1
|
Almuhayawi MS, Alruhaili MH, Soliman MKY, Tarabulsi MK, Ashy RA, Saddiq AA, Selim S, Alruwaili Y, Salem SS. Investigating the in vitro antibacterial, antibiofilm, antioxidant, anticancer and antiviral activities of zinc oxide nanoparticles biofabricated from Cassia javanica. PLoS One 2024; 19:e0310927. [PMID: 39352889 PMCID: PMC11444386 DOI: 10.1371/journal.pone.0310927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
It is thought to be risk-free, environmentally benign, and safe for biological processes to produce zinc oxide nanoparticles from renewable resources. This study examined Cassia javanica's ability to create ZnONPs. The generated ZnONPs were analyzed using a variety of techniques, such as TEM, FTIR spectroscopy, UV-Vis spectroscopy, and XRD analysis. The antibacterial potential of ZnONPs has been investigated using both Agar well diffusion and microtitreplate (MTP) methods. One method used to evaluate ZnONPs' capacity to scavenge free radicals at different concentrations was the DPPH method. The permanent zinc oxide (ZnO) shape and the naturally occurring crystal structure of ZnONPs were validated by the XRD data. ZnONPs showed antibacterial activity with MICs of 31.7 μg/mL toward Bacillus subtilis, 62.5 μg/mL for Salmonella typhimurium, Escherichia coli while Clostridium sporogenes and Bacillus pumilus was 125μg/mL. Furthermore, ZnONPs demonstrated a range of antibiofilm activities toward Staphylococcus aureus (MRSA). ZnONPs showed an intriguing antioxidant capacity, achieving IC50 of 109.3 μg/ml μg/mL. Additionally, ZnONPs demonstrated low toxic effect on Vero cell with IC50 154.01 μg/mL as well as possible anticancer action when applied to the carcinoma cell lines HepG2 with IC50 of 47.48 μg/mL. Furthermore, ZnONPs at 62.5 μg/mL had a promising antiviral impact against HSV1 and COX B4, with antiviral activities of 75.4% and 65.8%, respectively.
Collapse
Affiliation(s)
- Mohammed S Almuhayawi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed H Alruhaili
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Mohamed K Y Soliman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Muyassar K Tarabulsi
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Ruba A Ashy
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Amna A Saddiq
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Yasir Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Sustainable Development Research and Innovation Center, Deanship of Graduate Studies and Scientific Research, Jouf University, Sakaka, Saudi Arabia
| | - Salem S Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
2
|
Patel J, Kumar GS, Roy H, Maddiboyina B, Leporatti S, Bohara RA. From nature to nanomedicine: bioengineered metallic nanoparticles bridge the gap for medical applications. DISCOVER NANO 2024; 19:85. [PMID: 38724833 PMCID: PMC11082127 DOI: 10.1186/s11671-024-04021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
The escalating global challenge of antimicrobial resistance demands innovative approaches. This review delves into the current status and future prospects of bioengineered metallic nanoparticles derived from natural sources as potent antimicrobial agents. The unique attributes of metallic nanoparticles and the abundance of natural resources have sparked a burgeoning field of research in combating microbial infections. A systematic review of the literature was conducted, encompassing a wide range of studies investigating the synthesis, characterization, and antimicrobial mechanisms of bioengineered metallic nanoparticles. Databases such as PubMed, Scopus, Web of Science, ScienceDirect, Springer, Taylor & Francis online and OpenAthen were extensively searched to compile a comprehensive overview of the topic. The synthesis methods, including green and sustainable approaches, were examined, as were the diverse biological sources used in nanoparticle fabrication. The amalgamation of metallic nanoparticles and natural products has yielded promising antimicrobial agents. Their multifaceted mechanisms, including membrane disruption, oxidative stress induction, and enzyme inhibition, render them effective against various pathogens, including drug-resistant strains. Moreover, the potential for targeted drug delivery systems using these nanoparticles has opened new avenues for personalized medicine. Bioengineered metallic nanoparticles derived from natural sources represent a dynamic frontier in the battle against microbial infections. The current status of research underscores their remarkable antimicrobial efficacy and multifaceted mechanisms of action. Future prospects are bright, with opportunities for scalability and cost-effectiveness through sustainable synthesis methods. However, addressing toxicity, regulatory hurdles, and environmental considerations remains crucial. In conclusion, this review highlights the evolving landscape of bioengineered metallic nanoparticles, offering valuable insights into their current status and their potential to revolutionize antimicrobial therapy in the future.
Collapse
Affiliation(s)
- Jitendra Patel
- Gitam School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, Rudraram, Sangareddy, Hyderabad, TS, 502329, India
| | - G Shiva Kumar
- Gitam School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, Rudraram, Sangareddy, Hyderabad, TS, 502329, India
| | - Harekrishna Roy
- Department of Pharmaceutics, Nirmala College of Pharmacy, Mangalagiri, Guntur, Andhra Pradesh, 522503, India.
| | - Balaji Maddiboyina
- Department of Medical and Scientific Communications, Scientific Writing Services, Freyr Global Regulatory Solutions & Services, Phoenix SEZ, Hitech City, Gachibowli, Hyderabad, 500081, India.
| | - Stefano Leporatti
- CNR Nanotec-Istituto Di Nanotecnologia, C\O Campus EcotekneVia Monteroni, 3100, Lecce, Italy
| | - Raghvendra A Bohara
- D.Y. Patil Education Society (Deemed to be University), Kolhapur, MS, India.
- University of Galway, Galway, Ireland.
| |
Collapse
|
3
|
Dinesh A, Kumar A. A Review on Bioactive Compounds, Ethnomedicinal Importance and Pharmacological Activities of Talinum triangulare (Jacq.) Willd. Chem Biodivers 2023; 20:e202301079. [PMID: 37867157 DOI: 10.1002/cbdv.202301079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 10/24/2023]
Abstract
Talinum triangulare (Jacq.) Willd. is a traditional leafy vegetable used by tribal communities for ethnomedicinal and ethnoculinary preparations. This article reviews the current knowledge of its multiple uses, including pharmacological activities and nutritional composition. The literature survey shows that it has been traditionally useful in the treatment of several diseases, such as anaemia, diabetes, measles, and ulcers and the preparation of various traditional foods. Analysis of the literature on its phytochemicals shows its richness in bioactive compounds. Further, research also shows that this plant has antidiabetic, antiobesity, antitumor, antiulcer, hepatoprotective, and neuroprotective activities besides anti-inflammatory and antioxidant properties. Nutrient analysis of the plant reveals the presence of Ca, Zn, Fe, vitamins C and E, dietary fibre and protein in considerable quantities. The results of the pharmacological studies on the antidiabetic, antiulcer and anti-anaemic activities provide support in favour of its ethnomedicinal uses. The presence of bioactive compounds and pharmacological activities show the usefulness of this plant as a functional food.
Collapse
Affiliation(s)
- Anagha Dinesh
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, Kasaragod, 671316, Kerala, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, Kasaragod, 671316, Kerala, India
| |
Collapse
|
4
|
Kumari M, Sarkar B, Mukherjee K. Nanoscale calcium oxide and its biomedical applications: A comprehensive review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Soliman WE, Elsewedy HS, Younis NS, Shinu P, Elsawy LE, Ramadan HA. Evaluating Antimicrobial Activity and Wound Healing Effect of Rod-Shaped Nanoparticles. Polymers (Basel) 2022; 14:polym14132637. [PMID: 35808682 PMCID: PMC9269196 DOI: 10.3390/polym14132637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Presently, the nanotechnology approach has gained a great concern in the media of drug delivery. Gold nanoparticles (Au-NPs) specially having a non-spherical structure, such as gold nanorods (GNR), are attracting much interest as antibacterial agent and many other medical fields. The aim of the current investigation was to characterize Au-NPs and investigate their antimicrobial and wound healing efficacy in diabetic animals. Material and methods: Au-NPs were characterized using a UV-Vis spectrophotometer, estimating their particle size, polydispersity (PDI), and assessing their morphological characters. Further, Au-NPs were estimated for their antibacterial and antifungal behavior. Ultimately, in vivo activity of Au-NPs was evaluated against excision wound healing in STZ-induced diabetic animals. Results: Au-NPs were found to show maximum absorption at 520 nm. They exhibited a particle size of 82.57 nm with a PDI value of 0.323. Additionally, they exhibited good antimicrobial activity against different bacterial strains. Topical application of Au-NPs caused a significantly increased percentage of wound area reduction, lesser time needed for epithelialization, and augmented hydroxyproline, collagen, and hexosamine levels demonstrating enhanced healing processes. Furthermore, Au-NPs displayed a significant intensification in angiogenesis-related factors (HIF-1α, TGF-β1, and VEGF), and antioxidant enzymes activities (CAT, SOD, GPx) as well as mitigated inflammatory mediators IL-6, IL-1β, TNF-α, and NF-κB) and lipid peroxidation (MDA). Conclusion: Au-NPs exhibited proper particle size, and rod-shaped particles, with efficient antimicrobial behavior against different bacterial strains. Furthermore, Au-NPs demonstrated a promising wound healing activity in STZ-induced diabetic animals.
Collapse
Affiliation(s)
- Wafaa E. Soliman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia;
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Mansoura 11152, Egypt; (L.E.E.); (H.A.R.)
- Correspondence:
| | - Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia; (H.S.E.); (N.S.Y.)
| | - Nancy S. Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia; (H.S.E.); (N.S.Y.)
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia;
| | - Lamis E. Elsawy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Mansoura 11152, Egypt; (L.E.E.); (H.A.R.)
| | - Heba A. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Mansoura 11152, Egypt; (L.E.E.); (H.A.R.)
| |
Collapse
|
6
|
Tragia involucrata Leaf-Mediated ZnO NPs: Biomedical Applications, Ointment Formulation and Electrochemical Studies. Appl Biochem Biotechnol 2022; 195:3764-3786. [DOI: 10.1007/s12010-022-03866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022]
|
7
|
Biogenic Synthesis of Silver Nanoparticles, Characterization and Their Applications—A Review. SURFACES 2021. [DOI: 10.3390/surfaces5010003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With the growing awareness for the need of sustainable environment, the importance of synthesizing and the application of green nanoparticles has gained special focus. Among various metal nanoparticles, silver nanoparticles (AgNPs) have gain significant attention. AgNPs are synthesized conventionally by physical and chemical methods using chemicals such as reducing agents, which are hazardous to environment due to their toxic properties, provoking a serious concern to create and develop environment friendly methods. Thus, biological alternatives are emerging to fill gaps, such as green syntheses that use biological molecules taken from plant sources in the form of extracts, which have shown to be superior to chemical and physical approaches. These biological molecules derived from plants are assembled in a highly regulated manner to make them suitable for metal nanoparticle synthesis. The current review outlines the wide plant diversity that may be used to prepare a rapid and single-step procedure with a green path over the traditional ones, as well as their antifungal activity.
Collapse
|
8
|
Wu X, Chen Y, Zhang Y, Shan Y, Peng Z, Gu B, Yang H. Au Nanoclusters Ameliorate Shigella Infectious Colitis by Inducing Oxidative Stress. Int J Nanomedicine 2021; 16:4545-4557. [PMID: 34267512 PMCID: PMC8275169 DOI: 10.2147/ijn.s315481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Background Shigella infection has always been a global burden, and it particularly threatens children between the ages of 1 and 5 years. Economically underdeveloped countries are dominated by Shigella flexneri infection. The most effective method to treat Shigella is antibiotics, but with the abuse of antibiotics and the prevalence of multidrug resistance, we urgently need a relatively safe non-antibiotic treatment to replace it. Ultrasmall Au nanoclusters (NCs) have special physical and chemical properties and can better interact with and be internalized by bacteria to disrupt the metabolic balance. The purpose of this study was to explore whether Au NCs may be a substitute for antibiotics to treat Shigella infections. Methods Au NCs and Shigella Sf301, R2448, and RII-1 were cocultured in vitro to evaluate the bactericidal ability of Au NCs. The degree of damage and mode of action of Au NCs in Shigella were clearly observed in images of scanning electron microscopy (SEM). In vivo experiments were conducted to observe the changes in body weight, clinical disease activity index (DAI) and colon (including length and histopathological sections) of mice treated with Au NCs. The effect of Au NCs was analysed by measuring the content of lipocalin-2 (LCN2) and Shigella in faeces. Next, the changes in Shigella biofilm activity, the release of reactive oxygen species (ROS), the changes in metabolism-related and membrane-related genes, and the effect of Au NCs on the body weight of mice were determined to further analyse the mechanism of action and effect. Results Au NCs (100 μM) interfered with oxidative metabolism genes, induced a substantial increase in ROS levels, interacted with the cell membrane to destroy it, significantly killed Shigella, and effectively alleviated the intestinal damage caused by Shigella in mice. The activity of the biofilm formed by Shigella was reduced. Conclusion The effective antibacterial effect and good safety suggest that Au NCs represent a good potential alternative to antibiotics to treat Shigella infections.
Collapse
Affiliation(s)
- Xiaoxiao Wu
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Yongyan Chen
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Yangheng Zhang
- Department of Periodontology, Nanjing Stomatological Hospital of Nanjing University School of Medicine, Nanjing, 210008, People's Republic of China
| | - Yunjie Shan
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Zhiyue Peng
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Bing Gu
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510000, People's Republic of China
| | - Huan Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| |
Collapse
|
9
|
Experimental investigation and electrochemical characterization of titanium coated nanocomposite materials for biomedical applications. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Vanlalveni C, Lallianrawna S, Biswas A, Selvaraj M, Changmai B, Rokhum SL. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Adv 2021; 11:2804-2837. [PMID: 35424248 PMCID: PMC8694026 DOI: 10.1039/d0ra09941d] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/30/2020] [Indexed: 12/27/2022] Open
Abstract
Synthesis of metal nanoparticles using plant extracts is one of the most simple, convenient, economical, and environmentally friendly methods that mitigate the involvement of toxic chemicals. Hence, in recent years, several eco-friendly processes for the rapid synthesis of silver nanoparticles have been reported using aqueous extracts of plant parts such as the leaf, bark, roots, etc. This review summarizes and elaborates the new findings in this research domain of the green synthesis of silver nanoparticles (AgNPs) using different plant extracts and their potential applications as antimicrobial agents covering the literature since 2015. While highlighting the recently used different plants for the synthesis of highly efficient antimicrobial green AgNPs, we aim to provide a systematic in-depth discussion on the possible influence of the phytochemicals and their concentrations in the plants extracts, extraction solvent, and extraction temperature, as well as reaction temperature, pH, reaction time, and concentration of precursor on the size, shape and stability of the produced AgNPs. Exhaustive details of the plausible mechanism of the interaction of AgNPs with the cell wall of microbes, leading to cell death, and high antimicrobial activities have also been elaborated. The shape and size-dependent antimicrobial activities of the biogenic AgNPs and the enhanced antimicrobial activities by synergetic interaction of AgNPs with known commercial antibiotic drugs have also been comprehensively detailed.
Collapse
Affiliation(s)
- Chhangte Vanlalveni
- Department of Botany, Mizoram University Tanhril Aizawl Mizoram 796001 India
| | - Samuel Lallianrawna
- Department of Chemistry, Govt. Zirtiri Residential Science College Aizawl 796001 Mizoram India
| | - Ayushi Biswas
- Department of Chemistry, National Institute of Technology Silchar Silchar 788010 India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University Abha 61413 Saudi Arabia
| | - Bishwajit Changmai
- Department of Chemistry, National Institute of Technology Silchar Silchar 788010 India
| | - Samuel Lalthazuala Rokhum
- Department of Chemistry, National Institute of Technology Silchar Silchar 788010 India
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
11
|
Ahsan A, Farooq MA, Ahsan Bajwa A, Parveen A. Green Synthesis of Silver Nanoparticles Using Parthenium Hysterophorus: Optimization, Characterization and In Vitro Therapeutic Evaluation. Molecules 2020; 25:molecules25153324. [PMID: 32707950 PMCID: PMC7435648 DOI: 10.3390/molecules25153324] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 01/31/2023] Open
Abstract
Traditional synthetic techniques for silver nanoparticles synthesis involve toxic chemicals that are harmful to humans as well as the environment. The green chemistry method for nanoparticle synthesis is rapid, eco-friendly, and less toxic as compared to the traditional methods. In the present research, we synthesized silver nanoparticles employing a green chemistry approach from Parthenium hysterophorus leaf extract. The optimized parthenium silver nanoparticles (PrSNPs) had a mean particle size of 187.87 ± 4.89 nm with a narrow size distribution of 0.226 ± 0.009 and surface charge −34 ± 3.12 mV, respectively. The physicochemical characterization of optimized SNPs was done by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Moreover, the transmission electron microscopy (TEM) analysis indicates the spherical shape of NPs with an average diameter of 20–25 nm. PrSNPs were investigated for in vitro antibacterial, antifungal, anti-inflammatory, and antioxidant properties, and showed excellent profiles. The cytotoxic activity was analyzed against two cancer cell lines, i.e., B16F10 and HepG2 for 24 h and 48 h. PrSNPs proved to be an excellent anticancer agent. These PrSNPs were also employed for the treatment of wastewater by monitoring the E. coli count, and it turned out to be reduced by 58%; hence these NPs could be used for disinfecting water. Hence, we can propose that PrSNPs could be a suitable candidate as an antimicrobial, antioxidant, anti-inflammatory, and antitumor agent for the treatment of several ailments.
Collapse
Affiliation(s)
- Anam Ahsan
- College of Animal Science & Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China;
| | - Muhammad Asim Farooq
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 211100 Nanjing, China;
| | - Ali Ahsan Bajwa
- Weeds Research Unit, New South Wales Department of Primary Industries, Wagga Wagga, NSW 2650, Australia;
| | - Amna Parveen
- College of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu Incheon 406–799, Korea
- Correspondence: ; Tel.: +82-10-5925-2733
| |
Collapse
|
12
|
Elemike EE, Onwudiwe DC, Ogeleka DF, Obasi EC. Biomediated Cellulose-Ag-ZnO Nanocomposites and Their Ecotoxicological Assessment Using Onion Bulb Plant. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01826-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Lateef A, Oladejo SM, Akinola PO, Aina DA, Beukes LS, Folarin BI, Gueguim-Kana EB. Facile synthesis of silver nanoparticles using leaf extract of Hyptis suaveolens (L.) Poit for environmental and biomedical applications. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1757-899x/805/1/012042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Gao Y, Arokia Vijaya Anand M, Ramachandran V, Karthikkumar V, Shalini V, Vijayalakshmi S, Ernest D. Biofabrication of Zinc Oxide Nanoparticles from Aspergillus niger, Their Antioxidant, Antimicrobial and Anticancer Activity. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01551-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Osuntokun J, Onwudiwe DC, Ebenso EE. Aqueous extract of broccoli mediated synthesis of CaO nanoparticles and its application in the photocatalytic degradation of bromocrescol green. IET Nanobiotechnol 2018; 12:888-894. [PMID: 30247126 PMCID: PMC8676217 DOI: 10.1049/iet-nbt.2017.0277] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/09/2018] [Accepted: 04/06/2018] [Indexed: 08/03/2023] Open
Abstract
CaO nanoparticles have been prepared using CaCl2 and aqueous extract of broccoli as a precursor and reducing agent, respectively. Different volumes of the aqueous broccoli extract were utilised to obtain Ca(OH)2 and subsequent calcination gave CaO nanoparticles. The synthesised CaO was confirmed by powder X-ray diffraction (XRD). The morphology was studied using transmittance electron microscopy (TEM), and the surface composition of Ca(OH)2 was explored using Fourier transform infrared spectroscopy. The major functional groups present in the capping material responsible for the reduction of the metal salt and the surface passivation of Ca(OH)2 were identified. The XRD pattern revealed cubic phase for all the CaO nanoparticles, and the crystallite size was estimated using Scherrer's equation showed a variation which is dependent on the volume of the extract used. TEM analysis showed different shapes, while the selected area electron diffraction (SAED) results confirmed the crystallinity of the nanoparticles. Thermogravimetric analysis of Ca(OH)2 showed the decomposition product to be CaO. Sample C3, which has the smallest particle size, was used as a catalyst for the degradation of bromocresol green via photo irradiation with ultraviolet light and the result revealed a degradation efficiency of 60.1%.
Collapse
Affiliation(s)
- Jejenija Osuntokun
- Faculty of Natural and Agricultural Science, Material Science Innovation and Modelling (MaSIM) Research Focus Area, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa
| | - Damian C Onwudiwe
- Faculty of Natural and Agricultural Science, Material Science Innovation and Modelling (MaSIM) Research Focus Area, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa.
| | - Eno E Ebenso
- Department of Chemistry, Faculty of Natural and Agricultural Science, School of Physical and Chemical Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa
| |
Collapse
|
16
|
Vijayan R, Joseph S, Mathew B. Eco-friendly synthesis of silver and gold nanoparticles with enhanced antimicrobial, antioxidant, and catalytic activities. IET Nanobiotechnol 2018; 12:850-856. [PMID: 30104462 PMCID: PMC8676156 DOI: 10.1049/iet-nbt.2017.0311] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/09/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022] Open
Abstract
The present work is emphasised on the bio-fabrication of silver and gold nanoparticles in a single step by a microwave-assisted method using the leaf extract of Synedrella nodiflora as both reducing and stabilising agent. The synthesised nanoparticles are highly stable and show surface plasmon resonance peak at 413 and 535 nm, respectively, for silver and gold nanoparticles in UV-Vis spectrum. The functional group responsible for the reduction of metal ions were obtained from Fourier transform infrared spectroscopy. The crystalline nature of nanoparticles with face-centred cubic geometry was confirmed by the X-ray diffraction and selected area electron diffraction patterns. The morphology and sizes of the silver and gold nanoparticles were obtained from transmission electron microscopy images. The nanoparticles exhibit effective antimicrobial activities against various pathogenic strains. These antimicrobial properties were analysed by employing agar well diffusion method. The nanoparticles show significant antioxidant properties, and it was determined using 2, 2-diphenyl-1-picrylhydrazyl assay. The nanoparticles also show potent catalytic activity in the degradation of anthropogenic pollutant dyes Congo red and eosin Y by excess NaBH4. Thus, the current study demonstrates the potential use of S. nodiflora as a reducing and stabilising agent for the synthesis of silver and gold nanoparticles and their relevance in the field of biomedicine and catalysis.
Collapse
Affiliation(s)
- Remya Vijayan
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala, India
| | - Siby Joseph
- Department of Chemistry, St. George's College, Aruvithura, Kottayam 686122, Kerala, India
| | - Beena Mathew
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala, India.
| |
Collapse
|
17
|
Lateef A, Folarin BI, Oladejo SM, Akinola PO, Beukes LS, Gueguim-Kana EB. Characterization, antimicrobial, antioxidant, and anticoagulant activities of silver nanoparticles synthesized from Petiveria alliacea L. leaf extract. Prep Biochem Biotechnol 2018; 48:646-652. [PMID: 29958093 DOI: 10.1080/10826068.2018.1479864] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phytosynthesis of silver nanoparticles (AgNPs) using leaf extract of Petiveria alliacea (PA) was the focus of this research work. The PA-AgNPs were characterized by UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) study. Studies were made on the AgNPs for antibacterial, antifungal, anticoagulant, free-radical scavenging, and hydrogen peroxide scavenging activities. The crystalline PA-AgNPs were monodispersed, with a size range of 16.70-33.74 nm and maximum absorption at 410 nm. FTIR analysis displayed prominent peaks at 3430.6, 1711.8, and 1165.9/cm, which showed the existence of phenolic compounds and proteins in the synthesis of AgNPs. PA-AgNPs was active against Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus, with 100% inhibition. The PA-AgNPs also displayed good antifungal properties, as the concentrations of 100 and 150 µg/mL had 100% inhibition toward Aspergillus fumigatus and Aspergillus flavus. However, there was 66.67% inhibition of Aspergillus niger. It scavenged both DPPH and H2O2 by 70.69 and 89.02%, respectively. PA-AgNPs also prevented the coagulation of human blood. This study, being the first of its kind to use the leaf extract of PA for the synthesis of AgNPs has shown that PA-AgNPs can find biomedical applications.
Collapse
Affiliation(s)
- Agbaje Lateef
- a Department of Pure and Applied Biology , Ladoke Akintola University of Technology , Ogbomoso , Nigeria
| | - Bolaji I Folarin
- a Department of Pure and Applied Biology , Ladoke Akintola University of Technology , Ogbomoso , Nigeria
| | - Suliat M Oladejo
- a Department of Pure and Applied Biology , Ladoke Akintola University of Technology , Ogbomoso , Nigeria
| | - Paul O Akinola
- a Department of Pure and Applied Biology , Ladoke Akintola University of Technology , Ogbomoso , Nigeria
| | - Lorika S Beukes
- b Microscopy and Microanalysis Unit, School of Life Sciences, University of KwaZulu-Natal , Pietermaritzburg , South Africa
| | - Evariste B Gueguim-Kana
- c Department of Microbiology, School of Life Sciences, University of KwaZulu-Natal , Pietermaritzburg , South Africa
| |
Collapse
|