1
|
Nasser R, Ibrahim E, Fouad H, Ahmad F, Li W, Zhou Q, Yu T, Chidwala N, Mo J. Termiticidal Effects and Morpho-Histological Alterations in the Subterranean Termite ( Odontotermes formosanus) Induced by Biosynthesized Zinc Oxide, Titanium Dioxide, and Chitosan Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:927. [PMID: 38869552 PMCID: PMC11173738 DOI: 10.3390/nano14110927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
Recently, nanoparticles have been widely used in agricultural pest control as a secure substitute for pesticides. However, the effect of nanoparticles on controlling the subterranean termite Odontotermes formosanus (O. formosanus) has not been studied yet. Consequently, this study aimed to evaluate the effectiveness of some nanomaterials in controlling O. formosanus. The results showed that zinc oxide nanoparticles (ZnONPs), titanium dioxide nanoparticles (TiO2NPs), and chitosan nanoparticles (CsNPs) biosynthesized using the culture filtrate of Scedosporium apiospermum (S. apiospermum) had an effective role in controlling O. formosanus. Moreover, the mortality rate of O. formosanus after 48 h of treatment with ZnONPs, TiO2NPs, and CsNPs at a 1000 µg/mL concentration was 100%, 100%, and 97.67%, respectively. Furthermore, using ZnONPs, TiO2NPs, and CsNPs on O. formosanus resulted in morpho-histological variations in the normal structure, leading to its death. X-ray diffraction, UV-vis spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, dynamic light scattering, energy dispersive spectroscopy, and the Zeta potential were used to characterize the biosynthesis of ZnONPs, TiO2NPs, and CsNPs with strong activity against O. formosanus termites. Overall, the results of this investigation suggest that biosynthesized ZnONPs, TiO2NPs, and CsNPs have enormous potential for use as innovative, ecologically safe pesticides for O. formosanus control.
Collapse
Affiliation(s)
- Raghda Nasser
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (R.N.); (W.L.); (Q.Z.); (T.Y.); (N.C.)
- Zoology and Entomology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Ezzeldin Ibrahim
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Department of Vegetable Diseases Research, Plant Pathology Research Institute, Agriculture Research Centre, Giza 12916, Egypt
| | - Hatem Fouad
- Department of Field Crop Pests, Plant Protection Research Institute, Agricultural Research Centre, Cairo 12622, Egypt;
| | - Farhan Ahmad
- Entomology Section, Central Cotton Research Institute, Multan P.O. Box 66000, Pakistan;
| | - Wuhan Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (R.N.); (W.L.); (Q.Z.); (T.Y.); (N.C.)
| | - Qihuan Zhou
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (R.N.); (W.L.); (Q.Z.); (T.Y.); (N.C.)
| | - Ting Yu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (R.N.); (W.L.); (Q.Z.); (T.Y.); (N.C.)
| | - Nooney Chidwala
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (R.N.); (W.L.); (Q.Z.); (T.Y.); (N.C.)
| | - Jianchu Mo
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (R.N.); (W.L.); (Q.Z.); (T.Y.); (N.C.)
| |
Collapse
|
2
|
Fouda A, Awad MA, Eid AM, Saied E, Barghoth MG, Hamza MF, Awad MF, Abdelbary S, Hassan SED. An Eco-Friendly Approach to the Control of Pathogenic Microbes and Anopheles stephensi Malarial Vector Using Magnesium Oxide Nanoparticles (Mg-NPs) Fabricated by Penicillium chrysogenum. Int J Mol Sci 2021; 22:5096. [PMID: 34065835 PMCID: PMC8151347 DOI: 10.3390/ijms22105096] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 12/14/2022] Open
Abstract
The discovery of eco-friendly, rapid, and cost-effective compounds to control diseases caused by microbes and insects are the main challenges. Herein, the magnesium oxide nanoparticles (MgO-NPs) are successfully fabricated by harnessing the metabolites secreted by Penicillium chrysogenum. The fabricated MgO-NPs were characterized using UV-Vis, XRD, TEM, DLS, EDX, FT-IR, and XPS analyses. Data showed the successful formation of crystallographic, spherical, well-dispersed MgO-NPs with sizes of 7-40 nm at a maximum wavelength of 250 nm. The EDX analysis confirms the presence of Mg and O ions as the main components with weight percentages of 13.62% and 7.76%, respectively. The activity of MgO-NPs as an antimicrobial agent was investigated against pathogens Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans, and exhibited zone of inhibitions of 12.0 ± 0.0, 12.7 ± 0.9, 23.3 ± 0.8, 17.7 ± 1.6, and 14.7 ± 0.6 mm respectively, at 200 µg mL-1. The activity is decreased by decreasing the MgO-NPs concentration. The biogenic MgO-NPs exhibit high efficacy against different larvae instar and pupa of Anopheles stephensi, with LC50 values of 12.5-15.5 ppm for I-IV larvae instar and 16.5 ppm for the pupa. Additionally, 5 mg/cm2 of MgO-NPs showed the highest protection percentages against adults of Anopheles stephensi, with values of 100% for 150 min and 67.6% ± 1.4% for 210 min.
Collapse
Affiliation(s)
- Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (E.S.); (M.G.B.); (S.A.)
| | - Mohamed A. Awad
- Department of Zoology and Entomology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Ahmed M. Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (E.S.); (M.G.B.); (S.A.)
| | - Ebrahim Saied
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (E.S.); (M.G.B.); (S.A.)
| | - Mohammed G. Barghoth
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (E.S.); (M.G.B.); (S.A.)
| | - Mohammed F. Hamza
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China;
- Nuclear Materials Authority, El-Maadi, Cairo POB 530, Egypt
| | - Mohamed F. Awad
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Salah Abdelbary
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (E.S.); (M.G.B.); (S.A.)
| | - Saad El-Din Hassan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (E.S.); (M.G.B.); (S.A.)
| |
Collapse
|
3
|
Hassan SED, Fouda A, Saied E, Farag MMS, Eid AM, Barghoth MG, Awad MA, Hamza MF, Awad MF. Rhizopus oryzae-Mediated Green Synthesis of Magnesium Oxide Nanoparticles (MgO-NPs): A Promising Tool for Antimicrobial, Mosquitocidal Action, and Tanning Effluent Treatment. J Fungi (Basel) 2021; 7:372. [PMID: 34068709 PMCID: PMC8150313 DOI: 10.3390/jof7050372] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/27/2022] Open
Abstract
The metabolites of the fungal strain Rhizopus oryaze were used as a biocatalyst for the green-synthesis of magnesium oxide nanoparticles (MgO-NPs). The production methodology was optimized to attain the maximum productivity as follows: 4 mM of precursor, at pH 8, incubation temperature of 35 °C, and reaction time of 36 h between metabolites and precursor. The as-formed MgO-NPs were characterized by UV-Vis spectroscopy, TEM, SEM-EDX, XRD, DLS, FT-IR, and XPS analyses. These analytical techniques proved to gain crystalline, homogenous, and well-dispersed spherical MgO-NPs with an average size of 20.38 ± 9.9 nm. The potentiality of MgO-NPs was dose- and time-dependent. The biogenic MgO-NPs was found to be a promising antimicrobial agent against the pathogens including Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans with inhibition zones of 10.6 ± 0.4, 11.5 ± 0.5, 13.7 ± 0.5, 14.3 ± 0.7, and 14.7 ± 0.6 mm, respectively, at 200 μg mL-1. Moreover, MgO-NPs manifested larvicidal and adult repellence activity against Culex pipiens at very low concentrations. The highest decolorization percentages of tanning effluents were 95.6 ± 1.6% at 100 µg/ 100 mL after 180 min. At this condition, the physicochemical parameters of tannery effluents, including TSS, TDS, BOD, COD, and conductivity were reduced with percentages of 97.9%, 98.2%, 87.8%, 95.9%, and 97.3%, respectively. Moreover, the chromium ion was adsorbed with percentages of 98.2% at optimum experimental conditions.
Collapse
Affiliation(s)
- Saad El-Din Hassan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (E.S.); (M.M.S.F.); (A.M.E.); (M.G.B.)
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (E.S.); (M.M.S.F.); (A.M.E.); (M.G.B.)
| | - Ebrahim Saied
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (E.S.); (M.M.S.F.); (A.M.E.); (M.G.B.)
| | - Mohamed M. S. Farag
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (E.S.); (M.M.S.F.); (A.M.E.); (M.G.B.)
| | - Ahmed M. Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (E.S.); (M.M.S.F.); (A.M.E.); (M.G.B.)
| | - Mohammed G. Barghoth
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (E.S.); (M.M.S.F.); (A.M.E.); (M.G.B.)
| | - Mohamed A. Awad
- Department of Zoology and Entomology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Mohammed F. Hamza
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China;
- Nuclear Materials Authority, El-Maadi, Cairo POB 530, Egypt
| | - Mohamed F. Awad
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
4
|
Zhao Z, Li Q, Gong J, Li Z, Zhang J. A poly(allylamine hydrochloride)/poly(styrene sulfonate) microcapsule-coated cotton fabric for stimulus-responsive textiles. RSC Adv 2020; 10:17731-17738. [PMID: 35515608 PMCID: PMC9053607 DOI: 10.1039/d0ra02474k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/16/2020] [Indexed: 12/27/2022] Open
Abstract
This study reports the design of a stimulus-responsive fabric incorporating a combination of microcapsules, containing polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) sodium salt (PSS), formed via a layer-by-layer (LBL) approach. The use of PAH and PSS ensured that the microcapsule structure was robust and pH-sensitive. SEM and TEM studies showed that the composite microcapsule (PAH/PSS) n PAH had a spherical morphology with a hollow structure. FTIR demonstrated the presence of PAH and PSS, confirming the composition of the microcapsule shell. DSC showed that the microcapsules were thermally stable. The size of the microcapsules ranged from 4 μm to 6 μm. The hollow microcapsules can be used as a carrier for loading and releasing chemicals under different pH conditions. The release rate of Rhodamine-B from (PAH/PSS) n PAH microcapsules was higher at pH 5.8 than that at 7.4, confirming the pH sensitivity. The hollow structure of (PAH/PSS) n PAH microcapsules is expected to act as a carrier and medium to introduce functional chemicals into the fabric with long-lasting property and pH stimulus responsivity. Furthermore, a positively charged compound with ethylene oxide groups was added during the coating process as a crosslinker binding (PAH/PSS)2PAH for the microcapsules with the cotton fabric more efficiently. Using this method, numerous substances, e.g., drugs, dyes, natural herbs, or perfumes, could be stored into the LBL microcapsules for a relatively long time, constantly releasing them from the coated textiles. Since LBL microcapsules were easy to combine with fabrics, this study provided a feasible approach for the preparation of functional stimulus-responsive textiles.
Collapse
Affiliation(s)
- Zhiqi Zhao
- School of Textile Science and Engineering, Tiangong University Tianjin 300387 China +86-18622272697 +86-18920787809
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University Tianjin 300387 China
| | - Qiujin Li
- School of Textile Science and Engineering, Tiangong University Tianjin 300387 China +86-18622272697 +86-18920787809
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University Tianjin 300387 China
| | - Jixian Gong
- School of Textile Science and Engineering, Tiangong University Tianjin 300387 China +86-18622272697 +86-18920787809
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University Tianjin 300387 China
| | - Zheng Li
- School of Textile Science and Engineering, Tiangong University Tianjin 300387 China +86-18622272697 +86-18920787809
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University Tianjin 300387 China
| | - Jianfei Zhang
- School of Textile Science and Engineering, Tiangong University Tianjin 300387 China +86-18622272697 +86-18920787809
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University Tianjin 300387 China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province Qingdao 266071 Shandong China
| |
Collapse
|
5
|
Senthil-Nathan S. A Review of Resistance Mechanisms of Synthetic Insecticides and Botanicals, Phytochemicals, and Essential Oils as Alternative Larvicidal Agents Against Mosquitoes. Front Physiol 2020; 10:1591. [PMID: 32158396 PMCID: PMC7052130 DOI: 10.3389/fphys.2019.01591] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
Mosquitoes are a serious threat to the society, acting as vector to several dreadful diseases. Mosquito management programes profoundly depend on the routine of chemical insecticides that subsequently lead to the expansion of resistance midst the vectors, along with other problems such as environmental pollution, bio magnification, and adversely affecting the quality of public and animal health, worldwide. The worldwide risk of insect vector transmitted diseases, with their associated illness and mortality, emphasizes the need for effective mosquitocides. Hence there is an immediate necessity to develop new eco-friendly pesticides. As a result, numerous investigators have worked on the development of eco-friendly effective mosquitocidal compounds of plant origin. These products have a cumulative advantage of being cost-effective, environmentally benign, biodegradable, and safe to non-target organisms. This review aims at describing the current state of research on behavioral, physiological, and biochemical effects of plant derived compounds with larvicidal effects on mosquitoes. The mode of physiological and biochemical action of known compounds derived from various plant families as well as the potential of plant secondary metabolites, plant extracts, and also the essential oils (EO), as mosquitocidal agents are discussed. This review clearly indicates that the application of vegetal-based compounds as mosquito control proxies can serve as alternative biocontrol methods in mosquito management programes.
Collapse
Affiliation(s)
- Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| |
Collapse
|
6
|
Suresh M, Jeevanandam J, Chan YS, Danquah MK, Kalaiarasi JMV. Opportunities for Metal Oxide Nanoparticles as a Potential Mosquitocide. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00703-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Ma J, Ugya YA, Isiyaku A, Hua X, Imam TS. Evaluation of Pistia stratiotes fractions as effective larvicide against Anopheles mosquitoes. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:945-950. [PMID: 30855191 DOI: 10.1080/21691401.2019.1582538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mosquito are well-known vectors that cause diseases particularly malaria and filariasis which are detrimental to human health. These vectors occur mainly in tropical countries where more than 2 billion people live in endemic regions with about one million deaths been claimed yearly from malaria and filariasis. The study is aimed at evaluating the larvicidal activity of Pistia stratiotes fractions on Anopheles mosquitoes (Diptera: Culicidae). The ethyl acetate extract of P. stratiotes was obtained through percolation process and was chromatographed to yield nine fractions. The larvicidal activity of each of the nine fractions was tested in triplicates by exposing the larvae to 500, 250, 125, 62.5 and 31.3 µg/ml, respectively. Phytochemical screening of the nine fractions revealed the presence of alkaloids, flavonoids, glycosides and phlobatannins in varying quantities. The result obtained shows that fraction E has the highest lethal effect on the Anopheles larvae at LC50 =14.81 µg/ml and was weakly effective at 602.03 µg/ml on brine shrimp larvae. The gas chromatography mass spectrometry analysis of fraction E revealed the presence of 35 pre-cursor compounds. Hence, ethyl acetate fractions of P. stratiotes could be an effective larvicide against Anopheles mosquito larvae as it has been found to be harmless to other aquatic organisms. Further work should be done on other aquatic weeds that have larvicidal potential to isolate the bioactive compounds.
Collapse
Affiliation(s)
- Jincai Ma
- a College of New Energy and Environment , Jilin University , Changchun , China
| | - Yunusa Adamu Ugya
- a College of New Energy and Environment , Jilin University , Changchun , China.,b Department of Environmental Management , Kaduna State University , Kaduna , Nigeria
| | - Asma'u Isiyaku
- c Department of Biological Sciences , Bayero University , Kano , Nigeria
| | - Xiuyi Hua
- a College of New Energy and Environment , Jilin University , Changchun , China
| | - Tijjani Sabiu Imam
- c Department of Biological Sciences , Bayero University , Kano , Nigeria
| |
Collapse
|
8
|
Rai M, Jamil B. Nanoformulations: A Valuable Tool in the Therapy of Viral Diseases Attacking Humans and Animals. Nanotheranostics 2019. [PMCID: PMC7121811 DOI: 10.1007/978-3-030-29768-8_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Various viruses can be considered as one of the most frequent causes of human diseases, from mild illnesses to really serious sicknesses that end fatally. Numerous viruses are also pathogenic to animals and plants, and many of them, mutating, become pathogenic also to humans. Several cases of affecting humans by originally animal viruses have been confirmed. Viral infections cause significant morbidity and mortality in humans, the increase of which is caused by general immunosuppression of the world population, changes in climate, and overall globalization. In spite of the fact that the pharmaceutical industry pays great attention to human viral infections, many of clinically used antivirals demonstrate also increased toxicity against human cells, limited bioavailability, and thus, not entirely suitable therapeutic profile. In addition, due to resistance, a combination of antivirals is needed for life-threatening infections. Thus, the development of new antiviral agents is of great importance for the control of virus spread. On the other hand, the discovery and development of structurally new antivirals represent risks. Therefore, another strategy is being developed, namely the reformulation of existing antivirals into nanoformulations and investigation of various metal and metalloid nanoparticles with respect to their diagnostic, prophylactic, and therapeutic antiviral applications. This chapter is focused on nanoscale materials/formulations with the potential to be used for the treatment or inhibition of the spread of viral diseases caused by human immunodeficiency virus, influenza A viruses (subtypes H3N2 and H1N1), avian influenza and swine influenza viruses, respiratory syncytial virus, herpes simplex virus, hepatitis B and C viruses, Ebola and Marburg viruses, Newcastle disease virus, dengue and Zika viruses, and pseudorabies virus. Effective antiviral long-lasting and target-selective nanoformulations developed for oral, intravenous, intramuscular, intranasal, intrarectal, intravaginal, and intradermal applications are discussed. Benefits of nanoparticle-based vaccination formulations with the potential to secure cross protection against divergent viruses are outlined as well.
Collapse
Affiliation(s)
- Mahendra Rai
- Department of Biotechnology, Nanobiotechnology Laboratory, Amravati, Maharashtra, India, Department of Chemistry, Federal University of Piauí, Teresina, Piauí Brazil
| | - Bushra Jamil
- Department of DMLS, University of Lahore, Islamabad, Pakistan
| |
Collapse
|
9
|
Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb Pathog 2018; 123:505-526. [DOI: 10.1016/j.micpath.2018.08.008] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/15/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022]
|