1
|
Andrade-Pavón D, Gómez-García O, Villa-Tanaca L. Review and Current Perspectives on DNA Topoisomerase I and II Enzymes of Fungi as Study Models for the Development of New Antifungal Drugs. J Fungi (Basel) 2024; 10:629. [PMID: 39330389 PMCID: PMC11432948 DOI: 10.3390/jof10090629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Fungal infections represent a growing public health problem, mainly stemming from two phenomena. Firstly, certain diseases (e.g., AIDS and COVID-19) have emerged that weaken the immune system, leaving patients susceptible to opportunistic pathogens. Secondly, an increasing number of pathogenic fungi are developing multi-drug resistance. Consequently, there is a need for new antifungal drugs with novel therapeutic targets, such as type I and II DNA topoisomerase enzymes of fungal organisms. This contribution summarizes the available information in the literature on the biology, topology, structural characteristics, and genes of topoisomerase (Topo) I and II enzymes in humans, two other mammals, and 29 fungi (including Basidiomycetes and Ascomycetes). The evidence of these enzymes as alternative targets for antifungal therapy is presented, as is a broad spectrum of Topo I and II inhibitors. Research has revealed the genes responsible for encoding the Topo I and II enzymes of fungal organisms and the amino acid residues and nucleotide residues at the active sites of the enzymes that are involved in the binding mode of topoisomerase inhibitors. Such residues are highly conserved. According to molecular docking studies, antifungal Topo I and II inhibitors have good affinity for the active site of the respective enzymes. The evidence presented in the current review supports the proposal of the suitability of Topo I and II enzymes as molecular targets for new antifungal drugs, which may be used in the future in combined therapies for the treatment of infections caused by fungal organisms.
Collapse
Affiliation(s)
- Dulce Andrade-Pavón
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, Ciudad de México 11340, Mexico;
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - Omar Gómez-García
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, Ciudad de México 11340, Mexico
| | - Lourdes Villa-Tanaca
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, Ciudad de México 11340, Mexico;
| |
Collapse
|
2
|
Willemsen M, Staels F, Gerbaux M, Neumann J, Schrijvers R, Meyts I, Humblet-Baron S, Liston A. DNA replication-associated inborn errors of immunity. J Allergy Clin Immunol 2023; 151:345-360. [PMID: 36395985 DOI: 10.1016/j.jaci.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Inborn errors of immunity are a heterogeneous group of monogenic immunologic disorders caused by mutations in genes with critical roles in the development, maintenance, or function of the immune system. The genetic basis is frequently a mutation in a gene with restricted expression and/or function in immune cells, leading to an immune disorder. Several classes of inborn errors of immunity, however, result from mutation in genes that are ubiquitously expressed. Despite the genes participating in cellular processes conserved between cell types, immune cells are disproportionally affected, leading to inborn errors of immunity. Mutations in DNA replication, DNA repair, or DNA damage response factors can result in monogenic human disease, some of which are classified as inborn errors of immunity. Genetic defects in the DNA repair machinery are a well-known cause of T-B-NK+ severe combined immunodeficiency. An emerging class of inborn errors of immunity is those caused by mutations in DNA replication factors. Considerable heterogeneity exists within the DNA replication-associated inborn errors of immunity, with diverse immunologic defects and clinical manifestations observed. These differences are suggestive for differential sensitivity of certain leukocyte subsets to deficiencies in specific DNA replication factors. Here, we provide an overview of DNA replication-associated inborn errors of immunity and discuss the emerging mechanistic insights that can explain the observed immunologic heterogeneity.
Collapse
Affiliation(s)
- Mathijs Willemsen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.
| | - Frederik Staels
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Margaux Gerbaux
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; Pediatric Department, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Julika Neumann
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium; Department of Pediatrics, Division of Primary Immunodeficiencies, University Hospitals Leuven, Leuven, Belgium; ERN-RITA Core Center Member, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium.
| | - Adrian Liston
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Immunology Program, The Babraham Institute, Babraham Research Campus, Cambridge.
| |
Collapse
|
3
|
Muralidhara P, Kumar A, Chaurasia MK, Bansal K. Topoisomerases in Immune Cell Development and Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:126-133. [PMID: 36596219 PMCID: PMC7614072 DOI: 10.4049/jimmunol.2200650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/30/2022] [Indexed: 01/04/2023]
Abstract
DNA topoisomerases (TOPs) are complex enzymatic machines with extraordinary capacity to maintain DNA topology during torsion-intensive steps of replication and transcription. Recently, TOPs have gained significant attention for their tissue-specific function, and the vital role of TOPs in immune homeostasis and dysfunction is beginning to emerge. TOPs have been implicated in various immunological disorders such as autoimmunity, B cell immunodeficiencies, and sepsis, underscoring their importance in immune regulation. However, much remains unknown about immunological underpinnings of TOPs, and a deeper understanding of the role of TOPs in the immune system will be critical for yielding significant insights into the etiology of immunological disorders. In this review, we first discuss the recent literature highlighting the contribution of TOPs in the development of immune cells, and we further provide an overview of their importance in immune cell responses.
Collapse
Affiliation(s)
- Prerana Muralidhara
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Amit Kumar
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Mukesh Kumar Chaurasia
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Kushagra Bansal
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India,Corresponding author ()
| |
Collapse
|
4
|
Morotomi-Yano K, Hiromoto Y, Higaki T, Yano KI. Disease-associated H58Y mutation affects the nuclear dynamics of human DNA topoisomerase IIβ. Sci Rep 2022; 12:20627. [PMID: 36450898 PMCID: PMC9712534 DOI: 10.1038/s41598-022-24883-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
DNA topoisomerase II (TOP2) is an enzyme that resolves DNA topological problems and plays critical roles in various nuclear processes. Recently, a heterozygous H58Y substitution in the ATPase domain of human TOP2B was identified from patients with autism spectrum disorder, but its biological significance remains unclear. In this study, we analyzed the nuclear dynamics of TOP2B with H58Y (TOP2B H58Y). Although wild-type TOP2B was highly mobile in the nucleus of a living cell, the nuclear mobility of TOP2B H58Y was markedly reduced, suggesting that the impact of H58Y manifests as low protein mobility. We found that TOP2B H58Y is insensitive to ICRF-187, a TOP2 inhibitor that halts TOP2 as a closed clamp on DNA. When the ATPase activity of TOP2B was compromised, the nuclear mobility of TOP2B H58Y was restored to wild-type levels, indicating the contribution of the ATPase activity to the low nuclear mobility. Analysis of genome-edited cells harboring TOP2B H58Y showed that TOP2B H58Y retains sensitivity to the TOP2 poison etoposide, implying that TOP2B H58Y can undergo at least a part of its catalytic reactions. Collectively, TOP2 H58Y represents a unique example of the relationship between a disease-associated mutation and perturbed protein dynamics.
Collapse
Affiliation(s)
- Keiko Morotomi-Yano
- grid.274841.c0000 0001 0660 6749Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto, Japan
| | - Yukiko Hiromoto
- grid.274841.c0000 0001 0660 6749Faculty of Science, Kumamoto University, Kumamoto, Japan
| | - Takumi Higaki
- grid.274841.c0000 0001 0660 6749Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan ,grid.274841.c0000 0001 0660 6749International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Ken-ichi Yano
- grid.274841.c0000 0001 0660 6749Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto, Japan ,grid.274841.c0000 0001 0660 6749Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
5
|
Erdős M, Boyarchuk O, Maródi L. Case Report: Association between cyclic neutropenia and SRP54 deficiency. Front Immunol 2022; 13:975017. [PMID: 36159802 PMCID: PMC9493107 DOI: 10.3389/fimmu.2022.975017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Autosomal dominant mutations in the signal recognition particle (SRP) 54 gene were recently described in patients with severe congenital neutropenia (SCN). SRP54 deficiency cause a chronic and profound neutropenia with maturation arrest at the promyelocyte stage, occurring in the first months of life. Nearly all reported patients with SRP54 mutations had neutropenia without a cyclic pattern and showed a poor or no response to granulocyte colony-stimulating factor (G-CSF) therapy. We report here an 11-year-old female patient with cyclic neutropenia and recurrent heterozygous p.T117del (c.349_351del) in-frame deletion mutation in SRP54, who showed remarkable therapeutic response to G-CSF treatment. The diagnosis of cyclic pattern of neutropenia was established by acceptable standards. ELANE gene mutation was excluded by using various genetic approaches. The patient described here also had dolichocolon which has not been described before in association with SCN.
Collapse
Affiliation(s)
- Melinda Erdős
- Primary Immunodeficiency Clinical Unit and Laboratory, Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, NY, United States
| | - Oksana Boyarchuk
- Department of Children’s Diseases and Pediatric Surgery, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - László Maródi
- Primary Immunodeficiency Clinical Unit and Laboratory, Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, NY, United States
- *Correspondence: László Maródi,
| |
Collapse
|
6
|
Erdős M, Mironska K, Kareva L, Stavric K, Hasani A, Lányi Á, Kállai J, Maródi L. A novel mutation in SLC39A7 identified in a patient with autosomal recessive agammaglobulinemia: The impact of the J Project. Pediatr Allergy Immunol 2022; 33:e13805. [PMID: 35754127 PMCID: PMC9327717 DOI: 10.1111/pai.13805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/15/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Melinda Erdős
- Primary Immunodeficiency Clinical Unit and Laboratory, Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Kristina Mironska
- Department of Immunology, University Clinic for Children's Disease, Skopje, Republic of North Macedonia
| | - Lidia Kareva
- Department of Immunology, University Clinic for Children's Disease, Skopje, Republic of North Macedonia
| | - Katarina Stavric
- Department of Immunology, University Clinic for Children's Disease, Skopje, Republic of North Macedonia
| | - Arijeta Hasani
- Department of Immunology, University Clinic for Children's Disease, Skopje, Republic of North Macedonia
| | - Árpád Lányi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Kállai
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Maródi
- Primary Immunodeficiency Clinical Unit and Laboratory, Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| |
Collapse
|
7
|
Moreira F, Arenas M, Videira A, Pereira F. Evolutionary History of TOPIIA Topoisomerases in Animals. J Mol Evol 2022; 90:149-165. [PMID: 35165762 DOI: 10.1007/s00239-022-10048-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/26/2022] [Indexed: 01/15/2023]
Abstract
TOPIIA topoisomerases are required for the regulation of DNA topology by DNA cleavage and re-ligation and are important targets of antibiotic and anticancer agents. Humans possess two TOPIIA paralogue genes (TOP2A and TOP2B) with high sequence and structural similarity but distinct cellular functions. Despite their functional and clinical relevance, the evolutionary history of TOPIIA is still poorly understood. Here we show that TOPIIA is highly conserved in Metazoa. We also found that TOPIIA paralogues from jawed and jawless vertebrates had different origins related with tetraploidization events. After duplication, TOP2B evolved under a stronger purifying selection than TOP2A, perhaps promoted by the more specialized role of TOP2B in postmitotic cells. We also detected genetic signatures of positive selection in the highly variable C-terminal domain (CTD), possibly associated with adaptation to cellular interactions. By comparing TOPIIA from modern and archaic humans, we found two amino acid substitutions in the TOP2A CTD, suggesting that TOP2A may have contributed to the evolution of present-day humans, as proposed for other cell cycle-related genes. Finally, we identified six residues conferring resistance to chemotherapy differing between TOP2A and TOP2B. These six residues could be targets for the development of TOP2A-specific inhibitors that would avoid the side effects caused by inhibiting TOP2B. Altogether, our findings clarify the origin, diversification and selection pressures governing the evolution of animal TOPIIA.
Collapse
Affiliation(s)
- Filipa Moreira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310, Vigo, Spain
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Arnaldo Videira
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Filipe Pereira
- IDENTIFICA Genetic Testing, Rua Simão Bolívar 259 3º Dir Tras, 4470-214, Maia, Portugal.
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| |
Collapse
|