1
|
Silvina Y, Renata C, Gastón R, Compagnucci Malena F, Lorena T, Laura D, Valeria D, Gabriel G, Guillermo D, Martin R, Virginia Gentilini M. Seroconversion in liver and intestine transplant patients after one, two or three doses of adenoviral vector vaccines against SARS-CoV-2. Single center experience in Argentina. Hum Immunol 2024; 85:111091. [PMID: 39265411 DOI: 10.1016/j.humimm.2024.111091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/23/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND The capacity of different anti-SARS-CoV-2 vaccines to elicit immune response is not equivalent in the healthy population compared to chronically immunosuppressed patients. Most of the reports available to assess the effects of anti-SARS-CoV-2 vaccines on solid organ transplant recipients (SOTR) were performed using mRNA-based vaccines. OBJECTIVE This study aims to assess the seroconversion rate in a cohort of liver and liver- intestinal transplant patients after vaccination with the non-replicative vector-based vaccines after transplantation used in our country, Argentina (rAd26-rAd5 (Sputnik V) and ChAdOx11 nCoV-19 (AZD1222) (Astra Zeneca-Oxford). METHODS One hundred and three (103) liver and liver-intestinal transplant recipients were enrolled. Patients with previous PCR-confirmed COVID19 were excluded, therefore 77 were finally included for analysis; 75 were liver transplant recipients, 1 was a combined liver-intestine and 1 a multivisceral transplant. All received their first vaccine dose between March and June 2021; 66,2% males, and the mean age was 56,3 years. All patients have a post-transplant follow up longer than 1 year (mean 6.6 years, median 5 years, range 1-23 years). Immune response after first, second and third doses were determined using three different spike (S)-S commercial ELISA kits and an in-house made anti nucleocapsid-protein (N) ELISA. RESULTS Following the three doses, 57.1 % (44/77) of the patients seroconverted, while 33/77 (42.9 %) did not present anti-SARS-CoV-2 antibodies. The seroconversion rate was different for each dose. We found that 5/27 (18.5 %) of transplant patients seroconverted after a single dose; 18/29 pts (62.0 %) had anti-SARS-Cov-2 antibodies after the second doses; and 18/21 pts (85.7 %) reached the seroconversion after the third doses. The proportion of seroconversion was significantly increased in the second doses regardless the response observed after the first doses (p = 0.012, Fisher's exact test), particularly when two doses of ChAdOx11 vaccine was administrated (p = 0.040, Chi-square). However, the comparisons of seroconversion rate between Sputnik V and ChAdOx11 vaccines showed no differences after the different vaccination doses. No significant statistical difference in patient́s gender, age, comorbidities, type of vaccine, post-transplant, or maintenance immunosuppressive therapy was found between responders and non-responders. CONCLUSION Despite having a lower seroconversion rate compared to the general population, viral-vector vaccines benefit SOTR patients increasing the seroconversion rate using at least two doses of vaccine. These results support the concept of developing tailor-made vaccination guidelines for this specific population. This analysis provides further support to safety and efficacy of viral-vector vaccines in liver and liver-intestine transplant patients.
Collapse
Affiliation(s)
- Yantorno Silvina
- Unidad de Hepatología, Cirugía Hepatobiliar Y Trasplante Hepático, Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina
| | - Curciarello Renata
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Rizzo Gastón
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ferreyra Compagnucci Malena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Tau Lorena
- Laboratorio de Salud Pública. Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Delaplace Laura
- Laboratorio de Salud Pública. Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Descalzi Valeria
- Unidad de Hepatología, Cirugía Hepatobiliar Y Trasplante Hepático, Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina
| | - Gondolesi Gabriel
- Unidad de Hepatología, Cirugía Hepatobiliar Y Trasplante Hepático, Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina; Unidad de Soporte Nutricional, Rehabilitación y Trasplante Intestinal, Hospital Universitario Fundación Favaloro, Argentina; Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), CONICET, Universidad Favaloro, Argentina
| | - Docena Guillermo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Rumbo Martin
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Virginia Gentilini
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), CONICET, Universidad Favaloro, Argentina.
| |
Collapse
|
2
|
Chang-Rabley E, van Zelm MC, Ricotta EE, Edwards ESJ. An Overview of the Strategies to Boost SARS-CoV-2-Specific Immunity in People with Inborn Errors of Immunity. Vaccines (Basel) 2024; 12:675. [PMID: 38932404 PMCID: PMC11209597 DOI: 10.3390/vaccines12060675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The SARS-CoV-2 pandemic has heightened concerns about immunological protection, especially for individuals with inborn errors of immunity (IEI). While COVID-19 vaccines elicit strong immune responses in healthy individuals, their effectiveness in IEI patients remains unclear, particularly against new viral variants and vaccine formulations. This uncertainty has led to anxiety, prolonged self-isolation, and repeated vaccinations with uncertain benefits among IEI patients. Despite some level of immune response from vaccination, the definition of protective immunity in IEI individuals is still unknown. Given their susceptibility to severe COVID-19, strategies such as immunoglobulin replacement therapy (IgRT) and monoclonal antibodies have been employed to provide passive immunity, and protection against both current and emerging variants. This review examines the efficacy of COVID-19 vaccines and antibody-based therapies in IEI patients, their capacity to recognize viral variants, and the necessary advances required for the ongoing protection of people with IEIs.
Collapse
Affiliation(s)
- Emma Chang-Rabley
- The Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Menno C. van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC 3000, Australia
- Department of Immunology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Emily E. Ricotta
- The Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Preventive Medicine and Biostatistics, Uniform Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Emily S. J. Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
3
|
Delmonte OM, Oguz C, Dobbs K, Myint-Hpu K, Palterer B, Abers MS, Draper D, Truong M, Kaplan IM, Gittelman RM, Zhang Y, Rosen LB, Snow AL, Dalgard CL, Burbelo PD, Imberti L, Sottini A, Quiros-Roldan E, Castelli F, Rossi C, Brugnoni D, Biondi A, Bettini LR, D'Angio M, Bonfanti P, Anderson MV, Saracino A, Chironna M, Di Stefano M, Fiore JR, Santantonio T, Castagnoli R, Marseglia GL, Magliocco M, Bosticardo M, Pala F, Shaw E, Matthews H, Weber SE, Xirasagar S, Barnett J, Oler AJ, Dimitrova D, Bergerson JRE, McDermott DH, Rao VK, Murphy PM, Holland SM, Lisco A, Su HC, Lionakis MS, Cohen JI, Freeman AF, Snyder TM, Lack J, Notarangelo LD. Perturbations of the T-cell receptor repertoire in response to SARS-CoV-2 in immunocompetent and immunocompromised individuals. J Allergy Clin Immunol 2024; 153:1655-1667. [PMID: 38154666 PMCID: PMC11162338 DOI: 10.1016/j.jaci.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Functional T-cell responses are essential for virus clearance and long-term protection after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, whereas certain clinical factors, such as older age and immunocompromise, are associated with worse outcome. OBJECTIVE We sought to study the breadth and magnitude of T-cell responses in patients with coronavirus disease 2019 (COVID-19) and in individuals with inborn errors of immunity (IEIs) who had received COVID-19 mRNA vaccine. METHODS Using high-throughput sequencing and bioinformatics tools to characterize the T-cell receptor β repertoire signatures in 540 individuals after SARS-CoV-2 infection, 31 IEI recipients of COVID-19 mRNA vaccine, and healthy controls, we quantified HLA class I- and class II-restricted SARS-CoV-2-specific responses and also identified several HLA allele-clonotype motif associations in patients with COVID-19, including a subcohort of anti-type 1 interferon (IFN-1)-positive patients. RESULTS Our analysis revealed that elderly patients with COVID-19 with critical disease manifested lower SARS-CoV-2 T-cell clonotype diversity as well as T-cell responses with reduced magnitude, whereas the SARS-CoV-2-specific clonotypes targeted a broad range of HLA class I- and class II-restricted epitopes across the viral proteome. The presence of anti-IFN-I antibodies was associated with certain HLA alleles. Finally, COVID-19 mRNA immunization induced an increase in the breadth of SARS-CoV-2-specific clonotypes in patients with IEIs, including those who had failed to seroconvert. CONCLUSIONS Elderly individuals have impaired capacity to develop broad and sustained T-cell responses after SARS-CoV-2 infection. Genetic factors may play a role in the production of anti-IFN-1 antibodies. COVID-19 mRNA vaccines are effective in inducing T-cell responses in patients with IEIs.
Collapse
Affiliation(s)
- Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Katherine Myint-Hpu
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Boaz Palterer
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michael S Abers
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Deborah Draper
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Meng Truong
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | | | | | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Lindsey B Rosen
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Andrew L Snow
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md; Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, Md; The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - Peter D Burbelo
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Md
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Alessandra Sottini
- Section of Microbiology, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Francesco Castelli
- Department of Infectious and Tropical Diseases, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Camillo Rossi
- Direzione Sanitaria, ASST Spedali Civili, Brescia, Italy
| | - Duilio Brugnoni
- Laboratorio Analisi Chimico-Cliniche, ASST Spedali Civili, Brescia, Italy
| | - Andrea Biondi
- Pediatric Department and Centro Tettamanti-European Reference Network on Paediatric Cancer, European Reference Network on Haematological Diseases, and European Reference Network on Hereditary Metabolic Disorders, University of Milano-Bicocca-Fondazione MBBM, Monza, Italy
| | - Laura Rachele Bettini
- Pediatric Department and Centro Tettamanti-European Reference Network on Paediatric Cancer, European Reference Network on Haematological Diseases, and European Reference Network on Hereditary Metabolic Disorders, University of Milano-Bicocca-Fondazione MBBM, Monza, Italy
| | - Mariella D'Angio
- Pediatric Department and Centro Tettamanti-European Reference Network on Paediatric Cancer, European Reference Network on Haematological Diseases, and European Reference Network on Hereditary Metabolic Disorders, University of Milano-Bicocca-Fondazione MBBM, Monza, Italy
| | - Paolo Bonfanti
- Department of Infectious Diseases, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Megan V Anderson
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Annalisa Saracino
- Clinic of Infectious Diseases, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, University of Bari, Bari, Italy
| | - Maria Chironna
- Hygiene Section, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Mariantonietta Di Stefano
- Department of Medical and Surgical Sciences, Section of Infectious Diseases, University of Foggia, Foggia, Italy
| | - Jose Ramon Fiore
- Department of Medical and Surgical Sciences, Section of Infectious Diseases, University of Foggia, Foggia, Italy
| | - Teresa Santantonio
- Department of Medical and Surgical Sciences, Section of Infectious Diseases, University of Foggia, Foggia, Italy
| | - Riccardo Castagnoli
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gian Luigi Marseglia
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mary Magliocco
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Elana Shaw
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Helen Matthews
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Sarah E Weber
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Sandhya Xirasagar
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jason Barnett
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Dimana Dimitrova
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Md
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - David H McDermott
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - V Koneti Rao
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Andrea Lisco
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michail S Lionakis
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | | | - Justin Lack
- Integrated Data Sciences Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
4
|
Cusa G, Sardella G, Garzi G, Firinu D, Milito C. SARS-CoV-2 vaccination in primary antibody deficiencies: an overview on efficacy, immunogenicity, durability of immune response and safety. Curr Opin Allergy Clin Immunol 2024; 24:37-43. [PMID: 37962877 DOI: 10.1097/aci.0000000000000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
PURPOSE OF REVIEW This review aims to summarize the current best knowledge on the efficacy of COVID-19 vaccination in vulnerable patients affected by primary antibody deficiencies (PADs), both in patients previously infected and vaccine-immunized, focusing also on the durability, on the need for multiple booster doses and on the safety of anti-SARS-CoV-2 vaccines. RECENT FINDINGS Patients vaccinated for SARS-CoV2 have variable humoral response, still showing a tendency towards an increase in antibody titers, with factors such as booster doses, previous infections, age and specific genetic mutations influencing the outcome. Long-lasting cellular responses to SARS-CoV-2 vaccination instead, mostly of the T-cell type, have been observed. Overall, the duration of protection given by vaccinations is sufficient and increased upon further simulations. Furthermore, the safety profile in PID patients is excellent, with most adverse events being transient and mild and no major adverse event reported. SUMMARY Several studies have emphasized the benefit of vaccinating patients with PADs against the SARS-CoV-2 virus and the necessity of administering booster doses. This review, by gathering the most recent and significant data from the scientific literature, could be helpful in clinical practice in the management of disease prevention in patients affected by primary immunodeficiency and also serve as inspiration for further in-depth clinical research.
Collapse
Affiliation(s)
- Gabriella Cusa
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome
| | - Germano Sardella
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome
| | - Giulia Garzi
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome
| |
Collapse
|
5
|
Fernández NB, Herrera MG, Blaustein M, Pignataro MF. Policy options and practical recommendations for determining priorities in public health research agendas in peripheral countries: insights from a collaborative work initiative in Argentina during the COVID-19 pandemic. Front Med (Lausanne) 2024; 10:1334194. [PMID: 38274453 PMCID: PMC10808489 DOI: 10.3389/fmed.2023.1334194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Affiliation(s)
- Natalia Brenda Fernández
- Instituto de Biociencias, Biotecnología y Biología traslacional (iB3), Departamento de Fisiología, Biología Molecular y Celular (DFBMC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - María Georgina Herrera
- Instituto de Biociencias, Biotecnología y Biología traslacional (iB3), Departamento de Fisiología, Biología Molecular y Celular (DFBMC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Matías Blaustein
- Instituto de Biociencias, Biotecnología y Biología traslacional (iB3), Departamento de Fisiología, Biología Molecular y Celular (DFBMC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Florencia Pignataro
- Instituto de Biociencias, Biotecnología y Biología traslacional (iB3), Departamento de Fisiología, Biología Molecular y Celular (DFBMC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
6
|
Oyaert M, De Scheerder MA, Van Herrewege S, Laureys G, Van Assche S, Cambron M, Naesens L, Hoste L, Claes K, Haerynck F, Kerre T, Van Laecke S, Jacques P, Padalko E. Longevity of the humoral and cellular responses after SARS-CoV-2 booster vaccinations in immunocompromised patients. Eur J Clin Microbiol Infect Dis 2024; 43:177-185. [PMID: 37953413 DOI: 10.1007/s10096-023-04701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
We assessed the humoral and cellular immune responses after two booster mRNA vaccine administrations [BNT162b2 (Pfizer-BioNTech vaccine)] in cohorts of immunocompromised patients (n = 199) and healthy controls (HC) (n = 54). All patients living with HIV (PLWH) and chronic kidney disease (CKD) patients and almost all (98.2%) of the primary immunodeficiency (PID) patients had measurable antibodies 3 and 6 months after administration of the third and fourth vaccine dose, comparable to the HCs. In contrast, only 53.3% and 83.3% of the multiple sclerosis (MS) and rheumatologic patients, respectively, developed a humoral immune response. Cellular immune response was observed in all PLWH after administration of four vaccine doses. In addition, cellular immune response was positive in 89.6%, 97.8%, 73.3% and 96.9% of the PID, MS, rheumatologic and CKD patients, respectively. Unlike the other groups, only the MS patients had a significantly higher cellular immune response compared to the HC group. Administration of additional vaccine doses results in retained or increased humoral and cellular immune response in patients with acquired or inherited immune disorders.
Collapse
Affiliation(s)
- Matthijs Oyaert
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium.
| | | | - Sophie Van Herrewege
- Department of General Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Guy Laureys
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Sofie Van Assche
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Melissa Cambron
- Department of Neurology, AZ Sint-Jan Brugge Oostende, Brugge, Belgium
| | - Leslie Naesens
- Department of Internal Medicine and Paediatrics, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Ghent University, Ghent, Belgium
| | - Levi Hoste
- Department of Internal Medicine and Paediatrics, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Ghent University, Ghent, Belgium
| | - Karlien Claes
- Department of Internal Medicine and Paediatrics, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Ghent University, Ghent, Belgium
| | - Filomeen Haerynck
- Department of Internal Medicine and Paediatrics, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Ghent University, Ghent, Belgium
| | - Tessa Kerre
- Department of Haematology, Ghent University Hospital, Ghent, Belgium
| | | | - Peggy Jacques
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Elizaveta Padalko
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
7
|
Costanzo GAML, Deiana CM, Sanna G, Perra A, Campagna M, Ledda AG, Coghe F, Palmas V, Cappai R, Manzin A, Chessa L, Del Giacco S, Firinu D. Impact of Exposure to Vaccination and Infection on Cellular and Antibody Response to SARS-CoV-2 in CVID Patients Through COVID-19 Pandemic. J Clin Immunol 2023; 44:12. [PMID: 38129351 DOI: 10.1007/s10875-023-01616-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE The purpose of this study is to investigate the kinetics of response against SARS-CoV-2 elicited by vaccination and/or breakthrough infection (occurred after 3 doses of BNT162b2) in a cohort CVID patients. METHODS We measured humoral and cellular immunity using quantitative anti-spike antibody (anti-S-IgG) and neutralization assay and specific interferon-gamma release assay (IGRA) before and after the third or fourth dose of BNT162b2 and/or after COVID-19. RESULTS In CVID, 58.3% seroconverted after 2 doses that increased to 77.8% after 3 doses. Between the second and third dose, there was a decline in humoral compartment that led to titers below the cutoff of 1:10 (MNA90%) in CVID. This was paralleled by a significantly lower proportion (30%) and reduced magnitude of the residual cellular response among CVID. The third dose achieved a lower titer of anti-S and nAb against the Wuhan strain than HC and significantly decreased the rate of those showing solely a positive neutralizing activity and those with simultaneous negativity of IGRA and nAbs; the differences in IGRA were overall reduced with respect to HC. At further sampling after breakthrough SARS-COV-2 infection, mostly in the omicron era, or fourth dose, 6 months after the last event, the residual nAb titer to Wuhan strain was still significantly higher in HC, while there was no significant difference of nAbs to BA.1. The rate of IGRA responders was 65.5% in CVID and 90.5% in HC (p=0.04), while the magnitude of response was similar. None of CVID had double negativity to nAbs and IGRA at the last sampling. CONCLUSION This data shows an increase of adaptive immunity in CVID after mRNA vaccination in parallel to boosters, accrual number of exposures and formation of hybrid immunity.
Collapse
Affiliation(s)
| | - Carla Maria Deiana
- Department of Medical Sciences and Public Health, University of Cagliari, 09100, Cagliari, Italy
| | - Giuseppina Sanna
- Microbiology and Virology Unit, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Andrea Perra
- Oncology and Molecular Pathology Unit, Department of Biomedical Sciences, University of Cagliari, 09100, Cagliari, Italy
| | - Marcello Campagna
- Department of Medical Sciences and Public Health, University of Cagliari, 09100, Cagliari, Italy
| | - Andrea Giovanni Ledda
- Department of Medical Sciences and Public Health, University of Cagliari, 09100, Cagliari, Italy
| | - Ferdinando Coghe
- Laboratory Clinical Chemical Analysis and Microbiology, University Hospital of Cagliari, 09042, Monserrato, Italy
| | - Vanessa Palmas
- Microbiology and Virology Unit, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Riccardo Cappai
- Laboratory Clinical Chemical Analysis and Microbiology, University Hospital of Cagliari, 09042, Monserrato, Italy
| | - Aldo Manzin
- Microbiology and Virology Unit, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Luchino Chessa
- Department of Medical Sciences and Public Health, University of Cagliari, 09100, Cagliari, Italy
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, 09100, Cagliari, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, 09100, Cagliari, Italy.
- Unit of Internal Medicine, Policlinico Universitario - AOU di Cagliari, Cagliari, Italy.
- Azienda Ospedaliero Universitaria, SS 554-Bivio Sestu, 09042, Monserrato, CA, Italy.
| |
Collapse
|
8
|
Tan C, Wang N, Deng S, Wu X, Yue C, Jia X, Lyu Y. The development and application of pseudoviruses: assessment of SARS-CoV-2 pseudoviruses. PeerJ 2023; 11:e16234. [PMID: 38077431 PMCID: PMC10710176 DOI: 10.7717/peerj.16234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/14/2023] [Indexed: 12/18/2023] Open
Abstract
Although most Coronavirus disease (COVID-19) patients can recover fully, the disease remains a significant cause of morbidity and mortality. In addition to the consequences of acute infection, a proportion of the population experiences long-term adverse effects associated with SARS-CoV-2. Therefore, it is still critical to comprehend the virus's characteristics and how it interacts with its host to develop effective drugs and vaccines against COVID-19. SARS-CoV-2 pseudovirus, a replication-deficient recombinant glycoprotein chimeric viral particle, enables investigations of highly pathogenic viruses to be conducted without the constraint of high-level biosafety facilities, considerably advancing virology and being extensively employed in the study of SARS-CoV-2. This review summarizes three methods of establishing SARS-CoV-2 pseudovirus and current knowledge in vaccine development, neutralizing antibody research, and antiviral drug screening, as well as recent progress in virus entry mechanism and susceptible cell screening. We also discuss the potential advantages and disadvantages.
Collapse
Affiliation(s)
- Conglian Tan
- Key Laboratory of Microbial Drugs Innovation and Transformation, Medical College, Yan’an University, Yan’an, Shaanxi, China
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Nian Wang
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Shanshan Deng
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiaoheng Wu
- Key Laboratory of Microbial Drugs Innovation and Transformation, Medical College, Yan’an University, Yan’an, Shaanxi, China
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Changwu Yue
- Key Laboratory of Microbial Drugs Innovation and Transformation, Medical College, Yan’an University, Yan’an, Shaanxi, China
| | - Xu Jia
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yuhong Lyu
- Key Laboratory of Microbial Drugs Innovation and Transformation, Medical College, Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
9
|
Paris R. SARS-CoV-2 Infection and Response to COVID-19 Vaccination in Patients With Primary Immunodeficiencies. J Infect Dis 2023; 228:S24-S33. [PMID: 37539759 PMCID: PMC10401615 DOI: 10.1093/infdis/jiad145] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/06/2023] [Indexed: 08/05/2023] Open
Abstract
Primary immunodeficiencies (PIDs) are heterogeneous, rare disorders that increase susceptibility to infection and/or immune dysregulation. Individuals with certain PIDs are at high risk of severe or fatal outcomes from SARS-CoV-2 infections (the causative agent of COVID-19), either due to the underlying PID and/or due to the presence of comorbidities such as severe lung and liver disease. Vaccination remains the primary strategy to protect individuals with PID from COVID-19. However, populations with PID exhibit variable vaccine seroresponse rates, antibody titers, and neutralization activity depending on the type of PID and/or COVID-19 vaccine, and consequently, are at an elevated risk of severe disease. In this article, we review the COVID-19 burden in patients with PIDs and focus in-depth on findings from patients with predominantly antibody deficiencies or combined immunodeficiencies. We conclude by providing COVID-19 vaccination recommendations for this population.
Collapse
Affiliation(s)
- Robert Paris
- Correspondence: Robert Paris, MD, FACP, FIDSA, Moderna, Inc., 200 Technology Square, Cambridge, MA 02139, USA ()
| |
Collapse
|
10
|
Tandon M, DiGiacomo DV, Zhou B, Hesterberg P, Rosenberg CE, Barmettler S, Farmer JR. Response to SARS-CoV-2 initial series and additional dose vaccine in pediatric patients with predominantly antibody deficiency. Front Immunol 2023; 14:1217718. [PMID: 37575247 PMCID: PMC10413262 DOI: 10.3389/fimmu.2023.1217718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Data regarding response to SARS-CoV-2 immunization in pediatric patients with predominantly antibody deficiency (PAD) is limited. We evaluated SARS-CoV-2 immunization response by anti-SARS-CoV-2-spike antibody level in 15 pediatric PAD patients. These data were compared to a published cohort of adult PAD patients (n=62) previously analyzed following SARS-CoV-2 immunization at our single center institution. We evaluated demographics, clinical characteristics, immunophenotype, infection history, and past medication use by chart review. Following a two-dose monovalent initial series SARS-CoV-2 immunization, mean anti-SARS-CoV-2-spike antibody levels were significantly higher in pediatric PAD patients compared to adult PAD patients (2,890.7 vs. 140.1 U/mL; p<0.0001). Pediatric PAD patients with low class-switched memory B-cells, defined as <2% of total CD19+ B-cells, had significantly lower mean anti-SARS-CoV-2-spike antibody levels than those without (p=0.02). Following a third-dose monovalent SARS-CoV-2 immunization, the mean anti-SARS-CoV-2-spike antibody levels in pediatric PAD patients significantly increased (2,890.7 to 18,267.2 U/mL; p<0.0001). These data support Centers for Disease Control guidelines regarding three-part SARS-CoV-2 vaccine series, including in the pediatric PAD patient demographic.
Collapse
Affiliation(s)
- Megha Tandon
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Daniel V. DiGiacomo
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Baijun Zhou
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Paul Hesterberg
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Chen E. Rosenberg
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Sara Barmettler
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Jocelyn R. Farmer
- Harvard Medical School, Boston, MA, United States
- Division of Allergy and Inflammation, Beth Israel Lahey Health, Boston, Massachusetts, United States
| |
Collapse
|
11
|
Vera-Lastra O, Mora G, Lucas-Hernández A, Ordinola-Navarro A, Rodríguez-Chávez E, Peralta-Amaro AL, Medina G, Cruz-Dominguez MP, Jara LJ, Shoenfeld Y. New Onset Autoimmune Diseases after the Sputnik Vaccine. Biomedicines 2023; 11:1898. [PMID: 37509537 PMCID: PMC10377489 DOI: 10.3390/biomedicines11071898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
The vertiginous advance for identifying the genomic sequence of SARS-CoV-2 allowed the development of a vaccine including mRNA-based vaccines, inactivated viruses, protein subunits, and adenoviral vaccines such as Sputnik. This study aims to report on autoimmune disease manifestations that occurred following COVID-19 Sputnik vaccination. Patients and Methods: A retrospective study was conducted on patients with new-onset autoimmune diseases induced by a post-COVID-19 vaccine between March 2021 and December 2022, in two referral hospitals in Mexico City and Argentina. The study evaluated patients who received the Sputnik vaccine and developed recent-onset autoimmune diseases. Results: Twenty-eight patients developed recent-onset autoimmune diseases after Sputnik vaccine. The median age was 56.9 ± 21.7 years, with 14 females and 14 males. The autoimmune diseases observed were neurological in 13 patients (46%), hematological autoimmune manifestations occurred in 12 patients (42%), with thrombotic disease observed in 10 patients (28%), and autoimmune hemolytic anemia in two patients (7.1%). Rheumatological disorders were present in two patients (7.1%), and endocrine disorders in one patient (3.5%). Principio del formulario Conclusion: Although the COVID-19 Sputnik vaccine is generally safe, it can lead to adverse effects. Thrombosis and Guillain-Barre were the most frequent manifestations observed in our group of patients.
Collapse
Affiliation(s)
- Olga Vera-Lastra
- Internal Medicine Department, Hospital de Especialidades, Dr. Antonio Fraga Mouret, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social (IMSS), Mexico City 02990, Mexico
| | - Gabriela Mora
- Inmunology Department, Hospital Militar Central, Cirujano Mayor Dr. Cosme Argerich, Buenos Aires C1426, Argentina
| | - Abihai Lucas-Hernández
- Rheumatology Department, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City 03104, Mexico
| | - Alberto Ordinola-Navarro
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Emmanuel Rodríguez-Chávez
- Neurology Department, Hospital de Especialidades, Dr. Antonio Fraga Mouret, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social (IMSS), Mexico City 02990, Mexico
| | - Ana Lilia Peralta-Amaro
- Internal Medicine Department, Hospital de Especialidades, Dr. Antonio Fraga Mouret, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social (IMSS), Mexico City 02990, Mexico
| | - Gabriela Medina
- Translational Research Unit, Hospital de Especialidades, Dr. Antonio Fraga Mouret, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social (IMSS), Mexico City 02990, Mexico
| | - María Pilar Cruz-Dominguez
- Direction of Research and Education, Hospital de Especialidades, Dr. Antonio Fraga Mouret, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social (IMSS), Mexico City 02990, Mexico
| | - Luis J Jara
- Rheumatology Division, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City 14389, Mexico
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan 52621, Tel Aviv 69978, Israel
| |
Collapse
|
12
|
Lucane Z, Slisere B, Gersone G, Papirte S, Gailite L, Tretjakovs P, Kurjane N. Cytokine Response Following SARS-CoV-2 Antigen Stimulation in Patients with Predominantly Antibody Deficiencies. Viruses 2023; 15:v15051146. [PMID: 37243231 DOI: 10.3390/v15051146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Predominantly antibody deficiencies (PADs) are inborn disorders characterized by immune dysregulation and increased susceptibility to infections. Response to vaccination, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), may be impaired in these patients, and studies on responsiveness correlates, including cytokine signatures to antigen stimulation, are sparse. In this study, we aimed to describe the spike-specific cytokine response following whole-blood stimulation with SARS-CoV-2 spike peptides in patients with PAD (n = 16 with common variable immunodeficiency and n = 15 with selective IgA deficiency) and its relationship with the occurrence of coronavirus disease 2019 (COVID-19) during up to 10-month follow-up period. Spike-induced antibody and cytokine production was measured using ELISA (anti-spike IgG, IFN-γ) and xMAP technology (interleukin-1β (IL-1β), IL-4, IL-6, IL-10, IL-15, IL-17A, IL-21, TNF-α, TGF-β1). No difference was found in the production of cytokines between patients with PAD and controls. Anti-spike IgG and cytokine levels did not predict contraction of COVID-19. The only cytokine that distinguished between vaccinated and naturally infected unvaccinated PAD patients was IFN-γ (median 0.64 (IQR = 1.08) in vaccinated vs. 0.10 (IQR = 0.28) in unvaccinated). This study describes the spike-specific cytokine response to SARS-CoV-2 antigens, which is not predictive of contracting COVID-19 during the follow-up.
Collapse
Affiliation(s)
- Zane Lucane
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia
| | - Baiba Slisere
- The Joint Laboratory, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
- Department of Internal Diseases, Riga Stradins University, LV-1007 Riga, Latvia
| | - Gita Gersone
- Department of Human Physiology and Biochemistry, Riga Stradins University, LV-1007 Riga, Latvia
| | - Sindija Papirte
- Faculty of Medicine, Riga Stradins University, LV-1007 Riga, Latvia
| | - Linda Gailite
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, LV-1007 Riga, Latvia
| | - Peteris Tretjakovs
- Department of Human Physiology and Biochemistry, Riga Stradins University, LV-1007 Riga, Latvia
| | - Natalja Kurjane
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia
- Outpatient Clinic, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
- Outpatient Clinic, Children's Clinical University Hospital, LV-1004 Riga, Latvia
| |
Collapse
|