with IKZF1 haploinsufficiency and presented with chronic diarrhea, fatigue and anemia. Laboratory findings indicated folate deficiency-induced megaloblastic anemia and malabsorption syndrome. Endoscopic examination showed inflammation with erythema in the colon and extensive villous blunting of the small intestine. Immunohistochemical analysis revealed increased pSTAT3/5 in the colon. Considering the clinical features and increased JAK-STAT cascade, treatment with filgotinib was initiated. At 10 weeks post-treatment, we observed improvement in endoscopic findings and suppression of pSTAT3/5. This case extends the clinical spectrum of IKZF1 haploinsufficiency. A JAK1 inhibitor is considered to be useful for IKZF1 haploinsufficiency-associated IBD.
Collapse
Affiliation(s)
- Shota Inoue
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Masaatsu Ikai
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Ryusuke Nambu
- Division of Gastroenterology and Hepatology, Saitama Children's Medical Center, Saitama, Japan
| | - Kunihiko Moriya
- Department of Pediatrics, National Defense Medical College, Saitama, Japan.
| | - Ryo Kojima
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Yuji Tagami
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Yuki Hoshino
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Masashi Kyushiki
- Department of Pathology, Saitama Children's Medical Center, Saitama, Japan
| | - Kayoko Ichimura
- Department of Pathology, Saitama Children's Medical Center, Saitama, Japan
| | - Atsuko Nakazawa
- Department of Pathology, Saitama Children's Medical Center, Saitama, Japan
| | - Akihiro Hoshino
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Takeshi Isoda
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, Saitama, Japan.
| |
Collapse
|
2
|
Kilic SS. Editorial: Reviews in pediatric primary immunodeficiencies. Front Pediatr 2025; 13:1588443. [PMID: 40206458 PMCID: PMC11979776 DOI: 10.3389/fped.2025.1588443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
|
3
|
Maese LD, Wlodarski MW, Kim SY, Bertuch AA, Bougeard G, Chang VY, Godley LA, Khincha PP, Kuiper RP, Lesmana H, McGee RB, McReynolds LJ, Meade J, Plon SE, Savage SA, Scollon SR, Scott HS, Walsh MF, Nichols KE, Porter CC. Update on Recommendations for Surveillance for Children with Predisposition to Hematopoietic Malignancy. Clin Cancer Res 2024; 30:4286-4295. [PMID: 39078402 PMCID: PMC11444884 DOI: 10.1158/1078-0432.ccr-24-0685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024]
Abstract
Children harboring certain germline gene variants have an increased risk of developing myelodysplastic syndrome (MDS) and other hematopoietic malignancies (HM), such as leukemias and lymphomas. Recent studies have identified an expanding number of these predisposition genes, with variants most prevalent in children with MDS but also found in children with other HM. For some hematopoietic malignancy predispositions (HMP), specifically those with a high risk of MDS, early intervention through hematopoietic stem cell transplantation can favorably impact overall survival, providing a rationale for rigorous surveillance. A multidisciplinary panel of experts at the 2023 AACR Childhood Cancer Predisposition Workshop reviewed the latest advances in the field and updated prior 2017 surveillance recommendations for children with HMP. In addition to general guidance for all children with HMP, which includes annual physical examination, education about the signs and symptoms of HM, consultation with experienced providers, and early assessment by a hematopoietic stem cell transplantation specialist, the panel provided specific recommendations for individuals with a higher risk of MDS based on the affected gene. These recommendations include periodic and comprehensive surveillance for individuals with those syndromes associated with higher risk of MDS, including serial bone marrow examinations to monitor for morphologic changes and deep sequencing for somatic changes in genes associated with HM progression. This approach enables close monitoring of disease evolution based on the individual's genetic profile. As more HMP-related genes are discovered and the disorders' natural histories are better defined, these personalized recommendations will serve as a foundation for future guidelines in managing these conditions.
Collapse
Affiliation(s)
- Luke D. Maese
- University of Utah-Huntsman Cancer Institute, Primary Children’s Hospital, Salt Lake City, Utah
| | | | - Sun Young Kim
- Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Alison A. Bertuch
- Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, Houston, TX
| | - Gaelle Bougeard
- Univ Rouen Normandie, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Vivian Y Chang
- University of California Los Angeles, Los Angeles, California
| | - Lucy A. Godley
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Payal P. Khincha
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Roland P. Kuiper
- Princess Máxima Center for Pediatric Oncology and Department of Genetics, Utrecht University Medical Center, Utrecht University, The Netherlands
| | - Harry Lesmana
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Rose B. McGee
- St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Lisa J. McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Julia Meade
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sharon E. Plon
- Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, Houston, TX
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Sarah R. Scollon
- Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, Houston, TX
| | - Hamish S. Scott
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Michael F. Walsh
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York City, New York
| | - Kim E. Nichols
- St. Jude Children’s Research Hospital, Memphis, Tennessee
| | | |
Collapse
|
4
|
Ichiyama K, Long J, Kobayashi Y, Horita Y, Kinoshita T, Nakamura Y, Kominami C, Georgopoulos K, Sakaguchi S. Transcription factor Ikzf1 associates with Foxp3 to repress gene expression in Treg cells and limit autoimmunity and anti-tumor immunity. Immunity 2024; 57:2043-2060.e10. [PMID: 39111316 DOI: 10.1016/j.immuni.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/16/2024] [Accepted: 07/15/2024] [Indexed: 09/13/2024]
Abstract
The master transcription factor of regulatory T (Treg) cells, forkhead box protein P3 (Foxp3), controls Treg cell function by targeting certain genes for activation or repression, but the specific mechanisms by which it mediates this activation or repression under different conditions remain unclear. We found that Ikzf1 associates with Foxp3 via its exon 5 (IkE5) and that IkE5-deficient Treg cells highly expressed genes that would otherwise be repressed by Foxp3 upon T cell receptor stimulation, including Ifng. Treg-specific IkE5-deletion caused interferon-γ (IFN-γ) overproduction, which destabilized Foxp3 expression and impaired Treg suppressive function, leading to systemic autoimmune disease and strong anti-tumor immunity. Pomalidomide, which degrades IKZF1 and IKZF3, induced IFN-γ overproduction in human Treg cells. Mechanistically, the Foxp3-Ikzf1-Ikzf3 complex competed with epigenetic co-activators, such as p300, for binding to target gene loci via chromatin remodeling. Therefore, the Ikzf1 association with Foxp3 is essential for the gene-repressive function of Foxp3 and could be exploited to treat autoimmune disease and cancer.
Collapse
Affiliation(s)
- Kenji Ichiyama
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
| | - Jia Long
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Yusuke Kobayashi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Medical Innovations, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Osaka, Japan
| | - Yuji Horita
- Joint Research Chair of Immune-therapeutic Drug Discovery, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Research Management, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Takeshi Kinoshita
- Joint Research Chair of Immune-therapeutic Drug Discovery, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Research Management, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Yamami Nakamura
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Chizuko Kominami
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Experimental Pathology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
5
|
Stojkic I, Prince BT, Kuehn HS, Gil Silva AA, Varga EA, Rosenzweig SD, Ramadesikan S, Supinger R, Marhabaie M, Chang P, Mardis ER, Koboldt DC. A novel IKZF1 variant in a family with autosomal dominant CVID: A case for expanding exon coverage in inborn errors of immunity. Clin Immunol 2024; 264:110244. [PMID: 38734037 DOI: 10.1016/j.clim.2024.110244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Common variable immune deficiency (CVID) is a heterogenous group of disorders characterized by varying degrees of hypogammaglobulinemia, recurrent infections, and autoimmunity. Currently, pathogenic variants are identified in approximately 20-30% of CVID cases. Here we report a 3-generation family with autosomal dominant Common Variable Immunodeficiency (CVID) diagnosed in 9 affected individuals. Although primary immune deficiency panels and exome sequencing were non-diagnostic, whole genome sequencing revealed a novel, pathogenic c.499C > T: p.His167Tyr variant in IKZF1, a critical regulator of B cell development. Functional testing done through pericentromeric heterochromatin localization and light shift chemiluminescent electrophoretic mobility shift assay confirmed the variant's deleterious effect via a haploinsufficiency mechanism. Our findings expand the spectrum of known IKZF1 mutations and contribute to a more comprehensive understanding of CVID's genetic heterogeneity. Furthermore, this case underscores the importance of considering whole genome sequencing for comprehensive genetic diagnosis when concern for a monogenic inborn errors of immunity is high.
Collapse
Affiliation(s)
- Ivana Stojkic
- Division of Pediatric Rheumatology, Nationwide Children's Hospital, Columbus, OH, USA.
| | - Benjamin T Prince
- Division of Allergy and Immunology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA
| | - Agustin A Gil Silva
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA
| | - Elizabeth A Varga
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA
| | - Swetha Ramadesikan
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Rachel Supinger
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Mohammad Marhabaie
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Peter Chang
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Elaine R Mardis
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Daniel C Koboldt
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
6
|
Garcia C, Miller-Awe MD, Witkowski MT. Concepts in B cell acute lymphoblastic leukemia pathogenesis. J Leukoc Biol 2024; 116:18-32. [PMID: 38243586 PMCID: PMC11869204 DOI: 10.1093/jleuko/qiae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
B cell acute lymphoblastic leukemia (B-ALL) arises from genetic alterations impacting B cell progenitors, ultimately leading to clinically overt disease. Extensive collaborative efforts in basic and clinical research have significantly improved patient prognoses. Nevertheless, a subset of patients demonstrate resistance to conventional chemotherapeutic approaches and emerging immunotherapeutic interventions. This review highlights the mechanistic underpinnings governing B-ALL transformation. Beginning with exploring normative B cell lymphopoiesis, we delineate the influence of recurrent germline and somatic genetic aberrations on the perturbation of B cell progenitor differentiation and protumorigenic signaling, thereby facilitating the neoplastic transformation underlying B-ALL progression. Additionally, we highlight recent advances in the multifaceted landscape of B-ALL, encompassing metabolic reprogramming, microbiome influences, inflammation, and the discernible impact of socioeconomic and racial disparities on B-ALL transformation and patient survival.
Collapse
Affiliation(s)
- Clarissa Garcia
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States
| | - Megan D. Miller-Awe
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States
| | - Matthew T. Witkowski
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States
| |
Collapse
|
7
|
Strauss T, Körholz J, Kuehn HS, Gil Silva AA, Taube F, Trautmann-Grill K, Stittrich A, Pietzsch L, Wiedemuth R, Wahn V, von Bernuth H, Rosenzweig SD, Fasshauer M, Krüger R, Schuetz C. IKAROS-how many feathers have you lost: mild and severe phenotypes in IKZF1 deficiency. Front Pediatr 2024; 12:1345730. [PMID: 38813543 PMCID: PMC11135284 DOI: 10.3389/fped.2024.1345730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/15/2024] [Indexed: 05/31/2024] Open
Abstract
Heterozygous germline variants in human IKZF1 encoding for IKAROS define an inborn error of immunity with immunodeficiency, immune dysregulation and risk of malignancy with a broad phenotypic spectrum. Growing evidence of underlying pathophysiological genotype-phenotype correlations helps to improve our understanding of IKAROS-associated diseases. We describe 6 patients from 4 kindreds with two novel IKZF1 variants leading to haploinsufficiency from 3 centers in Germany. We also provide an overview of first symptoms to a final diagnosis including data from the literature.
Collapse
Affiliation(s)
- Timmy Strauss
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- University Center for Rare Diseases, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, University Center for Chronic Immunodeficiencies (UCID), Technische Universität Dresden, Dresden, Germany
| | - Julia Körholz
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- University Center for Rare Diseases, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, University Center for Chronic Immunodeficiencies (UCID), Technische Universität Dresden, Dresden, Germany
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD, United States
| | - Agustin A. Gil Silva
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD, United States
| | - Franziska Taube
- Faculty of Medicine and University Hospital Carl Gustav Carus, University Center for Chronic Immunodeficiencies (UCID), Technische Universität Dresden, Dresden, Germany
- Department of Hematology and Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Karolin Trautmann-Grill
- Department of Hematology and Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anna Stittrich
- Department of Human Genetics, Labor Berlin Charité-Vivantes GmbH, Berlin, Germany
| | - Leonora Pietzsch
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, University Center for Chronic Immunodeficiencies (UCID), Technische Universität Dresden, Dresden, Germany
| | - Ralf Wiedemuth
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, University Center for Chronic Immunodeficiencies (UCID), Technische Universität Dresden, Dresden, Germany
| | - Volker Wahn
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Sergio D. Rosenzweig
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD, United States
| | - Maria Fasshauer
- ImmunoDeficiencyCenter Leipzig (IDCL), Hospital St. Georg GGmbH Leipzig, Academic Teaching Hospital of the University of Leipzig, Leipzig, Germany
| | - Renate Krüger
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Catharina Schuetz
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- University Center for Rare Diseases, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, University Center for Chronic Immunodeficiencies (UCID), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
8
|
de Smith AJ, Wahlster L, Jeon S, Kachuri L, Black S, Langie J, Cato LD, Nakatsuka N, Chan TF, Xia G, Mazumder S, Yang W, Gazal S, Eng C, Hu D, Burchard EG, Ziv E, Metayer C, Mancuso N, Yang JJ, Ma X, Wiemels JL, Yu F, Chiang CWK, Sankaran VG. A noncoding regulatory variant in IKZF1 increases acute lymphoblastic leukemia risk in Hispanic/Latino children. CELL GENOMICS 2024; 4:100526. [PMID: 38537633 PMCID: PMC11019360 DOI: 10.1016/j.xgen.2024.100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/11/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Hispanic/Latino children have the highest risk of acute lymphoblastic leukemia (ALL) in the US compared to other racial/ethnic groups, yet the basis of this remains incompletely understood. Through genetic fine-mapping analyses, we identified a new independent childhood ALL risk signal near IKZF1 in self-reported Hispanic/Latino individuals, but not in non-Hispanic White individuals, with an effect size of ∼1.44 (95% confidence interval = 1.33-1.55) and a risk allele frequency of ∼18% in Hispanic/Latino populations and <0.5% in European populations. This risk allele was positively associated with Indigenous American ancestry, showed evidence of selection in human history, and was associated with reduced IKZF1 expression. We identified a putative causal variant in a downstream enhancer that is most active in pro-B cells and interacts with the IKZF1 promoter. This variant disrupts IKZF1 autoregulation at this enhancer and results in reduced enhancer activity in B cell progenitors. Our study reveals a genetic basis for the increased ALL risk in Hispanic/Latino children.
Collapse
Affiliation(s)
- Adam J de Smith
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA.
| | - Lara Wahlster
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Soyoung Jeon
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Susan Black
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jalen Langie
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Liam D Cato
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Tsz-Fung Chan
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Guangze Xia
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Soumyaa Mazumder
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Wenjian Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Steven Gazal
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Celeste Eng
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Biotherapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Donglei Hu
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Esteban González Burchard
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Biotherapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elad Ziv
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Catherine Metayer
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas Mancuso
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Jun J Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiaomei Ma
- Yale School of Public Health, New Haven, CT 06520, USA
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Fulong Yu
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
9
|
Thangaraj A, Tyagi R, Suri D, Gupta S. Infections in Disorders of Immune Regulation. Pathogens 2024; 13:259. [PMID: 38535602 PMCID: PMC10976012 DOI: 10.3390/pathogens13030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 02/11/2025] Open
Abstract
Primary immune regulatory disorders (PIRDs) constitute a spectrum of inborn errors of immunity (IEIs) that are primarily characterized by autoimmunity, lymphoproliferation, atopy, and malignancy. In PIRDs, infections are infrequent compared to other IEIs. While susceptibility to infection primarily stems from antibody deficiency, it is sometimes associated with additional innate immune and T or NK cell defects. The use of immunotherapy and chemotherapy further complicates the immune landscape, increasing the risk of diverse infections. Recurrent sinopulmonary infections, particularly bacterial infections such as those associated with staphylococcal and streptococcal organisms, are the most reported infectious manifestations. Predisposition to viral infections, especially Epstein-Barr virus (EBV)-inducing lymphoproliferation and malignancy, is also seen. Notably, mycobacterial and invasive fungal infections are rarely documented in these disorders. Knowledge about the spectrum of infections in these disorders would prevent diagnostic delays and prevent organ damage. This review delves into the infection profile specific to autoimmune lymphoproliferative syndrome (ALPS), Tregopathies, and syndromes with autoimmunity within the broader context of PIRD. Despite the critical importance of understanding the infectious aspects of these disorders, there remains a scarcity of comprehensive reports on this subject.
Collapse
Affiliation(s)
- Abarna Thangaraj
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (A.T.); (R.T.)
| | - Reva Tyagi
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (A.T.); (R.T.)
| | - Deepti Suri
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (A.T.); (R.T.)
| | - Sudhir Gupta
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697, USA;
| |
Collapse
|
10
|
Strullu M, Cousin E, de Montgolfier S, Fenwarth L, Gachard N, Arnoux I, Duployez N, Girard S, Guilmatre A, Lafage M, Loosveld M, Petit A, Perrin L, Vial Y, Saultier P. [Suspicion of constitutional abnormality at diagnosis of childhood leukemia: Update of the leukemia committee of the French Society of Childhood Cancers]. Bull Cancer 2024; 111:291-309. [PMID: 38267311 DOI: 10.1016/j.bulcan.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 01/26/2024]
Abstract
The spectrum of childhood leukemia predisposition syndromes has grown significantly over last decades. These predisposition syndromes mainly involve CEBPA, ETV6, GATA2, IKZF1, PAX5, RUNX1, SAMD9/SAMD9L, TP53, RAS-MAPK pathway, DNA mismatch repair system genes, genes associated with Fanconi anemia, and trisomy 21. The clinico-biological features leading to the suspicion of a leukemia predisposition are highly heterogeneous and require varied exploration strategies. The study of the initial characteristics of childhood leukemias includes high-throughput sequencing techniques, which have increased the frequency of situations where a leukemia predisposing syndrome is suspected. Identification of a leukemia predisposition syndrome can have a major impact on the choice of chemotherapy, the indication for hematopoietic stem cell transplantation, and screening for associated malformations and pathologies. The diagnosis of a predisposition syndrome can also lead to the exploration of family members and genetic counseling. Diagnosis and management should be based on dedicated and multidisciplinary care networks.
Collapse
Affiliation(s)
- Marion Strullu
- Hématologie et immunologie pédiatrique, hôpital Robert-Debré, GHU AP-HP Nord-Université Paris Cité, Paris, France; Inserm UMR_S1131, Institut universitaire d'hématologie, université Paris Cité, Paris cité, Paris, France.
| | - Elie Cousin
- Service d'onco-hématologie pédiatrique, CHU de Rennes, Rennes, France
| | - Sandrine de Montgolfier
- Aix Marseille université, Inserm, IRD, SESSTIM, sciences économiques & sociales de la santé & traitement de l'information médicale, ISSPAM, Marseille, France
| | - Laurene Fenwarth
- Département de génétique clinique, laboratoire d'hématologie, unité de génétique moléculaire des hémopathies malignes, CHU de Lille, université de Lille, Lille, France
| | | | | | - Nicolas Duployez
- Laboratoire d'hématologie, unité de génétique moléculaire des hémopathies malignes, CHU de Lille, université de Lille, Lille, France
| | - Sandrine Girard
- Service d'hématologie biologique, centre de biologie et pathologie Est, LBMMS, hospices civils de Lyon, Lyon, France
| | - Audrey Guilmatre
- Service d'hématologie et oncologie pédiatrique, hôpital Armand-Trousseau, AP-HP.Sorbonne Université, Paris, France
| | - Marina Lafage
- CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille université U105, laboratoire d'hématologie, CHU Timone, Marseille, France
| | - Marie Loosveld
- CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille université U105, laboratoire d'hématologie, CHU Timone, Marseille, France
| | - Arnaud Petit
- Service d'hématologie et oncologie pédiatrique, hôpital Armand-Trousseau, AP-HP.Sorbonne Université, Paris, France
| | - Laurence Perrin
- Génétique clinique, hôpital Robert-Debré, GHU AP-HP Nord-Université Paris cité, Paris, France
| | - Yoan Vial
- Inserm UMR_S1131, Institut universitaire d'hématologie, université Paris Cité, Paris cité, Paris, France; Laboratoire de génétique moléculaire, hôpital Robert-Debré, GHU AP-HP Nord-Université Paris cité, Paris, France
| | - Paul Saultier
- Service d'hématologie immunologie oncologie pédiatrique, Inserm, INRAe, C2VN, hôpital d'Enfants de la Timone, Aix Marseille université, AP-HM, Marseille, France
| |
Collapse
|
11
|
Guess R, Harocopos G, Bednarski JJ, Hassmann LM, Bigley TM. Pediatric Necrobiotic Xanthogranuloma as a Novel Phenotype of IKAROS Gain of Function. J Clin Immunol 2023; 44:19. [PMID: 38129715 PMCID: PMC10739487 DOI: 10.1007/s10875-023-01622-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/24/2023] [Indexed: 12/23/2023]
Affiliation(s)
- Rachel Guess
- Division of Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine in St Louis, St. Louis, MO, USA
| | - George Harocopos
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey J Bednarski
- Division or Hematology/Oncology, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Lynn M Hassmann
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Tarin M Bigley
- Division of Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine in St Louis, St. Louis, MO, USA.
| |
Collapse
|
12
|
da Silva Lima F, da Silva Gonçalves CE, Fock RA. A review of the role of zinc finger proteins on hematopoiesis. J Trace Elem Med Biol 2023; 80:127290. [PMID: 37659124 DOI: 10.1016/j.jtemb.2023.127290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
The bone marrow is responsible for producing an incredible number of cells daily in order to maintain blood homeostasis through a process called hematopoiesis. Hematopoiesis is a greatly demanding process and one entirely dependent on complex interactions between the hematopoietic stem cell (HSC) and its surrounding microenvironment. Zinc (Zn2+) is considered an important trace element, playing diverse roles in different tissues and cell types, and zinc finger proteins (ZNF) are proteins that use Zn2+ as a structural cofactor. In this way, the ZNF structure is supported by a Zn2+ that coordinates many possible combinations of cysteine and histidine, with the most common ZNF being of the Cys2His2 (C2H2) type, which forms a family of transcriptional activators that play an important role in different cellular processes such as development, differentiation, and suppression, all of these being essential processes for an adequate hematopoiesis. This review aims to shed light on the relationship between ZNF and the regulation of the hematopoietic tissue. We include works with different designs, including both in vitro and in vivo studies, detailing how ZNF might regulate hematopoiesis.
Collapse
Affiliation(s)
- Fabiana da Silva Lima
- Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo Ambrósio Fock
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
13
|
Rodríguez-Ubreva J, Calvillo CL, Forbes Satter LR, Ballestar E. Interplay between epigenetic and genetic alterations in inborn errors of immunity. Trends Immunol 2023; 44:902-916. [PMID: 37813732 PMCID: PMC10615875 DOI: 10.1016/j.it.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Inborn errors of immunity (IEIs) comprise a variety of immune conditions leading to infections, autoimmunity, allergy, and cancer. Some IEIs have no identified mutation(s), while others with identical mutations can display heterogeneous presentations. These observations suggest the involvement of epigenetic mechanisms. Epigenetic alterations can arise from downstream activation of cellular pathways through both extracellular stimulation and genetic-associated changes, impacting epigenetic enzymes or their interactors. Therefore, we posit that epigenetic alterations and genetic defects do not exclude each other as a disease-causing etiology. In this opinion, encompassing both basic and clinical viewpoints, we focus on selected IEIs with mutations in transcription factors that interact with epigenetic enzymes. The intricate interplay between these factors offers insights into genetic and epigenetic mechanisms in IEIs.
Collapse
Affiliation(s)
- Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Celia L Calvillo
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Lisa R Forbes Satter
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, USA; William T. Shearer Texas Children's Hospital Center for Human Immunobiology, Houston, TX, USA
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, China.
| |
Collapse
|
14
|
Bogush D, Schramm J, Ding Y, He B, Singh C, Sharma A, Tukaramrao DB, Iyer S, Desai D, Nalesnik G, Hengst J, Bhalodia R, Gowda C, Dovat S. Signaling pathways and regulation of gene expression in hematopoietic cells. Adv Biol Regul 2023; 88:100942. [PMID: 36621151 DOI: 10.1016/j.jbior.2022.100942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Cellular functions are regulated by signal transduction pathway networks consisting of protein-modifying enzymes that control the activity of many downstream proteins. Protein kinases and phosphatases regulate gene expression by reversible phosphorylation of transcriptional factors, which are their direct substrates. Casein kinase II (CK2) is a serine/threonine kinase that phosphorylates a large number of proteins that have critical roles in cellular proliferation, metabolism and survival. Altered function of CK2 has been associated with malignant transformation, immunological disorders and other types of diseases. Protein phosphatase 1 (PP1) is a serine/threonine phosphatase, which regulates the phosphorylation status of many proteins that are essential for cellular functions. IKAROS is a DNA-binding protein, which functions as a regulator of gene transcription in hematopoietic cells. CK2 directly phosphorylates IKAROS at multiple phosphosites which determines IKAROS activity as a regulator of gene expression. PP1 binds to IKAROS via the PP1-consensus recognition site and dephosphorylates serine/threonine residues that are phosphorylated by CK2. Thus, the interplay between CK2 and PP1 signaling pathways have opposing effects on the phosphorylation status of their mutual substrate - IKAROS. This review summarizes the effects of CK2 and PP1 on IKAROS role in regulation of gene expression and its function as a tumor suppressor in leukemia.
Collapse
Affiliation(s)
- Daniel Bogush
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Joseph Schramm
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Yali Ding
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Bing He
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Chingakham Singh
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Arati Sharma
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | | | - Soumya Iyer
- University of Chicago, Chicago, IL, 60637, USA
| | - Dhimant Desai
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Gregory Nalesnik
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Jeremy Hengst
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Riya Bhalodia
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Chandrika Gowda
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA.
| | - Sinisa Dovat
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA.
| |
Collapse
|
15
|
Kuehn HS, Boast B, Rosenzweig SD. Inborn errors of human IKAROS: LOF and GOF variants associated with primary immunodeficiency. Clin Exp Immunol 2023; 212:129-136. [PMID: 36433803 PMCID: PMC10128159 DOI: 10.1093/cei/uxac109] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/05/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022] Open
Abstract
IKAROS/IKZF1 plays a pivotal role in lymphocyte differentiation and development. Germline mutations in IKZF1, which have been shown to be associated with primary immunodeficiency, can be classified through four different mechanisms of action depending on the protein expression and its functional defects: haploinsufficiency, dimerization defective, dominant negative, and gain of function. These different mechanisms are associated with variable degrees of susceptibility to infectious diseases, autoimmune disorders, allergic diseases, and malignancies. To date, more than 30 heterozygous IKZF1 germline variants have been reported in patients with primary immunodeficiency. Here we review recent discoveries and clinical/immunological characterization of IKAROS-associated diseases that are linked to different mechanisms of action in IKAROS function.
Collapse
Affiliation(s)
- Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Brigette Boast
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| |
Collapse
|
16
|
Functional damaging germline variants in ETV6, IKZF1, PAX5 and RUNX1 predisposing to B-cell precursor acute lymphoblastic leukemia. Eur J Med Genet 2023; 66:104725. [PMID: 36764385 DOI: 10.1016/j.ejmg.2023.104725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/29/2022] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Recent genome-wide studies have demonstrated that a significant proportion of children with cancer carry predisposing germline variants, with varying incidence according to cancer type. In general, there is a lower incidence of underlying germline predisposing variants among patients with B-cell acute lymphoblastic leukemia (B-ALL) compared to other types of cancer, but higher rates may be found in patients with specific leukemia subtypes. Two categories of ALL-predisposing variants have been described: common polymorphisms, conferring low-penetrance ALL susceptibility, and rare variants, conferring high-penetrance ALL susceptibility. Variants in genes encoding hematopoietic transcription factors are an example of the latter, and include ETV6, IKZF1, PAX5 and RUNX1. Here, we present an overview of the germline variants detected in patients with B-ALL in these four genes and a summary of functional studies analyzing the impacts of these variants upon protein function, and hence their effects with regard to leukemia predisposition. Furthermore, we review specific clinical characteristics of patients with B-ALL, including specific features of the patient or family history and associated somatic genetic characteristics, which are suggestive of underlying germline alterations in one of these genes. This review may be of assistance in the interpretation of patient genetic germline findings, made even more challenging by the absence of a suggestive family history or by an unknown familial cancer history. Despite a low incidence of underlying germline alterations in ETV6, IKZF1, PAX5 and RUNX1 in patients with B-ALL, identification of an underlying ALL predisposition syndrome is relevant to the clinical management of patients and their relatives, as the latter are also at risk of developing cancer.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The development of cancer in patients with genetically determined inborn errors of immunity (IEI) is much higher than in the general population. The hallmarks of cancer are a conceptualization tool that can refine the complexities of cancer development and pathophysiology. Each genetic defect may impose a different pathological tumor predisposition, which needs to be identified and linked with known hallmarks of cancer. RECENT FINDINGS Four new hallmarks of cancer have been suggested, recently, including unlocking phenotypic plasticity, senescent cells, nonmutational epigenetic reprogramming, and polymorphic microbiomes. Moreover, more than 50 new IEI genes have been discovered during the last 2 years from which 15 monogenic defects perturb tumor immune surveillance in patients. SUMMARY This review provides a more comprehensive and updated overview of all 14 cancer hallmarks in IEI patients and covers aspects of cancer predisposition in novel genes in the ever-increasing field of IEI.
Collapse
|
18
|
Yamashita M, Morio T. AIOLOS Variants Causing Immunodeficiency in Human and Mice. Front Immunol 2022; 13:866582. [PMID: 35444653 PMCID: PMC9014263 DOI: 10.3389/fimmu.2022.866582] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
AIOLOS is encoded by IKZF3 and is a member of the IKAROS zinc finger transcription factor family. Heterozygous missense variants in the second zinc finger of AIOLOS have recently been reported to be found in the families of patients with inborn errors of immunity. The AIOLOSG159R variant was identified in patients with B-lymphopenia and familial Epstein–Barr virus-associated lymphoma. Early B-cell progenitors were significantly reduced in the bone marrow of patients with AIOLOSG159R. Another variant, AIOLOSN160S was identified in the patients presented with hypogammaglobulinemia, susceptibility to Pneumocystis jirovecii pneumonia, and chronic lymphocytic leukemia. Patients with AIOLOSN160S had mostly normal B cell counts but showed increased levels of CD21lo B cells, decreased CD23 expression, and abrogated CD40 response. Both variants were determined to be loss-of-function. Mouse models harboring the corresponding patient’s variants recapitulated the phenotypes of the patients. AIOLOS is therefore a novel disease-causing gene in human adaptive immune deficiency.
Collapse
Affiliation(s)
- Motoi Yamashita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
19
|
Díaz-Alberola I, Espuch-Oliver A, García-Aznar JM, Ganoza-Gallardo C, Aguilera-Franco M, Sampedro A, Jiménez P, López-Nevot MÁ. Common Variable Immunodeficiency Associated with a De Novo IKZF1 Variant and a Low Humoral Immune Response to the SARS-CoV-2 Vaccine. J Clin Med 2022; 11:2303. [PMID: 35566429 PMCID: PMC9101713 DOI: 10.3390/jcm11092303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND AND AIMS Common variable immunodeficiency (CVID) comprises a group of diseases with heterogeneous clinical and immunological manifestations. Several mutations have been identified in genes encoding proteins essential for immune function. Our aim was to phenotypically and genotypically characterize a patient diagnosed with CVID and study his response to the SARS-CoV-2 vaccine. METHODS We performed a next-generation sequencing analysis, a CMIA, and an ELISA to analyze the humoral and cellular response to the SARS-CoV-2 vaccine, respectively. We also employed flow cytometry and immunoturbidimetry to assess the patient's global immune status. RESULTS We found a low humoral but positive cellular response to the SARS-CoV-2 vaccine. NGS screening revealed a transition from guanine to adenine at position c.485 of the IKZF1 gene in heterozygosity, giving rise to the R162Q variant, which was not present in his parents. CONCLUSIONS The R162Q variant of the IKZF1 gene has been associated with CVID type 13, but always with an autosomal dominant inheritance with high penetrance. Therefore, we present for the first time a case of CVID associated with a de novo heterozygous R162Q variant in the IKZF1 gene in a patient with a low humoral immune response to the complete COVID-19 vaccination program.
Collapse
Affiliation(s)
- Irene Díaz-Alberola
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (P.J.); (M.Á.L.-N.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Programa de Doctorado en Biomedicina, Universidad de Granada, 18016 Granada, Spain
| | - Andrea Espuch-Oliver
- Hospital General Nuestra Señora del Prado, Talavera de la Reina, 45600 Toledo, Spain;
| | | | | | - María Aguilera-Franco
- Servicio de Microbiología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (M.A.-F.); (A.S.)
| | - Antonio Sampedro
- Servicio de Microbiología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (M.A.-F.); (A.S.)
| | - Pilar Jiménez
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (P.J.); (M.Á.L.-N.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Miguel Ángel López-Nevot
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (P.J.); (M.Á.L.-N.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, 18016 Granada, Spain
| |
Collapse
|
20
|
Shahin T, Mayr D, Shoeb MR, Kuehn HS, Hoeger B, Giuliani S, Gawriyski LM, Petronczki ÖY, Hadjadj J, Bal SK, Zoghi S, Haimel M, Jimenez Heredia R, Boutboul D, Triebwasser MP, Rialland-Battisti F, Costedoat Chalumeau N, Quartier P, Tangye SG, Fleisher TA, Rezaei N, Romberg N, Latour S, Varjosalo M, Halbritter F, Rieux-Laucat F, Castanon I, Rosenzweig SD, Boztug K. Identification of germline monoallelic mutations in IKZF2 in patients with immune dysregulation. Blood Adv 2022; 6:2444-2451. [PMID: 34920454 PMCID: PMC9006292 DOI: 10.1182/bloodadvances.2021006367] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022] Open
Abstract
Helios, encoded by IKZF2, is a member of the Ikaros family of transcription factors with pivotal roles in T-follicular helper, NK- and T-regulatory cell physiology. Somatic IKZF2 mutations are frequently found in lymphoid malignancies. Although germline mutations in IKZF1 and IKZF3 encoding Ikaros and Aiolos have recently been identified in patients with phenotypically similar immunodeficiency syndromes, the effect of germline mutations in IKZF2 on human hematopoiesis and immunity remains enigmatic. We identified germline IKZF2 mutations (one nonsense (p.R291X)- and 4 distinct missense variants) in six patients with systemic lupus erythematosus, immune thrombocytopenia or EBV-associated hemophagocytic lymphohistiocytosis. Patients exhibited hypogammaglobulinemia, decreased number of T-follicular helper and NK cells. Single-cell RNA sequencing of PBMCs from the patient carrying the R291X variant revealed upregulation of proinflammatory genes associated with T-cell receptor activation and T-cell exhaustion. Functional assays revealed the inability of HeliosR291X to homodimerize and bind target DNA as dimers. Moreover, proteomic analysis by proximity-dependent Biotin Identification revealed aberrant interaction of 3/5 Helios mutants with core components of the NuRD complex conveying HELIOS-mediated epigenetic and transcriptional dysregulation.
Collapse
Affiliation(s)
- Tala Shahin
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Daniel Mayr
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Birgit Hoeger
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sarah Giuliani
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Lisa M. Gawriyski
- Proteomics Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Özlem Yüce Petronczki
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jérôme Hadjadj
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM Unité Mixte de Recherche (UMR) 1163, Institut Imagine, Université de Paris, Paris, France
| | - Sevgi Köstel Bal
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Samaneh Zoghi
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network, Tehran, Iran
| | - Matthias Haimel
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Raul Jimenez Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - David Boutboul
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Institut Imagine, Université de Paris, Paris, France
| | - Michael P. Triebwasser
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Fanny Rialland-Battisti
- Pediatric Onco-Hematology Department, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Nathalie Costedoat Chalumeau
- Internal Medicine, Cochin Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) Centre, Université de Paris, Paris, France
| | - Pierre Quartier
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM Unité Mixte de Recherche (UMR) 1163, Institut Imagine, Université de Paris, Paris, France
- Department of Paediatric Immuno-Haematology and Rheumatology, Reference Center for Rheumatic, AutoImmune and Systemic Diseases in Children, Hôpital Necker-Enfants Malades, Assistance Publique–Hôpitaux de Paris (AP-HP), Paris, France
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; and
| | - Thomas A. Fleisher
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network, Tehran, Iran
| | - Neil Romberg
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Institut Imagine, Université de Paris, Paris, France
| | - Markku Varjosalo
- Proteomics Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | | | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM Unité Mixte de Recherche (UMR) 1163, Institut Imagine, Université de Paris, Paris, France
| | - Irinka Castanon
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Sergio D. Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Kuijpers TW, Tromp SAM, van Leeuwen EMM, de Bree GJ. Case Report: A Highly Variable Clinical and Immunological Presentation of IKAROS Deficiency in a Single Family. Front Immunol 2022; 13:865838. [PMID: 35479066 PMCID: PMC9036438 DOI: 10.3389/fimmu.2022.865838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Here we describe a novel mutation in the IKZF gene encoding IKAROS, as the cause of common variable immunodeficiency (CVID). The identification of the same defect in the IKZF gene with manifestations of asymptomatic selective IgA deficiency and chronic ITP in the father and her younger brother, respectively, demonstrates the large variability of this genetic defect in one single family, while living in the same environment with a relatively similar genetic background. As discussed, clinical penetrance of the molecular defects identified by mutations in IKZF and other common gene defects in CVID in familial immune-related abnormalities makes genetic testing a necessary step for diagnosis, management, and counseling, as part of the routine immunological workup.
Collapse
Affiliation(s)
- Taco W. Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory of Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Samantha A. M. Tromp
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Samantha A. M. Tromp,
| | - Ester M. M. van Leeuwen
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Godelieve J. de Bree
- Department of Internal Medicine, Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
22
|
Hoshino A, Toyofuku E, Mitsuiki N, Yamashita M, Okamoto K, Yamamoto M, Kanda K, Yamato G, Keino D, Yoshimoto-Suzuki Y, Kamizono J, Onoe Y, Ichimura T, Nagao M, Yoshimura M, Tsugawa K, Igarashi T, Mitsui-Sekinaka K, Sekinaka Y, Doi T, Yasumi T, Nakazawa Y, Takagi M, Imai K, Nonoyama S, Morio T, Latour S, Kanegane H. Clinical Courses of IKAROS and CTLA4 Deficiencies: A Systematic Literature Review and Retrospective Longitudinal Study. Front Immunol 2022; 12:784901. [PMID: 35087518 PMCID: PMC8787285 DOI: 10.3389/fimmu.2021.784901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
IKAROS and CTLA4 deficiencies are inborn errors of immunity and show similar clinical phenotypes, including hypogammaglobulinemia and autoimmune diseases (ADs). However, the differences in clinical features and pathogenesis of these are not fully understood. Therefore, we performed systematic literature reviews for IKAROS and CTLA4 deficiencies. The reviews suggested that patients with IKAROS deficiency develop AD earlier than hypogammaglobulinemia. However, no study assessed the detailed changes in clinical manifestations over time; this was likely due to the cross-sectional nature of the studies. Therefore, we conducted a retrospective longitudinal study on IKAROS and CTLA4 deficiencies in our cohort to evaluate the clinical course over time. In patients with IKAROS deficiency, AD and hypogammaglobulinemia often develop in that order, and AD often resolves before the onset of hypogammaglobulinemia; these observations were not found in patients with CTLA4 deficiency. Understanding this difference in the clinical course helps in the clinical management of both. Furthermore, our results suggest B- and T-cell-mediated ADs in patients with IKAROS and CTLA4 deficiencies, respectively.
Collapse
Affiliation(s)
- Akihiro Hoshino
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Etsushi Toyofuku
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noriko Mitsuiki
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Motoi Yamashita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keisuke Okamoto
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michio Yamamoto
- Department of Pediatrics, Yokohama Municipal Citizen's Hospital, Yokohama, Japan
| | - Kenji Kanda
- Department of Pediatrics, Hikone Municipal Hospital, Hikone, Japan
| | - Genki Yamato
- Department of Hematology/Oncology, Gunma Children's Medical Center, Shibukawa, Japan
| | - Dai Keino
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yuri Yoshimoto-Suzuki
- Department of Pediatrics, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Junji Kamizono
- Department of Pediatrics, Kitakyushu City Yahata Hospital, Kitakyushu, Japan
| | - Yasuhiro Onoe
- Department of Pediatrics, Kitakyushu Municipal Medical Center, Kitakyushu, Japan
| | - Takuya Ichimura
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Mika Nagao
- Department of Pediatrics, Ohta Nishinouchi Hospital, Koriyama, Japan
| | - Masaru Yoshimura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Koji Tsugawa
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Toru Igarashi
- Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | | | - Yujin Sekinaka
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Japan
| | - Takehiko Doi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France.,Université de Paris, Paris, France
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
23
|
Kuehn HS, Chang J, Yamashita M, Niemela JE, Zou C, Okuyama K, Harada J, Stoddard JL, Nunes-Santos CJ, Boast B, Baxter RM, Hsieh EW, Garofalo M, Fleisher TA, Morio T, Taniuchi I, Dutmer CM, Rosenzweig SD. T and B cell abnormalities, pneumocystis pneumonia, and chronic lymphocytic leukemia associated with an AIOLOS defect in patients. J Exp Med 2021; 218:e20211118. [PMID: 34694366 PMCID: PMC8548914 DOI: 10.1084/jem.20211118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/20/2021] [Accepted: 09/22/2021] [Indexed: 12/03/2022] Open
Abstract
AIOLOS/IKZF3 is a member of the IKAROS family of transcription factors. IKAROS/IKZF1 mutations have been previously associated with different forms of primary immunodeficiency. Here we describe a novel combined immunodeficiency due to an IKZF3 mutation in a family presenting with T and B cell involvement, Pneumocystis jirovecii pneumonia, and/or chronic lymphocytic leukemia. Patients carrying the AIOLOS p.N160S heterozygous variant displayed impaired humoral responses, abnormal B cell development (high percentage of CD21low B cells and negative CD23 expression), and abrogated CD40 responses. Naive T cells were increased, T cell differentiation was abnormal, and CD40L expression was dysregulated. In vitro studies demonstrated that the mutant protein failed DNA binding and pericentromeric targeting. The mutant was fully penetrant and had a dominant-negative effect over WT AIOLOS but not WT IKAROS. The human immunophenotype was recapitulated in a murine model carrying the corresponding human mutation. As demonstrated here, AIOLOS plays a key role in T and B cell development in humans, and the particular gene variant described is strongly associated with immunodeficiency and likely malignancy.
Collapse
MESH Headings
- Adult
- Animals
- B-Lymphocytes/pathology
- Child
- Female
- Humans
- Ikaros Transcription Factor/genetics
- Ikaros Transcription Factor/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Male
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Middle Aged
- Mutation
- Pneumonia, Pneumocystis/blood
- Pneumonia, Pneumocystis/genetics
- T-Lymphocytes/pathology
- Exome Sequencing
- Mice
Collapse
Affiliation(s)
- Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Jingjie Chang
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Motoi Yamashita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Julie E. Niemela
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Chengcheng Zou
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Kazuki Okuyama
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Junji Harada
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Jennifer L. Stoddard
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Cristiane J. Nunes-Santos
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Brigette Boast
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Ryan M. Baxter
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Elena W.Y. Hsieh
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
- Division of Allergy and Immunology, Department of Pediatrics, University of Colorado School of Medicine, Children’s Hospital Colorado, Aurora, CO
| | - Mary Garofalo
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Thomas A. Fleisher
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Cullen M. Dutmer
- Division of Allergy and Immunology, Department of Pediatrics, University of Colorado School of Medicine, Children’s Hospital Colorado, Aurora, CO
| | - Sergio D. Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| |
Collapse
|
24
|
Kuehn HS, Gloude NJ, Dimmock D, Tokita M, Wright M, Rosenzweig SD, Collins C. Abnormal SCID Newborn Screening and Spontaneous Recovery Associated with a Novel Haploinsufficiency IKZF1 Mutation. J Clin Immunol 2021; 41:1241-1249. [PMID: 33855675 PMCID: PMC11002654 DOI: 10.1007/s10875-021-01035-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/05/2021] [Indexed: 01/14/2023]
Abstract
PURPOSE IKAROS, encoded by IKZF1, is a member of the IKAROS family of zinc-finger transcription factors playing critical roles in lymphocyte development, differentiation, and tumor suppression. Several studies demonstrated that IKZF1 mutations affecting DNA binding or homo-/hetero-dimerization are mostly associated with common variable immunodeficiency, combined immunodeficiency, or hematologic manifestations. Herein we report a likely de novo, nonsense IKZF1 mutation (p.C182*) in a baby with low T cell receptor excision circles (TREC) identified by newborn screening testing for severe combined immunodeficiency. The patient also presented a profound B cell deficiency at birth. METHODS Genetic, functional, immunologic, and clinical outcome data associated with this patient and her mutation were evaluated. RESULTS Mutant p.C182* was detected in the cytoplasm of the patient's primary cells, in contrast to wild type (WT) IKAROS protein, only detected in the nucleus. Functional in vitro assessments revealed that p.C182* was less stable than WT IKAROS protein and failed to bind to its target DNA binding sequence and dimerize with WT IKAROS protein, resulting in impaired pericentromeric targeting and transcriptional repression by means of haploinsufficiency. During follow-up, while a spontaneous recovery of TREC and T cells was observed, B cells improved but not to sustained normal ranges. CONCLUSIONS Patients with IKAROS-associated diseases can present with SCID-like TREC values through newborn screening testing. IKZF1 mutations should be added to the low TREC differential, although spontaneous recovery has to be considered.
Collapse
Affiliation(s)
- Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health, Building 10, Rm 2C306, 10 Center Drive, MSC1508, Bethesda, MD, USA
| | - Nicholas J Gloude
- Division of Hematology Oncology, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Rady Children's Hospital San Diego, San Diego, CA, USA
| | - David Dimmock
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Mari Tokita
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Meredith Wright
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health, Building 10, Rm 2C306, 10 Center Drive, MSC1508, Bethesda, MD, USA.
| | - Cathleen Collins
- Rady Children's Hospital San Diego, San Diego, CA, USA
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
25
|
Boast B, Nunes-Santos CDJ, Kuehn HS, Rosenzweig SD. Ikaros-Associated Diseases: From Mice to Humans and Back Again. Front Pediatr 2021; 9:705497. [PMID: 34354970 PMCID: PMC8330404 DOI: 10.3389/fped.2021.705497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
The normal expression of Ikaros (IKZF1) is important for the proper functioning of both the human and murine immune systems. Whilst our understanding of IKZF1 in the immune system has been greatly enhanced by the study of mice carrying mutations in Ikzf1, analyses of human patients carrying germline IKZF1 mutations have been instrumental in understanding its biological role within the human immune system and its effect on human disease. A myriad of different mutations in IKZF1 have been identified, spanning across the entire gene causing differential clinical outcomes in patients including immunodeficiency, immune dysregulation, and cancer. The majority of mutations in humans leading to IKAROS-associated diseases are single amino acid heterozygous substitutions that affect the overall function of the protein. The majority of mutations studied in mice however, affect the expression of the protein rather than its function. Murine studies would suggest that the complete absence of IKZF1 expression leads to severe and sometimes catastrophic outcomes, yet these extreme phenotypes are not commonly observed in patients carrying IKZF1 heterozygous mutations. It is unknown whether this discrepancy is simply due to differences in zygosity, the role and regulation of IKZF1 in the murine and human immune systems, or simply due to a lack of similar controls across both groups. This review will focus its analysis on the current literature surrounding what is known about germline IKZF1 defects in both the human and the murine immune systems, and whether existing mice models are indeed accurate tools to study the effects of IKZF1-associated diseases.
Collapse
Affiliation(s)
- Brigette Boast
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Cristiane de Jesus Nunes-Santos
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Sergio D. Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| |
Collapse
|
26
|
Ramirez NJ, Posadas-Cantera S, Caballero-Oteyza A, Camacho-Ordonez N, Grimbacher B. There is no gene for CVID - novel monogenetic causes for primary antibody deficiency. Curr Opin Immunol 2021; 72:176-185. [PMID: 34153571 DOI: 10.1016/j.coi.2021.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022]
Abstract
'There is no gene for fate' (citation from the movie 'GATTACA') - and there is no gene for CVID. Common Variable ImmunoDeficiency (CVID) is the most prevalent primary immunodeficiency in humans. CVID is characterized by an increased susceptibility to infections, hypogammaglobulinemia, reduced switched memory B cell numbers in peripheral blood and a defective response to vaccination, often complicated by autoimmune and autoinflammatory conditions. However, as soon as a genetic diagnosis has been made in a patient with CVID, the diagnosis must be changed to the respective genetic cause (www.esid.org). Therefore, there are genetic causes for primary antibody deficiencies, but not for CVID. Primary antibody deficiencies (PADs) are a heterogeneous group of disorders. Several attempts have been made to gain further insights into the pathogenesis of PAD, using unbiased approaches such as whole exome or genome sequencing. Today, in just about 35% of cases with PAD, monogenic mutations (including those in the gene TNFRSF13B) can be identified in a set of 68 genes [1•]. These mutations occur either sporadically or are inherited and do explain an often complex phenotype. In our review, we not only discuss gene defects identified in PAD patients previously diagnosed with CVID and/or CVID-like disorders such as IKZF1, CTNNBL1, TNFSF13 and BACH2, but also genetic defects which were initially described in non-CVID patients but have later also been observed in patients with PAD such as PLCG2, PIK3CG, PMS2, RNF31, KMT2D, STAT3. We also included interesting genetic defects in which the pathophysiology suggests a close relation to other known defects of the adaptive immune response, such as DEF6, SAMD9 and SAMD9L, and hence a CVID-like phenotype may be observed in the future. However, alternative mechanisms most likely add to the development of an antibody-deficient phenotype, such as polygenic origins, epigenetic changes, and/or environmental factors.
Collapse
Affiliation(s)
- Neftali J Ramirez
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; Integrated Research Training Group (IRTG) Medical Epigenetics, Collaborative Research Centre 992, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University of Freiburg, Germany
| | - Sara Posadas-Cantera
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Andrés Caballero-Oteyza
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Nadezhda Camacho-Ordonez
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University of Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany.
| |
Collapse
|